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The study of human interactions is of central importance for understanding the behavior of individuals,

groups, and societies. Here, we observe the formation and evolution of networks by monitoring the

addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving

online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be

achieved only by following the time evolution of the network. Inferences about the reason for the

existence of links using statistical analysis of network snapshots must therefore be made with great

caution. Here, we start by characterizing every single link when the tie was established in the network.

This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful

sociological conclusions. We also find significant differences in behavioral traits in the social tendencies

among individuals according to their degree of activity, gender, age, popularity, and other attributes. For

instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as

much as men and that this difference increases with age. Men tend to connect with the most popular

people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar,

independent of gender, and show an increase with age. These results require further validation in other

social settings. Our findings can be useful to build models of realistic social network structures and to

discover the underlying laws that govern establishment of ties in evolving social networks.
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I. INTRODUCTION

Uncovering patterns of human behavior addresses fun-
damental questions about the structure of the society we
live in. The choices made at the individual level determine
the emergent complex global network underlying a given
social structure [1]. Conversely, the structure of the social
network that constitutes an individual’s community also
affects to a large extent the individual’s ability to act. For
instance, the position in the network structure may facili-
tate one’s ability to interact with others by providing
information of possible choices and their consequences
[2], or by supplying the individual with different kinds of
material and immaterial resources [3]. On the other side,
this structure may also limit this individual’s ability to act
by excluding information [2] through local social norms
and through social control.

Detecting regularities and motifs in the development of
social networks provides significant tools for the under-
standing of the structure of society. For example, the
SIENA approach is a widely used tool that comprises a
variety of statistical analyses of network data with empha-

sis on actor-oriented models, focusing mainly in small
networks of approximately 10 to 1000 nodes [4].
Kossinets and Watts [5] study the ties between university
faculty and students. Ties are detected through multiple
Email exchanges over a period of 60 days, and the exis-
tence of ties is then shown to depend on how many classes
are shared, common interests, etc. More recently, Kovanen
et al. [6] have studied the order by which temporal motifs,
such as triangles, squares, etc., are created. Szell and
Thurner [7] have studied the interactions in an online
game over three years, by creating the networks of in-
game friends, enemies, and user communications. In addi-
tion to a number of structural features, the authors study the
creation of triangles and the time evolution from a given
triangle profile to another. A number of statistical associa-
tion models are also widely used to link a social network
structure to a statistically significant social mechanism of
interaction [8]. Social theoretical frameworks [9], such as
the multitheoretical multilevel (MTML) formalism [10],
have proposed a set of mechanisms of social interaction to
describe the probabilistic tendencies of creation, mainte-
nance, dissolution, and reconstitution of interpersonal ties
during the evolution of a social network. Examples of
mechanisms include [see Fig. 1(a)]: (1) reciprocity (named
social exchange after the most likely social mechanism),
(2) friend of a friend ties or closing triangles (balance),
(3) exploration of distant network areas which require at
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least three steps from the position of the person in the
current network (self-interest theories), (4) ties facilitating
dissemination of information by linking to well-connected
people (named collective action or preferential attachment
[11]), and (5) links that act as bridges between two subnet-
works that are not directly linked (structural hole mecha-
nism). Contractor et al. [10] have further identified a set of
probabilistic tendencies for ties to be present or absent in
networks that the different families of theoretical mecha-
nisms may cause. One important conclusion [10] is that a
given family of theoretical mechanisms may generate dif-
ferent probabilistic tendencies for ties to be present or
absent. Furthermore, the same probabilistic tendency
may be caused by several different families of theoretical
mechanisms.
In the present study we aim to unravel significant

patterns in these social mechanisms of human interaction
by monitoring and analyzing the time evolution of the
actions of members of two online affiliation networks.
The term affiliation refers to data based on comembership
or coparticipation in events, where here members use the
Internet to interact with each other through the online
sites [12]. A connection in such sites may indicate under-
lying social ties [13].
In principle, a formal statistical analysis, such as expo-

nential random graph models [8,14] would search for
regularities or motifs in the social structure by comparing
a static snapshot of the network with a suitable ensemble
of equiprobable random configurations. However, this
approach cannot characterize the decisions taken (con-
sciously or not) at the individual level on the type of
mechanism used for an established connection. A direct
application of a statistical analysis to evolving networks
may not be able to resolve the full spectrum of human
interactions. This is due to the inherent history-dependent
nature of social interactions, i.e., the interaction mecha-
nisms determine the evolving network, which, in turn,
conditions the human choices of interaction. Figures 1(b)
and 1(c) illustrate this point during the generation of a
hypothetical triangular XYZ relation at time t. This static
pattern may be associated with a balance mechanism for
the tie XZ (friend of a friend) as a result of closing the
triangle as shown in Fig. 1(b). However, a closer inspection
of the time evolution of tie formation reveals the possibility
of a different classification of the XZ link, where agent X
has used the distant mechanism at time t� 2 to connect
with Z as in Fig. 1(c). The above example can be also
understood in a real-world situation. In a social setting,
such as trying to date someone or applying for a job,
applicants have a different perspective if they are intro-
duced through a common acquaintance or if there is no
former connection. Since we eventually may end up with
the same balance triangle, there is no way for the analysis
of the static pattern to distinguish between the two separate
perspectives.

FIG. 1. (a) The five probabilistic tendencies we used to classify
the interactions. Black arrows indicate existing links and red
arrows are the possible options for a new link, according to the
following tendencies: (1) social exchange, which corresponds to
establishing a reciprocal link, i.e., add as favorite someone who
has already added us to their favorites lists; (2) balance, where we
select a favorite who is in the list of one of our existing favorites
(friend of a friend); (3) distant connection, where the connection
is to a member with whom there is no proximity, i.e., one needs at
least three links to reach this member; (4) collective action, where
we connect to a person whose connectivity is well above the
average connectivity in the community (we quantify this behavior
by examining whether the total degree of the receiving agent
belongs to the upper 5% of the degree distribution at the given
time); and (5) structural hole, where a link connects two otherwise
not connected clusters of at least three members each, and which
are otherwise not directly linked to each other (in the picture this
link would connect the cluster of people in hats with the red-
haired cluster). (b),(c) Why we cannot extract tendencies from a
static snapshot: In the presented example a triangle relation is
built from time t� 2 to time t under two different scenarios that
lead to the same resulting triangle. (b) The ties X-Y and Y-Z can
be formed, at times t� 2 and t� 1, respectively, via distant
mechanisms resulting in a balance mechanism for the formation
of X-Z at time t. Here X uses a friend of a friend to be introduced
to Z. (c) A different path, though, would classify the X-Z tie
differently. If X connects to Z before connecting to Y, then the
X-Z link represents a distant tendency, since there are no close
connections between them. A static network analysis would
suggest that X used balance to connect to Z, instead.
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The above example can be generalized to the global
network level. For instance, an agent may decide to con-
nect to agents that are far away in the network (distant
mechanism). Eventually, individuals are brought closer to
each other to form a tightly connected cluster. The evolv-
ing nature of the network may change those initial distant
interactions into balance, as new relations are created in the
network. Therefore, the precise knowledge of the time
evolution of each tie in the network is crucial to unravel
the relevant behavioral mechanisms in a real community.

Here, we present a microscopic and temporal statistical
analysis of the evolution of two online social networks; one
from its original inception and the other after it is well
developed. We aim to uncover how the combination of
different social mechanisms eventually shapes the interac-
tion network. Our longitudinal approach focuses on char-
acterizing each interpersonal tie at the time when it is
established. The knowledge of the order in which each
link was formed allows us to characterize social patterns
that cannot be derived from statistical analysis of static
snapshots of the networks.

II. DATA SETS AND METHODS

We study the affiliation networks of two online social
networking sites in Sweden, pussokram.com [15] and qx.se
[16]. Both data sets were de-identified in their source. The
pussokram community (POK for brevity) is used mainly by
Swedish young adults for friendship, including dating and
nonromantic relations. Activity in the community was
recorded for 512 consecutive days, starting on the day
that the site was created in 2001. At the end of recording,
the community had 28 876 members with a mean user age
of 21 years who have performed �190; 000 interactions.
The QX site is the Nordic region’s largest and most active
web community for homosexual, bisexual, and transgender
people. The site is also frequently used by heterosexual
men and women. Activity among the users was recorded
during two months starting in November, 2005. At that
time there were about 180 000 registered members; 80 426
of them were active during the recording period establish-
ing more than 1 million ties.

These online services address either adults or teens who
intend on meeting new friends. Decisions about connec-
tions in the site are based on information provided in the
site itself and typically do not reflect preexisting relations
in real life. It is unlikely that members would contact real-
life friends to any significant extent while seeking romance
or dating online. This is in contrast to sites such as
Facebook, where the majority of connections are trans-
ferred from existing offline acquaintances.

There are many types of interactions between members
in the two communities under study, but we focus on those
which imply a firmer commitment than, e.g., simply send-
ing a message [17]. Such interactions are (a) the favorites
list in QX, and (b) the guest-book signing in QX and POK.

The former interaction represents a clear declaration of
approval and/or interest, while the latter is a communica-
tion publicly accessible to all community members where a
link does not necessarily indicate a particularly close rela-
tionship. We compare two means of interaction in one
community (favorites list and guest-book signing in QX)
and the same type of interaction (guest-book signing) in
two communities (QX and POK). We use the guest-book
signing to test consistent trends in the results.
In the QX data set, it is possible that a user can remove a

contact at any point. There was a small number of such
links, in total less than 1% of the total links, that were
removed during our monitoring window. It may be inter-
esting to study the conditions of ties removal in parallel
with the addition process, but the small number of removed
contacts does not influence our results here, and we do not
pursue this topic further.
Each individual knows the following structural informa-

tion from the affiliation network: (a) who has added her in
their favorites list or who has written in her guest book,
(b) the members that she has added in her favorites list, and
(c) the friends of her friends since the user can access the
favorites list of friends. This subnetwork defines the im-
mediate neighborhood of a member. Actions involving this
neighborhood are captured by social exchange and balance
mechanisms. The members situated farthest away from this
immediate neighborhood are considered to belong to the
rest of the network for which the user has no direct infor-
mation. Interactions with these members are classified as
distant. A collective action can also be a conscious choice,
since a member can assess the popularity of others through
access to their favorites list, but it is also possible that this
action may not be conscious. A structural hole requires a
much wider knowledge of the network structure, and thus it
is the only mechanism that a member does not realize that
she is using.
Our analysis can be readily extended to treat more gen-

eral situations. For simplicity, though, here we will not
evaluate exogenous mechanisms where interactions are
based on attributes of the actors, such as homophily, com-
mon interests, etc. [10]. We will not study further the effect
of focus constraints, i.e., the increased likelihood of a tie
being present among people who share a social context, for
example, living close to each other geographically or work-
ing at the same office [18]. The crux of the matter is to
quantify the different probabilistic tendencies about the
actions of the users as they are determined by the knowledge
of the user about the structure of the affiliation network that
is the vital part of her social life in the community.
The detailed quality of our longitudinal data allows us to

identify the precise probabilistic tendencies for tie forma-
tion that a newly established link corresponds to, when an
actor adds a new favorite to her list (or signs a guest book).
Every interaction that occurred between two members was
recorded together with the timestamp when the event took
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place. We create the evolving network of interacting agents
by adding the directed links in sequential order. For ex-
ample, at the time when a member X adds a member Y in
the favorites list of X, we create a directional link from
X to Y. Similarly, in guest-book signing, the directional
link from X to Y corresponds to X writing in Y’s guest
book (we take into account only the first time X signs Y’s
guest book and ignore repeated signings). Every time we
add a link, we characterize this action according to the
probabilistic tendencies described in Fig. 1(a), as dictated
by the network configuration at the given moment. Every
link is therefore assigned to one or more probabilistic
tendencies: exchange, balance, distant, collective action,
and structural hole. We define the probabilities of each
tendency Pexc, Pbal, Pdis, Pca, and Psh respectively, as the
number of links that were created using the corresponding
tendency normalized by the total number of links created
up to a given time t.

A newly formed link is assigned to the exchange ten-
dency when it is established in the opposite direction of an
existing link. The balance tendency corresponds to a di-
rected network distance ‘ ¼ 2, i.e., when a link points to a
friend of a friend (‘ is the directed distance between two
nodes just before the link is formed—defined as the short-
est path with all arrows pointing to the same direction, so
that a directed path exists between these two nodes). If the
distance between the two nodes is ‘ � 3, the link repre-
sents the distant tendency. A link is considered as collec-
tive action when the chosen node is a hub. We define a hub
as a node whose total degree (counting both incoming and
outgoing links) belongs to the upper 5% of the degree
distribution as measured at the time of link formation. A
link represents the structural hole tendency when this link
connects two clusters of at least three members that would
otherwise be disconnected. Table I summarizes these
definitions.

In general, the increase in the probability of a tie form-
ing under a given tendency will not necessarily be com-
pensated for by a tie with decreased probability under
another tendency. The relative probabilities between ten-
dencies do not necessarily present competing risks, and
different tendencies may act at the same time. It is then
possible that one link jointly represents more than one type
of tendency in tie formation. In this case, we assign this

action to all involved tendencies. For instance, a balance tie
could be also catalogued as collective action if the agent
closes a triangle by connecting to a hub. Based on the
definitions, only balance and distant tendencies are com-
plementary to each other (Pbal þ Pdis ¼ 1) so that the
presence of one excludes the presence of the other. The
other tendencies are normalized as, e.g., Pca þ Pnot-ca ¼ 1
(Pnot-ca is the probability of not performing a collective
action).
By establishing all links in the order they appeared, we

can recreate the entire history of the directed network of
interactions. While POK starts at t ¼ 0 from an empty
network, QX has a large part of the network already in
place at t ¼ t0, our initial recording date. In this case, we
know all the existing links at t ¼ t0. Thus, in QX, we
characterize only the network links that were added during
the monitoring period.
Figure 2 presents the fraction of appearance of each

tendency when considering all recorded interactions in
the studied data sets, QX and POK, and the means of
interaction—guest book and favorites list.
The results are fairly independent of the specific com-

munity and the means of interaction. The probabilities
Pexc, Pbal, and Pca, appear each at approximately
15–30% of all actions. The distant mechanism is domi-
nant, with Pdis � 80% of the established links. Collective
action remains low at Pca � 20% considering that this
tendency is considered the main driver in some models of
network formation through preferential attachment
[11,19]. A very small fraction of links Psh ‘‘fills’’ the
structural holes. This is a result of the small numbers of
clusters that exist in each community, so that the chances
to connect isolated clusters are small. In particular, com-
parison to the random case (where the same members act
at each time step, but instead of the established link they
choose a random connection, Fig. 2, yellow bars) reveals
that the structural hole tendency is more probable when
an agent connects to a random member. In other words,
although there exist opportunities for a structural hole,
the members tend to stay within their own subnetworks,
despite the lack of knowledge on the global structure.
The percentages for the other tendencies are also very
different from random selections. This implies that com-
munity members follow social criteria when adding new

TABLE I. List of tendencies, indicators, and the type of directionality in the network used to
detect the tendency. ‘ is the distance between two nodes as measured by the shortest path in the
directed network.

Tendency Indicator Directionality

Pexc Social Exchange ‘ ¼ 1, mutual link Directed

Pbal Balance ‘ ¼ 2 Directed

Pdis Distant ‘ � 3 Directed

Pca Collective Action Link to a hub Undirected

Psh Structural Hole Connect two clusters Undirected
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favorite members (or sign guest books). We verified the
robustness of our results by comparing the percentages of
the links at the early stages of network formation with
those of the links that were established later in the
process. For example, in QX favorites the first half of
the actions data set gives practically the same result as
the second half: exchange was 13.8% for the first half
and 13.9% for the second, balance was used 22.1%
versus 22.4%, and collective action was used 18.8%
versus 19.7%. Furthermore, the stability of this result
over the evolution of the links is verified later, in
Sec. III E.

Our analysis has shown that the direct calculation of the
tendencies of link formation from the time evolution of the
network provides a consistent characterization of the social
mechanisms involved, which is different from a static
snapshot. Furthermore, the present analysis allows us to
determine if the found tendencies are influenced by im-
portant actor attributes that are hypothesized to have an
association with ties formation [20]. These attributes in-
clude age, gender, popularity, and activity intensity mea-
sured as the number of links developed at a given time.
Next, we incorporate these attributes in our analysis to
attempt to understand how different factors influence the
behavior of the actors. We show that the gender, age,
activity intensity, and popularity can lead to a different
probability of using a given tendency.

III. RESULTS

A. Gender influence

Our analysis reveals that gender is an important attribute
determining the social tendencies. Analysis of the QX
community (the only one reporting gender) reveals that
men do not use some mechanisms in the same way as
women (Fig. 3). Using the gender information in the QX
favorites lists, we find that a female member is almost
3 times more likely to have an exchange tendency com-
pared to male members and 3 times more probable to fill
structural holes (men, on the other side, perform distant
and collective actions at higher percentages). The signifi-
cant difference in exchange, for example, reveals a differ-
ent approach of online communication between men and
women [21]. Our result is in agreement with the
self-reported tendency of women users to exchange more
private Emails than participate in public discussions [22].
The stronger preference for exchange of female users in the
QX community can also be seen as a similar trait where
women tend to develop stronger interpersonal relations by
frequently reciprocating friendships.

B. Age influence

In the databases that we studied, members of different
ages tend to present different behaviors. In Fig. 4 we cal-
culate the fraction of actions that correspond to a tendency
as a function of the self-reported age of the QXmembers. In
the insets, we separate the corresponding probabilities for
male and female members.We find that while reciprocity in
women remains high as they age, men instead reduce it by a
factor of 2 as they reach 40 years of age. This shows that
younger male members are more eager to reciprocate their
connections. In contrast, the level of balance is roughly
constant for both genders and independent of age, with an
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FIG. 3. Probability of different tendencies, based on self-
reported gender in the QX community in favorites list interac-
tions. Exchange and structural hole are significantly more
frequent in females compared to males.
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FIG. 2. The relative appearance of the five probabilistic tenden-
cies in the actions of the community members in QX using
favorites (red), in QX using guest book (green), and in POK using
guest book (blue). These tendencies are compared to a completely
random selection (yellow). Exchange and balance are practically
nonexistent in random selections, but carry significant weight in
the interactions of the real communities. Connecting to distant
members appears in the community much less frequently than in
random, while the preference towards well-connected agents
(collective action) is significantly more prominent. Finally, the
structural hole is significantly suppressed in the real communities
compared to the randomized case.
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important exception at the youngest ages, where members
younger than 20 years old are using systematically less
balance links. This could be because it is more difficult
for them to develop a stable local network in an adult-
oriented community. There are no significant trends with
age for collective action or structural hole, although the
latter tendency is rarely used. The gender-based trends
shown in Fig. 3 are consistent with the age-based results.
Women of a given age are always using more exchange and
less collective action tendencies than men of the same age
(insets of Fig. 4).

C. Activity influence

Communities include members of varying activity [17].
In order to study the effect of the different activity levels, we
address the question of whether a higher involvement in a
community is accompanied by a different pattern in the
probabilistic tendencies of social mechanisms.We calculate
the different probabilities of socialmechanisms as a function
of the number of kout outgoing links for each member.
For instance, P�ðkoutÞ (where � denotes exchange, balance,
etc.) measures the probability that the next action will cor-
respond to �, when the member has kout outgoing links. We
measure P�ðkoutÞ through all the actions of members when
they increase the number of outgoing links from kout to
kout þ 1, irrespective of the time that the action was per-
formed. Interestingly, we find that amember typicallymodi-
fies her behavior according to her current degree of activity
kout. As amember becomesmore involved in the community
and, as a consequence, increases the size of her favorites list
or signs more guest books, the member switches to a differ-
ent relative percentage of using each tendency.

We identify the following pattern which is very consis-
tent across the two data sets and different types of

interactions (see Fig. 5). The first tie of a new member is
always distant since the member has no network estab-
lished. However, even at this stage, 20–30% of these
links are also exchange—meaning that a new member
readily ‘‘responds’’ to the incoming link by established
members—and collective action—meaning that the
member immediately searches for popular members in the
community. At this earlier stage, balance tendency is sup-
pressed, since linking to friends of friends requires first a
firm establishment of the immediate neighborhood.
An interesting crossover appears when the members

arrive to a size kout � 10 in their favorites list (see, for
example, Fig. 5(a) for QX favorites). The percentage of all
tendencies up to that value is approximately constant. At
around 10 interactions in QX favorites, balance overtakes
both exchange and collective action in the behavioral
tendencies. As the members keep adding more links, the
distant mechanism drops significantly to approximately
60% after kout � 100, and the balance tendency grows
increasingly stronger consequently. Similarly, the ex-
change tendency declines steadily towards 0 as the size
of the favorites list increases towards the hundreds.
Collective action leading to preferential attachment seems
to be the most stable over a longer kout-range. Finally, the
relative probability of PshðkoutÞ peaks at low and large
values of kout. The structural holes are filled mainly by
either new members or well-established members, with a
significantly smaller fraction of structural holes performed
in the intermediate kout regime. This interesting behavior
reveals trends in the social tendencies across the individual
users as they enter the network.
The choice of different tendencies is, thus, shown to

have a complex dependence on the individual’s level of
activity. In addition to external attributes, such as gender
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and age, we find that very active members have different
tendencies than the less active ones. Such features can only
be extracted by following the entire time evolution of each
member’s connections.

D. Popularity attributes

So far, our analysis focused on quantifying the different
probabilistic tendencies as seen from the member that
establishes a link. We characterized the outgoing links
which can be controlled by their initiator, in the sense
that any member can choose where, when, and how often
she connects to other members. However, the popularity
(or attractiveness) of a member cannot be adjusted at will.
We characterize the popularity based on the number of
incoming links. Using the same methodology as above, we
can now study how different tendencies determine the
popularity of a member.

For each relationship between two people we assign the
initiator, i.e., the member who contacted the other member
first, and the receiver, i.e., the member who was contacted.
In the case of a reciprocal relation we only characterize the
link that was established first. Given the list of a member’s
connections, we can then know what fraction of those

connections is due to the initiative of this member and
what fraction originated from the other side. Thus, if some-
one very often reciprocates but seldom initiates links, she
will have a small value of initiated links although she may
have a large number of incoming and/or outgoing links.
In Fig. 6(a) we present the histogram of how many

members fall into each category. The diagram is roughly
divided into three areas: (a) members who initiate a lot of
connections but are first contacted by very few members
(‘‘spammers’’), (b) members who on average equally ini-
tiate and receive contacts, and (c) members who receive
many more contacts than they initiate (‘‘popular’’).
The importance of using the time evolution of probabi-

listic tendencies to determine behavior is reflected in this
popularity classification. In Figs. 6(b)–6(d) we present the
average percentage for each category and for each
tendency that the members use when they add friends
themselves. The exchange tendency shows a clear variation
with respect to this classification. The popular members in
the upper diagonal part of the distribution use a lot of
exchange, which can be understood since they respond to
friendship requests but rarely start new connections. As we
move towards the spammers the exchange tendencies
almost disappear, since very few people approach those
members and therefore they have a small chance to use
exchange. On the contrary, the spammers tend to use
balance more, i.e., they connect to friends of friends, since
they try to access the largest possible number of the acces-
sible members [Fig. 6(c)]. Finally, connecting to distant
parts of the network [Fig. 6(d)] has a more uniform behav-
ior, although the popular members seem to use it more,
pointing to a ‘‘rich-club’’ phenomenon [23].
The above-described trends demonstrate the richness of

information that becomes accessible by following the evolu-
tion of link formation. Nevertheless, we next show that even
in the absence of the network history, we can still deduce
some useful conclusions on the probabilistic tendencies.

E. Neighborhood landscape change

As discussed above, the presented analysis would not be
possible without continuously monitoring the time evolu-
tion of the links. The characteristics of a given link with
time do not remain necessarily the same as when the
connection was established, but they can change due to
the addition of more links or the removal of existing ones.
For example, a friendship that starts between two isolated
individuals may evolve into a densely connected neighbor-
hood, so that a link that began as distant may eventually
switch with time to either balance, exchange, collective
action, structural hole, or any combination of them.
In order to study how significant the evolution of the link

formation tendencies is, we compare the probabilistic ten-
dencies obtained above following the time evolution with
those obtained by a statistical analysis of a snapshot of
the network. There are a few possible ways to extract
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FIG. 5. Fraction of the appearance of a tendency as a function
of the adding member’s list size, at the time of addition.
Qualitatively, all three data sets are in agreement with each
other. The small quantitative differences may be due to the
different means of interaction and/or the design of each platform.
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information from the static network in order to establish a

null model for comparison with the dynamic analysis. For

example, one could rebuild a network with completely

random choices (Fig. 2), or reshuffle only the order of

links addition, or reshuffle the links of one person at a

time, or attempt to characterize one link at a time, etc. Each

of these processes represents a different perspective and

may lead to varying estimation of the static probabilities.

As described above, we are here interested in the evolution

of the mechanism in any given link, so we characterize all

individual links in the static network one-by-one.
The statistical analysis of the static snapshot is done by

characterizing all existing links at the given time without
using the information from the time when the link was
established. Thus, each link is assigned to the specific
probabilistic tendencies according to the current neighbor-
hood environment of each agent, independent of the time it
was established. We repeat this process for all links in the
static snapshot, and we calculate the relative percentage for
each mechanism. This is a typical procedure in the litera-
ture [24], where analyses of human interactions do not take
into account the network evolution and are based instead
on a network snapshot. For instance, to estimate the bal-
ance mechanism, a standard analysis consists of measuring
the number of triangles or balance relations in a static
network [24] through the transitivity measure. The per-
centage of transitive links is estimated through the static
network, see, e.g., Ref. [25], where the percentage of
transitive links was estimated to be 14.2%. Like a physical
system with path-dependent interactions between particles,

the information of the static snapshot of the system is not
sufficient to provide the correct statistics of the actions. If
the network evolution were known and the number of
balance relationships could be calculated exactly as done
in our analysis, it would be possible to determine how
many of the triangles were really closed in a ‘‘balanced’’
way [according to the example of Fig. 1(b)].
In Fig. 7 we compare the running percentages for

each tendency at the moment of addition, such as those
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FIG. 7. Comparison of the probabilistic tendencies fraction,
where links are characterized either at the time of addition (solid
lines) or at the time of observation (dashed lines) in the POK
community.
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FIG. 6. (a) Histogram of the number of members as a function of the links that they initiated (x-axis) and the links that were pointed
to them but initiated at the partner’s side (y-axis). (b–d) Average percentage of exchange, balance, and distant mechanisms as a
function of the links initiated and received.
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measured in Fig. 2, to those of the corresponding static
network. All tendencies are different in these two mea-
surements. Exchange is the only predictable tendency,
since by definition it appears 2 times more at the time of
observation compared to the time of addition. The other
tendencies cannot be predicted from the static measure-
ments. For example, although a member is typically using
the balance tendency to add links at a percentage of around
10%, if she tries to evaluate her neighborhood at any point
in time she will find out that now approximately 20% of her
acquaintances fall under the balance theory. Similarly, the
central hubs seem to be re-enforced, since collective action
is used in less than 30% of the total actions, but eventually
more than 45% of the links are directed towards the biggest
hubs. In other words, members are ultimately attached to
hubs more often than we could conclude from character-
izing their original actions only, due to the dynamic envi-
ronment. This quantifies and generalizes the situation
depicted in Figs. 1(b) and 1(c): the knowledge of the net-
work structure at a given time is not sufficient for charac-
terizing the probabilistic tendencies.

Another aspect of this plot (Fig. 7) is that the tendencies
at the time of addition reach their asymptotic values quite
fast and they remain roughly constant with time. The
corresponding values extracted from the static networks
are also quite robust and follow closely the variations of the
values in the evolving networks, creating a constant gap
between the two curves. Since there is currently no method
to estimate the magnitude of the difference between the
two cases by static information only, it is still not possible
to extract the percentage of the probabilistic tendencies
without following the network evolution.

Next, we compare our results with other directed social
interaction networks from the literature, such as the
Epinions [26], SlashDot [27] and LiveJournal [28] com-
munities. The data sets were downloaded from http://snap.-
stanford.edu/data. The Epinions data set is a directed
network of trust from epinions.com, where a user can
declare her trust toward another user, based on submitted
reviews. This trust creates a directed link between the two
users. The network has 75 879 nodes and 508 837 links.
Slashdot.com is a technology-oriented news site, where
users can tag each other as friends or foes. In our analysis
we only use the friendship links. We use two snapshots of
the network, on November 6, 2008 (77 360 nodes and
905 468 links) and on February 2, 2009 (82 168 nodes
and 948 464 links) [27]. Finally, Livejournal.com is a
social networking site, where users can declare who they
consider as their friends. The network that we use has
4 847 571 nodes and 68 993 773 links. For these networks
we only have the static snapshots. Therefore, we can only
study the exchange tendency, which is the only one that
remains unmodified in a static network. (We can always
measure the existence of reciprocity, independent of the
time it was established.)

The probability of using the exchange tendency among
the different social networks (Fig. 8) depends on the spe-
cific features of each community. For example, in the
SlashDot and in the LiveJournal communities, where a
link shows that a user declares another user as being her
friend, there is a large degree of the exchange tendency
because mutual relations are favored in these social net-
working environments. In contrast, in the QX database, the
exchange tendency is quite smaller due to the nature of this
community. Similarly, in the Epinions database, a link
shows that a member trusts the tech reviews of the other
member, but this relation is usually not mutual (e.g., if
I trust the reviews of an expert reviewer, this reviewer may
not necessarily trust my reviews).

IV. DISCUSSION

The wealth of information obtained by our longitudinal
analysis can complement other statistical analyses for
probabilistic tendencies [10,14]. The family of exponential
random graph models [29] (p�), and, in particular, the logit
p� models [8], have been very successful in analyzing
network snapshots at a given moment in time. These
methods detect network patterns that appear more fre-
quently than a random null hypothesis would assume. In
this way, the underlying mechanisms of network creation
are inferred from the resulting motifs. Our present analysis
goes beyond this approach by directly facing a number of
key issues: we can follow the entire network evolution, we
can characterize individual actions, and we can also assign
known mechanisms to any given action. The results of
these actions often yield network patterns where an indi-
vidual contribution may be lost in the static snapshot
pattern, due to the effect of subsequent connections. In
broad terms, our analysis compared to exponential random
graph models may be considered to be the analogue of a
microscopic statistical physics description compared to a
macroscopic thermodynamic approach.
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network snapshots for several directed networks.
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Here, we have shown that following the order of links
establishment at the microscopic level in a social network
provides a direct measurement of the probabilistic tenden-
cies. This allows both the quantification of the relative
strength between tendencies in a given community, and
the extraction of useful sociological conclusions. For ex-
ample, in the communities that we studied, we show that
women tend to use the exchange mechanism more fre-
quently than men. This tendency is more pronounced
with age since reciprocity in older men largely declines
while in women it remains stable across all ages. In these
communities, also, men tend to connect to the hubs more
often than women, independently of age. The use of triadic
closures is almost constant for both genders and all ages,
except for the youngest members with ages below 20 years.
This may be a consequence of the more adult-oriented
character of the community. Similarly, we capture a differ-
ent use of the tendencies between the more active and less
active members. The results that we found characterize the
behavior of members in the specific communities studied.
A generalization of these results to establish generic trends
based on gender, age, etc. would require an extensive
study of a large number of social networking sites under
different settings. The basis of our findings is that these
results cannot be derived analyzing a snapshot of a static
network. As shown in Figs. 1(b) and 1(c) and quantified in
the preceding section, it is not possible to make assump-
tions of why a link exists a long time after the link was
established.

Our findings reflect the behavior of users in the
online networking sites that we studied. The suggested
method of following the dynamic evolution, though, rep-
resents a consistent method which can be applied to other
networks. Further studies in different online communities
should elaborate on whether the trends reported here
with respect to sex, age, etc., are generic to other types
of networks.

The present analysis complements other approaches in
the literature [30] by focusing on individual actions and the
study of how the underlying mechanisms behind these
actions are driving the evolution of the large-scale social
network. The ability to isolate individual actions can be
also very useful in studying behaviors that are unusual, and
help characterize idiosyncratic ways of building the friend-
ship network. The present analysis can be extended to
exogenous mechanisms, as well, by incorporating infor-
mation from other aspects of the activity in the community
(e.g., joining specific clubs, participating in forum discus-
sions, communities, etc.). Moreover, our approach can find
applications to many complex systems, where links are
evolving over time, such as the structural evolution of the
Internet, the World Wide Web, etc. For example, this
methodology can be used to study the evolution of
protein-interaction networks in biology, where one is in-
terested in estimating the different interaction motifs [31].
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