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Abstract. Stable isotope analysis is a powerful tool for as-
sessing plant carbon and water relations and their impact on
biogeochemical processes at different scales. Our process-
based understanding of stable isotope signals, as well as tech-
nological developments, has progressed significantly, open-
ing new frontiers in ecological and interdisciplinary research.
This has promoted the broad utilisation of carbon, oxygen

and hydrogen isotope applications to gain insight into plant
carbon and water cycling and their interaction with the at-
mosphere and pedosphere. Here, we highlight specific ar-
eas of recent progress and new research challenges in plant
carbon and water relations, using selected examples cov-
ering scales from the leaf to the regional scale. Further,
we discuss strengths and limitations of recent technological
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developments and approaches and highlight new opportuni-
ties arising from unprecedented temporal and spatial resolu-
tion of stable isotope measurements.

1 Introduction

Stable isotopes are a powerful tool for tracing biogeochemi-
cal processes across spatio-temporal scales (Yakir and Stern-
berg, 2000). The stable isotope composition of plant mate-
rial, animal tissues, sediments and trace gases can be used
as indicators of ecological change (Dawson and Siegwolf,
2007). The assessment of the circulation of isotopes in the
biosphere allows characterisation and quantification of bio-
geochemical cycles as well as exploration of food webs (Fry,
2006). Stable isotope studies give insights into key reactions
of plant metabolism (Schmidt and Gleixner, 1998), can in-
crease our understanding of water movement along the soil-
plant-atmosphere continuum (Dawson et al., 1998), and al-
lows palaeoclimatic/-physiological reconstructions (Beerling
and Woodward, 1998). Moreover, the analysis of the iso-
topic composition of trace gases exchanged between ecosys-
tems and the atmosphere gives insights in the underlying
processes driving the source and sink strength of biomes
for CO2, CH4 and/or N2O (Flanagan et al., 2005). Stable
carbon, oxygen and hydrogen isotope composition of or-
ganic matter and inorganic compounds such as CO2 and
H2O is altered during vegetation–soil–atmosphere exchange
processes, such as evapotranspiration, carbon assimilation
and respiration. This leaves an isotopic imprint on soil,
plant and atmospheric carbon and water pools and associ-
ated fluxes. These isotopic fingerprints can then be used to
trace different processes involved in the transfer of carbon
and water across the plant–soil–atmosphere continuum. Par-
ticularly the multiple-isotope approach, i.e. the simultane-
ous measurements of stable isotope composition of differ-
ent elements (δ2H, δ18O and/orδ13C, for definition see Ta-
bles 1 and 2), provides a unique way to investigate the in-
terrelation between water and carbon fluxes (Ehleringer et
al., 1993; Griffiths, 1998; Flanagan et al., 2005; Yakir and
Sternberg, 2000). The use of biological archives may en-
able extrapolation of this information to longer time scales,
such as the Anthropocene. Methodological advances allow
isotopologue and compound-specific analyses at unprece-
dented resolution, providing new insight into isotope frac-
tionation processes in metabolic pathways and in biogeo-
chemical processes. Further, a more advanced mechanistic
understanding of processes affecting the stable isotope com-
position in various ecosystem compartments allows mod-
elling and prediction of water and carbon fluxes based on
stable isotope information. In turn, new findings open new
research frontiers and challenges. Here, we highlight recent
progress and developments in carbon and oxygen isotope re-
search and discuss the potential for further extending our

knowledge about water and carbon fluxes and cycling. We
present advances and challenges on various scales from the
leaf (Sect. 2.1), plant (Sect. 2.2), community (Sect. 2.3),
ecosystem (Sect. 2.4), and regional scales (Sect. 2.5) as
well as of different types of temporal (historical) isotopic
archives (Sect. 2.6). At each scale, pertinent reviews are in-
dicated which survey the published literature and pioneer-
ing work; thereafter, we focus on selected examples from the
last decade. Finally, we highlight strengths and limitations
of new technological developments (Sect. 3) and present an
outlook (Sect. 4) on what we identify as main goals of the
stable isotope research in carbon and water biogeochemistry.

2 Isotope effects across temporal and spatial scales

2.1 Leaf-level processes

2.1.1 CO2 and H2O exchange

Leaf CO2 and H2O fluxes have unique and distinct isotope
signals that carry useful physiological and biogeochemical
information. For example, environmental stresses, such as
drought, cause systematic variation in carbon isotope dis-
crimination during photosynthesis (113C, see Table 1), shed-
ding light on different steps of CO2 transfer from the atmo-
sphere to the chloroplasts (Evans et al., 1986; Farquhar et al.,
1989a, b; Brugnoli and Farquhar, 2000). On the other hand,
stomatal opening and, hence, transpiration, cause18O and
deuterium (2H) enrichment of water at the sites of evapora-
tion (1ev, see Table 2), which lead to the enrichment of the
total leaf water (Dongmann et al., 1974; Farquhar and Lloyd,
1993). The oxygen of leaf-dissolved CO2 exchanges with the
18O-enriched leaf water, entraining distinct18O discrimina-
tion (118O) during photosynthetic CO2 exchange (Farquhar
et al., 1993). The knowledge of113C and118O together
can then be used to assess the limitations to CO2 transfer be-
tween the intercellular air space and the chloroplasts (Gillon
and Yakir, 2000b).

The theoretical understanding of the individual13C and
18O fractionation phenomena (including transport/diffusion,
transformations and exchange processes) in CO2 and H2O
is well established for systems in steady-state (Dongmann
et al., 1974; Farquhar et al., 1982; Evans et al., 1986; Far-
quhar et al., 1993). However, we are only at the beginning
of gaining theoretical understanding for those in non-steady-
state. On-line isotope discrimination studies, i.e. instanta-
neous measurements of leaf/plant gas exchange and the asso-
ciated isotopic signals, during transient conditions and short-
term dynamics bare the potential to expand our understand-
ing beyond steady-state.

Even though our mechanistic understanding of photosyn-
thetic carbon isotope discrimination and evaporative oxy-
gen isotope enrichment has been increasing within the last
decade, there are still open questions and methodological
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Table 1. Introduction to terms and equations of carbon isotopes, photosynthetic discrimination and post-carboxylation fractionation.

Carbon isotopes, photosynthetic discrimination and post-carboxylation
fractionation

Equations

The delta notation for carbon isotopes
Carbon has two stable isotopes,12C and13C, with natural abundances
of 98.9 and 1.1 %, respectively. The relative abundance of13C in any
sample is conventionally expressed in theδ notation (Eq. 1) which is
defined as the relative deviation of the isotope ratioR (R =

13C/ 12C)
of a sample relative to that of an international standard (and is often
expressed in ‰). The international standard is theR of CO2 from a
fossil belemnite in the Pee Dee formation of South Carolina. Today,
13C standards are obtained from the IAEA in Vienna and are referred
to as V-PDB (Coplen, 1995, 2011).

δyX = (
Rsample
Rstandard

− 1) (1)

where in the case of carbon isotopes,yX is replaced by13C, and
RsampleandRstandardare the measured13C/ 12C ratios in the sam-
ple and standard, respectively

Carbon isotope discrimination
The change in relative abundance of13C between an educt and product
is called discrimination, often denoted with1. In the case of CO2 as the
source and the plant material as the product of photo- and biosynthesis,
carbon isotope discrimination is described in Eq. (2).

113C = (δ13Ca− δ13Cp)/(1+ δ13Cp) (2)
whereδ13Ca andδ13Cp are theδ13C values of the CO2 in air and
the plant, respectively.

Photosynthetic carbon isotope discrimination
Isotope discrimination during carbon assimilation has been modelled
by Farquhar et al. (1982, 1989a) for C3 plants by Eq. (3). This equation
has been developed to describe leaf-level photosynthetic discrimination
during the light period, wheree denotes the fractionation of mitochon-
drial respiration in the light, i.e. day respiration (Tcherkez et al., 2010)
and0∗ the compensation point in the absence of day respiration.
When Eq. (3) is applied to analyse113C of bulk tissue as an integrative
parameter for preceding photosynthetic discrimination during forma-
tion of this material,e denotes the integrated respiratory discrimination
both during light and dark-respiration. However, additional factors such
as fractionation during carbon allocation, tissue turnover or carbon par-
titioning into different plant organs may affect the observed discrimina-
tion. To date, we still lack a quantitative description of these processes
(see Sects. 2.1.2 and 2.2).

113C = ab
pa−ps

pa
+ a

ps−pi
pa

+ (es+ a1)
pi−pc

pa
+ b

pc
pa

−
e

Rd
k

+f 0∗

pa
(3)
whereab is the fractionation during diffusion in the boundary layer
(2.9 ‰);a is fractionation during binary diffusion in air (4.4 ‰);es
is discrimination during CO2 dissolution (1.1 ‰ at 25◦C); al is frac-
tionation during diffusion in the liquid phase (0.7 ‰);b is fractiona-
tion during carboxylation in C3 plants (≈ 29.5 ‰);pa is atmospheric
CO2 partial pressure;ps is CO2 partial pressure at the leaf surface;
pi is sub-stomatal CO2 partial pressure;pc is CO2 partial pressure
at the site of carboxylation;e is fractionation during mitochondrial
respiration;f is fractionation during photorespiration;k is carboxy-
lation efficiency; and0∗ is compensation point in the absence of
mitochondrial respiration (Rd).

Simplified model of C3 photosynthetic isotope discrimination
Few empirical/experimental studies have used Eq. (3), partly due to lack
of needed input data. Instead, a simplified version (Farquhar et al., 1982)
has been used extensively (Eq. 4). This equation is valid on the condi-
tion that effects of boundary layer, internal conductance, photorespira-
tion, day respiration and allocation are negligible. In strict terms, these
conditions are met if boundary layer and internal conductance are in-
finitely high, photorespiration and respiration are infinitely low or non-
discriminating, and isotope discrimination during allocation and parti-
tioning does not happen. To account for effects of the neglected terms
in Eq. (4), the value ofb is often slightly reduced (≈ 28 ‰) (Brugnoli
and Farquhar, 2000).

113C = a + (b − a)
pi
pa

(4)
wherea is the fractionation during binary diffusion in air (4.4 ‰);
b is fractionation during carboxylation in C3 plants; andpa andpi
are the atmospheric and sub-stomatal CO2 partial pressures, respec-
tively.

Intrinsic water use efficiency (WUEi )
In Eq. (4),113C is directly proportional topi/pa, which is determined
by the relationship between photosynthetic assimilation (A) and stom-
atal conductance (gs). Therefore,113C is a measure of intrinsic water
use efficiency WUEi (or transpiration efficiency), the ratio of assimila-
tion to transpiration, which can be estimated as WUEi / VPD (Farquhar
and Richards, 1984; Farquhar et al., 1989b).

WUEi =
A
gs

=
pa (1−

pi
pa

)

1.6 =
pa(1−

113C−a
b−a

)

1.6 (5)
whereA is photosynthetic assimilation,gs is stomatal conductance;
a is the fractionation during binary diffusion in air (4.4 ‰);b is frac-
tionation during carboxylation in C3 plants; andpa andpi are the at-
mospheric and sub-stomatal CO2 partial pressures, respectively. The
factor 1.6 denotes the ratio of diffusivities of water vapour and CO2
in air.
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Table 2. Introduction to terms and equations of oxygen and hydrogen isotopes and evaporative enrichment.

Oxygen and hydrogen isotopes and evaporative enrichment Equations

The delta notation for oxygen and hydrogen isotopes
Whereas hydrogen has two stable isotopes,1H and 2H (or D; deu-
terium), oxygen possesses the isotopes16O,17O and18O. Since the nat-
ural abundance of17O is very low (approx. 0.038 atom %), mostly the
ratio between18O and16O and thus the relative abundance expressed as
δ18O (calculated as shown in Eq. (1) with the standard of Vienna stan-
dard mean ocean water (VSMOW) in case of water and VPDB-CO2 in
case of CO2) is considered.

δyX = (
Rsample
Rstandard

− 1) (1)

whereyX is replaced by18O or 2H in the case of oxygen and hydro-
gen isotopes andRsampleandRstandardare the measured18O/ 16O or
2H / 1H ratios in the sample and standard, respectively.

Evaporative enrichment
The (evaporative) oxygen (118Oev) or hydrogen (12Hev) isotope en-
richment of leaf water or plant organic matter is expressed as enrich-
ment above source water (often assumed to be soil or xylem water) by
Eq. (6).

118Oev =
δ18Op−δ18Osw

1+δ18Osw
and12Hev =

δ2Hp−δ2Hsw

1+δ2Hsw
(6)

whereδ18Op andδ2Hp is the oxygen and hydrogen isotopic composi-
tion, respectively, of leaf water or plant organic matter andδ18Osw and
δ2Hsw are the respective isotope compositions of the source water.

Leaf water enrichment
The enrichment of the leaf water has been modelled with approaches
of increasing complexity (e.g. Cuntz et al., 2007). Steady-state isotopic
enrichment of oxygen or hydrogen over source water at the site of evap-
oration in the leaf (1e) can be calculated by the Craig & Gordon model
(Craig and Gordon, 1965; Dongmann et al., 1974) by Eq. (7). In steady
state conditions (i.e. source water isotopic composition is equal to the
one of transpired water), the isotopic enrichment of water vapour rela-
tive to the source water taken up by the plant (1v) can be approximated
by -ε+. This model was developed for open water surfaces and only
applies to the water composition at the site of evaporation, and not the
whole leaf (mean lamina mesophyll water).

1e = ε+
+ εk + (1v − εk)

ea
ei

(7)

ε+ is the equilibrium fractionation between liquid water and water
vapour;εk is the kinetic fractionation as vapour diffuses from leaf in-
tercellular spaces to the atmosphere (Farquhar et al., 1989a),1v is the
isotopic enrichment of water vapour relative to the source water taken
up by the plant, andea/ei is the ratio of ambient to intercellular vapour
pressures.

Steady-state isotopic enrichment of leaf water
The steady-state isotopic enrichment of mean lamina mesophyll water
(1LsP) can be described by correcting Eq. (7) for the so-calledPéclet
effect (Farquhar and Lloyd, 1993), as shown in Eq. (8). ThePécleteffect
is the net effect of the convection of unenriched source water to the leaf
evaporative sites via the transpiration stream as opposed by the diffusion
of evaporatively enriched water away from the sites of evaporation.

1LsP= 1e
1−e−℘

℘ with ℘ =
E·L
C·D

(8)
where ℘ is the Péclet number, E the leaf transpiration rate
(mol m−2 s−1), L is the scaled effective path length (m) for water
movement from the xylem to the site of evaporation,C the molar con-
centration of water (mol m−3), andD the tracer-diffusivity (m2 s−1) of
heavy water isotopologues (either H18

2 O or 2H1HO) in “normal” water.
L is a fitted parameter (using Eq. 8; Flanagan et al., 1993) as it cannot
be measured directly.

Non-steady-state isotopic enrichment of leaf water
Non-steady-state effects in lamina mesophyll water enrichment (1LnP)

have been added by Farquhar and Cernusak (2005) by Eq. (9). This
equation has an analytical solution and can be calculated with the
“Solver” function in Excel.

1LnP = 1LsP−
α+αk
gtwi

1−e℘

℘
d(Vm1LnP)

dt
(9)

where α = 1+ ε, (α+ and αk are corresponding toε+ and ε
k,

respectively),Vm is lamina leaf water molar concentration (mol m−2),
t is time (s),gt is the combined conductance of stomata and boundary
layer for water vapour (mol m−2 s−1), andwi is the mole fraction of
water vapour in the leaf intercellular air spaces (mol mol−1).

Advection-diffusion model of leaf water enrichment
The non-steady-state model of leaf water enrichment as given by Eq. (9)
is a simplification of the advection-diffusion description of leaf wa-
ter enrichment (1LnAD), as given by Cuntz et al. (2007) and Ogée et
al. (2007) in Eq. (10).
Steady-state approaches often accurately describe leaf water isotopic
enrichment (e.g. Welp et al., 2008), especially for longer times (weeks,
months or years) or spatial scales (ecosystem studies). If shorter times
and spatial scales are considered (diel measurements or gradients across
a leaf), non steady-state approaches are more suitable, especially for
modelling leaf water enrichment during the night (Cernusak et al.,
2005).

∂1LnAD
dt

= −
vr

2m

∂1LnAD
dr

+
Dr
2m

∂21LnAD
dr2 (10)

wherer denotes the distance from the xylem to the evaporating site
(m), vr is the advection speed of water in the mesophyll (m s−1), 2m
the volumetric water content of the mesophyll, andDr = 2mκmD the
effective diffusivity of the water isotopologues (m2 s−1), with κm (< 1)
the tortuosity factor of the water path through the mesophyll. The vol-
umetric water content in the leaf mesophyll2m is related to the water
volumeVm (per unit leaf area) and the mesophyll thicknessrm through
2m = Vm/(Crm) (Cuntz et al., 2007).

Enrichment of organic matter
Newly produced assimilates are assumed to obtain an imprint of the
signature of the average bulk mesophyll leaf water at the time when
they were produced. For oxygen, an equilibrium fractionation factor
(εwc) results in carbonyl oxygen being ca. 27 ‰ more enriched than
water (Sternberg and DeNiro, 1983), which has been confirmed for cel-
lulose (e.g. Yakir and DeNiro, 1990), leaf soluble organic matter (e.g.
Barnard et al., 2007) and phloem sap sucrose (e.g. Cernusak et al.,
2003b, Gessler et al., 2007a).
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issues which need to be addressed to better understand the
physiological information imprinted on plant material.

Progress and challenges

Mesophyll conductance

Mesophyll or leaf internal conductance (often referred to as
gm or gi) has emerged as a significant (co-)limitation for
CO2 transport to the chloroplast, with large variation be-
tween species and environmental scenarios of light, temper-
ature, drought and salinity (Warren and Adams, 2006; Flexas
et al., 2008). On-line measurements of113C in conjunc-
tion with gas exchange have been instrumental in detecting
these variations ofgi . Variation ingi is related to developmen-
tal changes and morphological/structural features of leaves,
such as cell wall thickness, chloroplast arrangement, and leaf
porosity (Flexas et al., 2008; Evans et al., 2009). Moreover,
gi may be regulated via the expression of particular aquapor-
ins capable of transporting CO2 across plasma membranes
(cooporins) (Hanba et al., 2004; Flexas et al., 2007). Strong
dynamic responses ofgi to various environmental factors at
the scale of minutes to days have been reported (Flexas et al.,
2008; Bickford et al., 2009), and such variation has also been
observed at the canopy-scale (Schäufele et al., 2011). So far,
the metabolic basis of these short-term adjustments ofgi is
unknown.

Contribution of day respiration to 113C dynamics

Recent high-resolution on-line113C measurements (Bick-
ford et al., 2009) as well as labelling and modelling ap-
proaches (Tcherkez et al., 2010) indicate that the isotopic
composition of day respiration is not the same as that of con-
currently fixed carbon dioxide. In part, the respiratory car-
bon isotope fractionation during daytime (Tcherkez et al.,
2010) is related to fuelling of respiration by old carbon pools
(Nogúes et al., 2004). This calls for further experimental
studies, a more detailed theoretical description of whole-leaf
113C during daytime gas exchange (Wingate et al., 2007;
Tcherkez et al., 2004), and consideration of this effect in car-
bon isotope-based estimations ofgi .

Water isotope enrichment in leaves

Isotopic enrichment in leaf water is reasonably well under-
stood (Craig and Gordon, 1965; Dongmann et al., 1974; Far-
quhar and Lloyd, 1993; Cuntz et al., 2007; Ogée et al., 2007),
except for the parameter that characterises the effective path
length for water movement from the xylem to the site of
evaporation (seePéclet effect, Table 2). This parameter is
especially important for modelling leaf water enrichment in
non-steady state. Understanding how the effective length is
adjusted by environmental conditions requires knowledge of
how water transport inside the leaf is changing, for exam-
ple, with the leaf’s water status (Barbour et al., 2004, 2007;

Ferrio et al., 2009; Kahmen et al., 2009; Ferrio et al., 2012).
It is likely that in leaves, all water pools are involved during
water transport (Yakir, 1998); however, the leaf water pools
might not be considered as perfectly mixed (e.g. Helliker
and Ehleringer, 2000). Gan et al. (2002) compared differ-
ent leaf water evaporative enrichment models (i.e. the two-
pool model, the Ṕeclet effect model and the string-of-lakes
model), which assume different water isotopic gradients and
different mixing of leaf water pools. The different models all
described large parts of the observed dynamics of leaf wa-
ter enrichment but not all facets were captured by a single
model. The non-steady state Péclet model of Farquhar and
Cernusak (2005; see Table 2, Eq. 9) is the simplification of
the diffusion-advection model of Cuntz et al. (2007; Eq. 10),
which assumes that the leaf represents a continuum of un-
enriched (source) and enriched (evaporative sites) water. The
latter, more complex model is less sensitive to noise in the
input data and gives smoother results. Cuntz et al. (2007),
however, state that comparably good results could also be
achieved with different well mixed metabolic pools of water.
For epiphytic and non-vascular plants which lack permanent
access to soil water, it has been shown that a description of
water isotope dynamics requires consideration of distinct wa-
ter pools as well as water potentials (Helliker and Griffiths,
2007; Hartard et al., 2009; Helliker, 2011).

Exchange of H2O and CO2 oxygen isotopes

The enzyme carbonic anhydrase (CA) catalyzes oxygen ex-
change between water and CO2 via (reversible) interconver-
sions of CO2and H2O to bicarbonate (HCO−3 ) and protons
(Badger and Price, 1994). This exchange underlies18O dis-
crimination during CO2 exchange (118O), and retroflux to
the atmosphere of CO2 that has previously equilibrated with
leaf water, which has a strong effect on the18O content of at-
mospheric CO2 (Farquhar et al., 1993). Also, this signal pro-
vides a measure of photosynthetic activity of the terrestrial
biosphere (Farquhar et al., 1993). At the leaf level, measure-
ments of gas exchange, CA,118O and113C can help to par-
tition mesophyll conductance into a cell wall and a chloro-
plast component (Gillon and Yakir, 2000a). However, work
by Cousins et al. (2008) indicates that CA activity may not
be a good predictor for CO2-H2O isotopic exchange, endors-
ing the view that more work is needed to fully understand the
control of118O and its physiological implications.

Ternary effects on CO2 isotopes during gas exchange

Ternary effects, i.e. effects of concurrent water vapor dif-
fusion on CO2 diffusion through stomata, are taken into
account for CO2 exchange (von Caemmerer and Farquhar,
1981) but not for isotopes. Mesophyll conductance is a
parameter greatly influenced by ternary effects. Farquhar
and Cernusak (2012) recently showed that by applying the
ternary correction, oxygen isotope composition of CO2 in the
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3088 C. Werner et al.: Progress and challenges in using stable isotopes

chloroplast and mitochondria better match the oxygen iso-
topic composition of water at the sites of evaporation. The
ternary effect has been observed to be greatest when the leaf-
to-air water vapor pressure deficit is large. Farquhar and Cer-
nusak (2012) also observed that a large impact of ternary cor-
rections occurred when the difference in the isotopic com-
position of CO2 between the leaf interior and the ambient
air was large. The precision of current isotope fractionation
models can be improved by applying the ternary correction
equations for isotope fractionation and isotope exchange dur-
ing gas exchange measurements.

2.1.2 Post-carboxylation and respiratory fractionation

The carbon isotope signal, imprinted through photosynthetic
13C discrimination (the sum of terms one to four on the
right hand side of Eq. 3, Table 1), can be altered by multiple
processes in down-stream metabolic pathways (termed post-
carboxylation fractionation), which will be reflected in dif-
ferent carbon pools and respired CO2. Despite early evidence
by Park and Epstein (1961), carbon isotope fractionation dur-
ing dark respiration has long been considered negligible (Lin
and Ehleringer, 1997). Systematic studies by Duranceau et
al. (1999) and Ghashghaie et al. (2001) with a range of C3
species again provided clear evidence for substantial and sys-
tematic variation in carbon isotope ratios of leaf dark respi-
ration (see review by Ghashghaie et al., 2003). These au-
thors introduced the term “apparent respiratory fractiona-
tion” to describe the manifested differences between carbon
isotope compositions of leaf dark-respired CO2 and its pu-
tative substrates (mainly carbohydrates), caused by multiple
processes in the respiratory pathways (see below). The work
of Ghashghaie and coworkers promoted a significant num-
ber of studies on post-carboxylation fractionations in down-
stream metabolic processes (Klumpp et al., 2005; Badeck
et al., 2005; Cernusak et al., 2009; Tcherkez et al., 2011;
Werner and Gessler, 2011).

Progress and challenges

Post-carboxylation fractionation

Already within the Calvin cycle, isotopic fractionation oc-
curs mainly due to metabolic branching points and the use
of triose phosphates that can either be exported to the cy-
tosol or continue to be used within the Calvin cycle. The
triose phosphates that are not exported are subject to cer-
tain enzyme catalyzed reactions (aldolisation and transketoli-
sation) which involve position-specific discrimination dur-
ing C–C bond making. As a result, the C-3 and C-4 po-
sitions within glucose are enriched in13C and thus a non-
homogeneous intra-molecular distribution of13C within car-
bohydrates is established (Rossmann et al., 1991; Tcherkez
et al., 2004; Gilbert et al., 2009). Subsequently, photorespira-
tion and starch–sucrose partitioning result in diel changes in

isotopic signatures of phloem sugars, with day sucrose being
13C-depleted, while night exported sucrose is13C-enriched
(Tcherkez et al., 2004; Gessler et al., 2008). Analyses of
sugarδ13C and its diurnal variations offer potential for im-
proved tracing of these changes in these metabolic activities.

Apparent respiratory fractionation

During the last decade the knowledge of relevant appar-
ent fractionation in the respiratory pathways has signifi-
cantly advanced, demonstrating substantial variability in res-
piratory fractionation among species, organs and functional
groups, as well as with environmental conditions (see re-
views by Ghashghaie et al., 2003; Werner and Gessler, 2011).
The observed apparent respiratory fractionation and its vari-
ability are mainly attributed to (i) non-homogeneous13C-
distribution within hexose molecules reported by Rossmann
et al. (1991) and modelled by Tcherkez et al. (2004), (ii) rel-
ative contributions of different pathways to respiration (re-
viewed by Ghashghaie et al., 2003), as well as (iii) enzymatic
isotope effects during decarboxylation reactions (recently re-
viewed by Tcherkez et al., 2011).

Fragmentation fractionation

The non-homogeneous intra-molecular distribution of13C in
carbohydrates, results in so-called “fragmentation fractiona-
tion” (Tcherkez et al., 2004), leaving its imprint on synthe-
sized metabolites. If one of these products is decarboxylated,
then respired CO2 will carry an isotopic signature different
from the average sugar signature. New data indicate that the
heterogeneous13C distribution in carbohydrates may vary
among species and with environmental conditions (Gilbert et
al., 2011). Moreover, switches between substrates (Tcherkez
et al., 2003) during light–dark transition of leaves (i.e. light
enhanced dark respiration due to decarboxylation of light-
accumulated malate, Barbour et al., 2007) and the oxidative
pentosephosphate pathway (PPP) were shown to markedly
changeδ13C, of respired CO2 (Bathellier et al., 2008, 2009).
The implication of these processes still needs to be explored.

Temporal dynamics and apparent respiratory
fractionation

So far, a full quantitative understanding of apparent respira-
tory fractionation has not yet been achieved. However, mea-
surements with a high temporal resolution indicated remark-
able diel dynamics in leaf respiratoryδ13CO2, which dif-
fered between functional plant groups (Priault et al., 2009;
Werner et al., 2009; Werner and Gessler, 2011). Feeding ex-
periments with positionally labelled glucose or pyruvate can
trace changes in carbon partitioning in the metabolic branch-
ing points of the respiratory pathways (Tcherkez et al., 2004),
which has been used at the organ level as evidence for an
important contribution of PPP to root respiration (Bathel-
lier et al., 2009) as well as to identify differences between
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functional groups (Priault et al., 2009; Wegener et al., 2010).
One challenge of labelling experiments is to find methods
for channelling additional labelled metabolites into plant or-
gans in vivo to shed further light on potential involvement
of these metabolites and their metabolic pathways. Further-
more, the commitment of metabolites to alternative pathways
at metabolic branching points needs to be quantified. This
is particularly relevant where metabolic channelling evokes
compartmentation in organelles with membranes, which are
impermeable for intermediate products, as shown recently
for the Krebs cycle (Werner et al., 2011).

Intra-molecular site-specific isotope fractionation

Recent results of Gilbert et al. (2011) demonstrated that ac-
cess to site-specific isotope fractionation is now possible us-
ing 13C NMR (see Sect. 3) to directly determine intramolec-
ular 13C distributions at natural abundance. The challenge in
the application of this new technology is to ensure sufficient
sample quantities from metabolic pools of interest. Of spe-
cial interest is that obtained data can be interpreted directly
in terms of isotope effects associated with specific enzymes.

Environmental effects

More studies of the sensitivity of respiratoryδ13C to changes
in environmental conditions and between organs are needed,
which will allow for a better understanding of temporal vari-
ability in post-photosynthetic fractionation (Dubbert et al.,
2012) and could provide a basis for the use of respiratory
δ13CO2 as an indicator of physiological activity (e.g. Bar-
bour et al., 2011a, b).

2.1.3 Bulk leaf tissueδ13C and δ18O and water
use efficiency

The113C model by Farquhar et al. (1982; Eq. 3 in Table 1)
predicts a linear relationship between113C and intrinsic wa-
ter use efficiency (WUEi ; the ratio of net assimilation,A,
to stomatal conductance,gs), for conditions where meso-
phyll conductance is very high and (photo)respiratory13C
discrimination is negligible (Eq. 4). Empirical studies in con-
trolled conditions confirmed this linear relationship between
113C, estimated from bulk biomass carbon isotope compo-
sition (113Cb), and WUEi (Farquhar et al., 1982, 1989b;
Ehleringer et al., 1993; Griffiths, 1998; Brugnoli and Far-
quhar, 2000). In the following three decades, this linear (sim-
plified) model of113C (Eq. 4) was used widely as an indica-
tor of water use efficiency at the leaf, plant and ecosystem
scale (e.g. Bonal et al., 2000; Lauteri et al., 2004; Saurer
et al., 2004; Ponton et al., 2006) in retrospective studies
of carbon–water relations based on biological archives (see
Sect. 2.6), and in breeding crop varieties for improved yield
under water-limited conditions (Condon et al., 2002).

Progress and challenges

The dual-isotope approach

Combined analyses of the carbon and oxygen isotopic com-
position of bulk leaf biomass provide a means to distin-
guish the separate effects of stomatal conductance and net
photosynthesis on WUEi (Scheidegger et al., 2000). Prefer-
ably, however, carbon isotope discrimination113Cb, and
bulk biomass oxygen isotope discrimination,118Ob, should
be used in such an approach to account for effects of dif-
ferences inδ13C of assimilated CO2 and variations ofδ18O
of source water. A distinction between stomatal and photo-
synthetic influences cannot be made from analysis of113Cb
alone. The conceptual model of Scheidegger et al. (2000) was
successfully applied in the field (Keitel et al., 2003, Sullivan
and Welker, 2007) and further adapted for air pollution stud-
ies evaluating the effect of NOx on plant metabolism (Sieg-
wolf et al., 2001; Guerrieri et al., 2009, 2010; Savard, 2010).
Grams et al. (2007) extended the model to estimate stom-
atal aperture directly for interpreting physiological changes.
δ18O of bulk organic matter has also been used to deter-
mine whether a change in WUEi results from the increase
in atmospheric CO2 (Saurer and Siegwolf, 2007). Also, the
effects of changes in vapor pressure deficit (VPD) result-
ing from increasing temperature or decreasing precipitation
have been assessed along a Siberian transect (Sidorova et al.,
2009; Knorre et al., 2010). The dual-isotope approach has
proven a valuable concept for ecological applications. How-
ever, the interpretation of113Cb in terms of WUEi under
natural changing environments is complex (e.g. Seibt et al.,
2008), as it provides a time-integrated record of photosyn-
thetic discrimination over the period that the carbon form-
ing the leaf was fixed, which can be derived from multi-
ple sources, e.g. fresh assimilates, carbon exported from ma-
ture leaves or even older storage pools. Moreover, different
leaf carbon pools have different residence and turnover times
(Nogúes et al., 2004; Lehmeier et al., 2008, 2010b). Thus,
during leaf formation, growth and maintenance leaf bulk ma-
terial integrates isotopic information from different time pe-
riods and sources, which is weighted by the amount of carbon
incorporated from each source/period. Therefore, interpreta-
tion of 113Cb in terms of WUEi under natural changing en-
vironments requires several precautions, as described below.

Interpretation of 113Cb and 118Ob in relation to leaf
traits

A comparison of WUEi between different species based on
113C in bulk leaf material is nontrivial. Differences in not
only leaf structural, anatomical, but also physiological traits
can modulate113Cb (Ehleringer, 1993; Werner and Ḿaguas,
2010), as well as118O in lamina leaf water (Barbour and
Farquhar, 2003; Kahmen et al., 2008) and118Ob. Differ-
ent leaf structures may affect mesophyll conductance (e.g.
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Kogami et al., 2001; Hanba et al., 2003) and thus113Cb (see
Sect. 2.1.1). Mesophyll conductance is generally neglected
when calculating WUEi from stable isotope discrimination
(see Eq. 5). If there are varying influences of mesophyll con-
ductance on113C among species, WUEi calculated from
Eq. (5) will be not directly comparable. Leaf traits may also
affect the scaled effective path length for water movement
from the xylem to the site of evaporation (Wang and Yakir,
1995) and thus influence118Ob (cf. Eq. 8, Table 2). The con-
ceptual model of Scheidegger (2000) does not account for
such effects but strictly assumes oxygen isotope enrichment
to be only affected by the ratio of ambient to intracellular
water pressure (ea/ei ; cf. Eq. 7). Any other factor varying
leaf water evaporative enrichment and thus118Ob will thus
constrain the interpretation of the impact of stomatal con-
ductance versus net photosynthesis on WUEi . Moreover, due
to differences in phenological phases and length of grow-
ing period leaf113Cb and 118Ob of co-occurring species
might provide an integrated signal over diverging environ-
mental conditions (e.g. Werner and Máguas, 2010). Thus,
species-specific differences in phenology, growth pattern and
leaf structures might constrain a direct comparison of bulk
leaf113C and118O between different species (Hanba et al.,
2003; Warren and Adams, 2006). Moreover, ontogeny can
markedly alter the isotopic signature (Terwilliger et al., 2001;
Bathellier et al., 2008; Salmon et al., 2011). Repetitive sam-
pling and isotope analysis of tissues and compounds which
are known to integrate shorter and more defined time peri-
ods such as phloem sugars (e.g. Keitel et al., 2003, Dubbert
et al., 2012) during the growing season, together with bulk
leaf assessments, might help to better constrain the physio-
logical meaning of13Cb and118Ob. For community scale
stable isotope approaches (see Sect. 2.3), the potential limi-
tations of using the bulk isotope signature need to be kept in
mind and sampling strategies need to be adapted. For trees,
the intra-annual analysis of tree ring, whole wood or cellu-
lose can provide a tool to study periods during the growing
season when the isotopic signature in this archive is directly
coupled to leaf physiology (Helle and Schleser, 2004; Offer-
mann et al., 2011).

Interpretation of leaf 113Cb and 118Ob in relation
to storage and remobilization

A part of the leaf structural organic matter of deciduous
trees is made from remobilized starch (or other non-structural
compounds) from overwinter storage pools in stems and
roots (Kozlowski and Pallardy, 1997). That material was
derived from the photosynthetic activity of previous year
leaves, with different morpho-physiological characteristics
in other environmental conditions, producing a previous year
isotopic signal. Since starch can be13C-enriched by up to
4 ‰ as compared to newly assimilated sugars (Gleixner et al.,
1998), growing leaves supplied from storage pools are often
strongly13C enriched in spring (e.g. Terwilliger, 1997; Helle

and Schleser, 2004). Moreover, during starch breakdown,
carbonyl oxygen atoms are exchanged with unenriched water
in stems, causing these incorporated starch-derived sugars to
be18O depleted as compared to sugars formed in transpiring
leaves (Gessler et al., 2007b). This “isotopic starch imprint”
in the newly developed leaves is thought to be diluted dur-
ing the growing season by carbon turnover and the incorpo-
ration of new assimilates into bulk leaf organic matter (see
e.g. the seasonal course of bulk leafδ13C of beech shown by
Helle and Schleser, 2004). For interpreting the isotopic com-
position of a deciduous leaf, it is thus important to consider
when the leaf was harvested during the season and that there
might be species-specific differences in the extent to which
the starch imprint or the influence of the assimilates incorpo-
rated during the current growing season dominate the bulk
isotope signal. In turn, coniferous needles can accumulate
large amounts of starch in spring, followed by mobilization
towards the summer, and starch contents are generally low
during the winter (e.g. Ericsson, 1979). As a consequence, at
least part of the113Cb during the growing season is related
to the variation of starch content and isotopic composition
(Jäggi et al., 2002), a fact that also needs to be taken into ac-
count when calculating WUEi from 113Cb and comparing it
among species.

Thus, the complexity of processes influencing113Cb may
constrain its use in ecological field studies. Carbon pools
with shorter turnover times and thus a better-defined origin
such as leaf soluble sugars (Brugnoli and Farquhar, 1988),
phloem allocated carbon (e.g. Gessler et al., 2004; Scar-
tazza et al., 2004) or even dark-respiredδ13CO2 of recent
photosynthates (Barbour et al., 2011b) are therefore better
indicators for recent changes in WUEia, as outlined below
(Sect. 2.2).

2.2 13C and 18O isotopes to trace plant integrated
processes and plant-soil coupling

With their pioneering work on the phloem carbon isotopic
composition of grasses (Yoneyama et al., 1997) and trees
(Pate and Arthur, 1998), two groups paved the way to getting
temporally and spatially (whole canopy) integrated informa-
tion on leaf physiology. Pate and Arthur (1998) applied natu-
ral abundance stable isotope approaches to investigate trans-
port and allocation of assimilates by combining sampling of
phloem sap organic matter and source and sink organs. This
work focused on transport directions and patterns of source-
to-sink transport, while tracing of carbon allocation with high
temporal resolution in plants required the use of labelling ex-
periments (e.g. Hansen and Beck, 1990).

Within the last ten years it was, however, shown that the
transport of newly assimilated carbon within the plant and
from the plant to the rhizosphere can also be followed by
natural abundance stable isotope techniques (e.g. Scartazza
et al., 2004; Brandes et al., 2006; Wingate et al., 2010b).
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Progress and challenges

Plant integrating information and phloem transport

The δ13C of phloem organic matter is mincreasingly being
used to derive information on carbon allocation, canopy inte-
grated WUE and canopy integrated mesophyll conductance
in plants affected by environmental conditions (e.g. Keitel et
al., 2003; Gessler et al., 2004; Scartazza et al., 2004; Bar-
bour et al., 2005; Rascher et al., 2010; Ubierna and Marshall,
2011; Dubbert et al., 2012). A dual-isotope approach (δ13C
andδ18O see Sect. 2.1.3) can also be successfully applied to
phloem sugars to distinguish whether net assimilation and/or
stomatal conductance is changing as a result of environmen-
tal conditions (Keitel et al., 2003, Cernusak et al., 2003,
2005; Brandes et al., 2006; Keitel et al., 2006). Even though
the carbon and oxygen isotope composition of phloem or-
ganic matter can, in principle, integrate leaf physiology over
the whole canopy and track transport of assimilates within
the plant, it is now clear that several uncertainties constrain
the interpretation of phloem isotopic information. These are
related to (i) the temporal integration of the isotope signal in
the phloem, (ii) potential changes of the isotope composition
of phloem sugars in basipetal direction, and (iii) the chemical
composition of phloem transported organic matter.

Phloem sugars and temporal integration

Short-term variations in the isotopic composition of leaf sug-
ars – induced by either an environmental signal or plant in-
ternal processes – might or might not be reflected in the iso-
topic composition of phloem organic matter. Twig phloem
organic matter of trees (e.g. Gessler et al., 2007a) and the
stem phloem of herbaceous species (e.g. Gessler et al., 2008)
can be applied to monitor diel variation of evaporative18O
and 2H enrichment or carbon isotope fractionation. In the
trunks of adult trees, however, the mixing of sugars of differ-
ent metabolic origins can dampen the short-term variations
and the isotope signatures provide time-integrated informa-
tion on canopy processes instead (Keitel et al., 2006; Rascher
et al., 2010).

2.2.1 Change of the original isotope signal in
phloem sugars

The original isotope signal imprinted on sugars in the leaf
may be altered during basipetal transport in the phloem
of trees (e.g. Rascher et al., 2010). The transport of sugar
molecules itself does not fractionate to a measurable extent.
However, carbon fixation by PEPc in the bark and oxygen
atom exchange with stem water during metabolic processes
in the stem tissue together with the continuous unloading
and loading of sugars from and to the phloem might con-
tribute to the observed isotope patterns (Barnard et al., 2007;
Gessler et al., 2009). The change inδ13C along the transport
path, however, varies strongly among species ranging from

13C enrichment (Brandes et al., 2006; Wingate et al., 2010a)
and no change inδ13C (Pate and Arthur, 1998; Gessler et al.,
2007a) to13C depletion (Rascher et al., 2010). The nature of
these species-specific differences remains to be clarified and
might shed new light on mechanisms controlling assimilate
partitioning in trees.

Chemical composition of phloem sugars

It is often assumed that only one major sugar, namely
sucrose, is present in the phloem. However, besides su-
crose, there are other transport carbohydrates – depending
on species and phloem loading mechanisms – such as myo-
inositol and raffinose family sugars (Karner et al., 2004). In
addition, it is still a matter of debate if hexoses are trans-
ported in the phloem or not (van Bel and Hess, 2008; Liu
et al., 2012). Phloem sugar composition can vary with envi-
ronmental conditions, which could be one factor for changes
in phloemδ13C (Merchant et al., 2010), independent of the
original leaf-borne isotope signal, sinceδ13C differs between
different carbohydrate molecules (Schmidt, 2003; Devaux et
al., 2009). Compound-specific analysis, provided by modern
LC- and GC-IRMS techniques (Sect. 3), will help to differ-
entiate between changes in phloemδ13C that result from ei-
ther changes in the chemical composition or changes in leaf
level fractionation. In addition, comparable methods should
be used to characterise the compound-specific oxygen iso-
tope composition of phloem organic matter.

Only recently, the natural abundance stable isotope infor-
mation in soil and ecosystem respired CO2 cross-correlated
to photosynthesis (or its proxies) has been used systemati-
cally to characterise the speed of link between canopy and
soil processes (see review by Kuzyakov and Gavrichkova,
2010; Wingate et al., 2010b). Even though such approaches
have significant potential, there is still debate about the phys-
iological information conveyed by the isotope signal and of
the processes involved (see review by Brüggemann et al.,
2011).

The link between above- and belowground processes

In their review, Kuzyakov and Gavrichkova (2010) postu-
lated that approaches which quantify time lags between prox-
ies of photosynthetic activity and natural abundanceδ13C
in soil respiration are (besides other techniques) appropri-
ate to study the link between above- and belowground pro-
cesses. Mencuccini and Holttä (2010) reviewed different ap-
proaches to assess the speed of link between assimilation
and soil respiration and concluded, in contrast, “that iso-
topic approaches are not well suited to document whether
changes in photosynthesis of tall trees can rapidly affect
soil respiration”. These different opinions may be related
to uncertainties on the mechanisms involved, as described
by Kayler et al. (2010a, b): on the one hand, there is ev-
idence that pressure–concentration waves (Thompson and
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Holbrook, 2004), which travel rapidly through the phloem
of plants (and not the supply of new assimilates transported
via the phloem to the roots and the rhizosphere), are respon-
sible for the fast response of soil respiration to changes in
photosynthesis. On the other hand, the time-lag between the
fixation of a carbon molecule during photosynthesis and its
respiration belowground may contain real and important in-
formation about plant physiology and carbon use as well as
the degree to which plant and soil are coupled (Kayler et
al., 2010a). This information may be obtained by the assess-
ment of δ13C in respired CO2 but also in respiratory sub-
strates when points listed above are taken into account. To
unravel the importance of the different relevant processes, we
need novel, pertinent experiments which combine (a) con-
tinuous measurements of the natural abundance stable iso-
tope composition of soil respired CO2, as done by Wingate
et al. (2010b), with (b) appropriate statistical approaches that
are able to track time lags between photosynthesis and soil
CO2 efflux, as applied by Vargas et al. (2011). Whereas (a)
indicates how long it takes until a molecule with a given iso-
tope composition imprinted during photosynthesis is trans-
ported from the leaves via the phloem to the roots where it is
respired, (b) allows to detect the response time(s) of soil res-
piration towards changes in carbon assimilation, which might
or might not be faster than the transport of a given molecule
from the canopy to belowground.

2.3 Community-scale processes

Because different species living within the same habitat show
marked differences in the isotopic composition of their leaf
tissues, characterising community-wide variation inδ13C
and/orδ18O, can provide potentially powerful tools for inves-
tigating the physiological basis for niche partitioning among
community members (Dawson et al., 2002). Good examples
are utilization of different water sources and redistribution
(Caldwell et al., 1998; Ryel et al., 2003), which can in turn be
linked to community composition (Ehleringer et al., 1991),
niche partitioning and spatial and temporal variations in plant
distributions (e.g. Dawson et al., 2002; Snyder and Williams,
2000; Stratton et al., 2000; Drake and Franks, 2003; Rose
et al., 2003; Grams and Matyssek, 2010). As stated above
(Sect. 2.1.3), it must be kept in mind when comparing dif-
ferent species that the isotopic composition of bulk leaf ma-
terial might be influenced by multiple factors such as struc-
tural, anatomical and physiological traits but also phenology.
There are only very few community-wide investigations on
this topic (see Smedley et al., 1991; Guehl et al., 2004; Kah-
men and Buchmann, 2007). This scarcity may be in part re-
lated to difficulties in assigning cause and effect to observed
variation from either physical (e.g. water availability, light)
or biological (e.g. resource competition) factors.

Progress and challenges

Adding duel-isotope approaches to community ecology

13C and18O signals can trace biotic and abiotic interactions
within the plant community and may contribute to identify-
ing what shapes community-scale processes. However, indi-
vidual plants will not necessarily respond to environmental
perturbations as “a community”, but may respond accord-
ing to species-specific traits and requirements and addition-
ally depend on the interactions with the surrounding envi-
ronment and other present species (e.g. Roscher et al., 2004;
Gubsch et al., 2011). Competition and/or facilitation inter-
actions between species, e.g. through depletion of a partic-
ular resource, may also be a source of isotopic variation,
as shown for plant–plant competition for above- and below-
ground resources by combiningδ13CO2 andδ18H2O analy-
ses (Raḿırez et al., 2009; Grams and Matyssek, 2010). More-
over, changes in community functioning, for example by al-
terations in nutrient, carbon and hydrological cycles after ex-
otic plant invasion, can also be traced through stable isotopes
(e.g. Rascher et al., 2011).

Tracing spatial interaction between species within plant
communities

Spatio-temporal variations in isotope ratios (i.e.isoscapes)
contain a potential wealth of information regarding eco-
logical processes (West et al., 2008; Bowen et al., 2009),
which have, so far been applied at larger spatial scales
(see Sect. 2.5). At the community scale, spatial heterogene-
ity in resource availability, differential resource utilisation
by neighbouring species and their interactions (competi-
tion and facilitation) occur in a spatially explicit dimension,
which may contain crucial information regarding community
functioning. For example, hydraulic redistribution of water
sources is a key process which can shape plant communi-
ties (see review by Prieto et al., 2012). Recently it has been
shown that downscaling isoscapes to the community level
allowed tracing the spatial impact of an invasive species
on community functioning (Rascher et al., 2012), and may
therefore open new possibilities in resolving the spatial com-
ponent of within-community interactions.

Tracing functional groups/community composition

During the last decade, the functional group approach has
proved to be an efficient way to analyse plant functioning at
the community scale. Leaf bulk113C allows the distinction
of broad plant functional types, differing in structural, phe-
nological and physiological leaf traits (Brooks et al., 1997;
Bonal et al., 2000; Werner and Ḿaguas, 2010). Functional
traits such as water or nutrient use strategies, carbon acquisi-
tion, growth behaviours, and phenological cycles contribute
significantly to the observed variation in isotope composition
(e.g. Warren and Adams, 2006; Gubsch et al., 2011; Salmon

Biogeosciences, 9, 3083–3111, 2012 www.biogeosciences.net/9/3083/2012/



C. Werner et al.: Progress and challenges in using stable isotopes 3093

et al., 2011; Raḿırez et al., 2012). However, the responsive-
ness of leaf113C as a functional tracer has to be verified
for different communities and may differ with the predomi-
nant environmental constraints for plant growth and survival
(e.g. Caldeira et al., 2001). For example, in a tropical rainfor-
est,113C was associated with differences in shade tolerance
(Bonal et al., 2000; Guehl et al., 2004), whereas in an upland
water-limited grassland of Greece, a semi-arid Inner Mongo-
lian steppe, and a Portuguese mediterranean macchia group-
ing according to113C was associated with species’ com-
petitive ability related to WUEi , nitrogen use efficiency, and
structural adaptations to drought (Tsialtas et al., 2001; Gong
et al., 2010; Werner and Ḿaguas, 2010).

The role of water source partitioning on community
functioning

Several mixing models have been used to determine the con-
tribution of different water sources to plant and ecosystem
evapotranspiration: Linear mixing models can be applied if
the differences ofδ18O among the water sources and xylem
plant water are large enough;δD-δ18O plots can be used
if the difference between water sources and xylem water
is small (Ogle and Reynolds, 2004; Dawson and Simonin,
2011). The use of multiple source mass balance analyses can
improve the capacity to quantitatively and objectively eval-
uate complex patterns in stable isotope data for determining
possible contributions of different sources to total plant water
uptake (see review by Hu et al., 2009). Furthermore, combin-
ing water source partitioning with indicators of species func-
tional responses (e.g. changes in leaf water potential and car-
bon isotope discrimination) lent insight regarding the degree
of plasticity among individual members of a given plant com-
munity (Máguas et al., 2011). However, there is increasing
awareness that the utilisation of simple linear mixing mod-
els to infer plant water uptake by comparingδD andδ18O of
xylem or root crown, on the one hand, and soil water, on the
other hand, does not adequately reflect the high heterogeneity
of water sources that may be available for a plant. Given the
importance of resource variability at the community level,
the utilisation of more complex mixing models (for example,
by Phillips, 2001; Phillips and Gregg, 2001, 2003; Parnell et
al., 2010) as well as Bayesian models (Ogle et al., 2004) may
be fruitful.

2.4 Use of stable isotopes to disentangle ecosystem
exchange processes

At the ecosystem scale, stable isotopes can provide insight
into the complex interaction between vegetation, soil and at-
mosphere exchange of carbon and water fluxes, including
their responses and feed-backs to environmental drivers (e.g.
Flanagan and Ehleringer, 1998; Dawson et al., 2002; Yakir
and Sternberg, 2000; Yakir, 2003, Hemming et al., 2005;
please see Bowling et al., 2008 for review of pioneer and

recent literature). The core of the variation behind patterns in
δ13C of ecosystem respiration (δ13CR) lies in photosynthetic
discrimination, the magnitude of metabolic fluxes and sev-
eral post-carboxylation fractionation processes that differ be-
tween autotrophic and heterotrophic organs (see Sect. 2.1.2
and references therein). How these components manifest into
integrative measures such as ecosystem respiration is funda-
mental to understanding ecosystem physiology and biogeo-
chemistry. It is clear that ecosystem responses to climate and
land use change, or perturbations, such as drought or fire,
are an integrative signal from a network of carbon pools
and organisms linking legacy conditions to current observa-
tions (e.g. Buchmann et al., 1997a, b, 1998; Ehleringer et al.,
2000). Thus, to properly account for ecosystem trace gas ex-
change and partitioning by stable isotopes, a detailed knowl-
edge of the physical and biological basis of the isotopic sig-
nals for each of the fluxes and their dynamics across spa-
tial and temporal scales in soil–biosphere–atmosphere inter-
actions is required.

Progress and challenges

Recent findings on component sources and fluxes

Previous ecosystem13C and18O isotope research primarily
focused on partitioning of soil and canopy sources, which
are now a mainstay of ecosystem isotopic investigations (e.g.
Buchmann et al., 1998; Kaplan et al., 2002; Yakir and Stern-
berg, 2000 and literature therein). The inherent complexity
behind ecosystem respiration lies behind the many contribut-
ing sources. Nowadays, studies of these components have
expanded to include stem CO2 flux, mycorrhizal and micro-
bial contributions (Esperschütz et al., 2009), litter decompo-
sition (Bird et al., 2008; Rubino et al., 2010), dissolved or-
ganic carbon (Sanderman and Amundson, 2008; Müller et
al., 2009), erosion (Schaub and Alewell, 2009), soil organic
matter dynamics (Klumpp et al., 2007; Kayler et al., 2011)
and CO2 storage in soil air and solution (Gamnitzer et al.,
2011). Labelling has also played a central role in achieving
a higher level of certainty in observing single source tem-
poral patterns (Ubierna et al., 2009; Powers and Marshall,
2011). Similarly, the water oxygen and hydrogen isotope
composition has been used as natural or artificial tracer of
the ecosystem and component water fluxes and to partition
evaporation and transpiration (e.g. Yakir and Wang, 1996;
Yepez et al., 2005, 2007; Williams et al., 2004; Lai et al.,
2006; Rothfuss et al., 2010; Wang et al., 2010; Kim and Lee,
2011) to assess ecosystem water use efficiency (WUE) (Pon-
ton et al., 2006) and, e.g. the effects of hydraulic redistribu-
tion by roots and mycorrhiza (e.g. Ludwig et al., 2004; Kurz-
Besson et al., 2006; see Sect. 2.3.2). These detailed studies
are important because inferences can be drawn concerning
carbon and water dynamics at larger time scales (e.g. ero-
sion, soil organic matter transformations), and spatial vari-
ability across the ecosystem can be better described. The
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advantage of these studies is two-fold: (1) underlying con-
nections between ecosystem carbon pools and fluxes and the
influence of changes in environmental drivers can be char-
acterised, and (2) results can be used in models designed to
partition ecosystem respiration.

Canopy labelling

Whole ecosystem dynamics studied in situ using isotopes, at
first pioneered through girdling (Ḧogberg et al., 2001), have
increased in number through whole canopy tracer applica-
tion. Advances in our understanding of ecosystem processes
through canopy labelling include assessing photosynthetic-
soil-respiration coupling strength (Steinmann et al., 2004;
Högberg et al., 2008; Bahn et al., 2009; Gamnitzer et
al., 2009, 2011), carbon allocation patterns (Kuptz et al.,
2011; Epron et al., 2011), and shading impacts (Warren
et al., 2012), to name a few. Quantitative methods of
canopy labelling in connection with on-line tracer mea-
surement techniques (Sect. 3) and modelling of the tracer
distribution data (e.g. by compartmental analysis), holds
the promise of testing hypotheses of ecosystem physiology,
aboveground-belowground response to a changing climate,
and the turnover times of seasonally dynamic carbon pools
(Epron et al., 2012), studies that were previously limited to
laboratory studies (e.g. Schnyder et al., 2003; Lehmeier et al.,
2008, 2010a, b) or inferred from annual changes in biomass
measured in the field. Recent findings have illustrated the
complexity of dynamic processes that interact at the ecosys-
tem scale. This calls into question the applicability of simple
two-end member mixing models in complex systems with
multiple sources (Kayler et al., 2010a) and poses a signifi-
cant challenge for ecosystem studies, as outlined below.

Heterogeneous flux sources

Ecosystem respiration is a complex mixture of isofluxes from
a range of biotic and abiotic sources that span the soil to veg-
etation canopy continuum (see Badeck et al., 2005 and Bowl-
ing et al., 2008 and literature therein). These sources con-
tribute with distinct isotopic signatures at time scales from
daily (Bowling et al., 2003; Mortazavi et al., 2006; Werner et
al., 2006; Kodama et al., 2008; Unger et al., 2010a; Wingate
et al., 2010a) to seasonal cycles (Griffis et al., 2004; McDow-
ell et al., 2004; Ponton et al., 2006; Alstad et al., 2007; Scha-
effer et al., 2008). These are based partly on phenology and
disturbance regimes and all exhibit different effects on com-
ponent fluxes. The challenge to advance our understanding
of δ13CR lies in identifying and quantifying these fluxes and
isotopic signatures of important ecosystem components (e.g.
Unger et al., 2010a; Epron et al., 2011; Barbour et al., 2011a).
This is especially important to test hypotheses about tempo-
ral δ13CR patterns, for example, ifδ13CR dynamics are heav-
ily influenced by a sole component flux, resulting in a poorly
mixed ecosystem source signal. Similarly, species-specific

transport times of recent assimilates (Epron et al., 2011)
can potentially delay the photosynthetic response signal in
δ13CR, or abiotic phenomena (following section) can obscure
component iso-fluxes (e.g. Ekblad et al., 2005; Knohl et al.,
2005). In these cases, deciphering the drivers behindδ13CR
may become increasingly difficult.

Abiotic influences

Analyses ofδ13CR may lead to the identification of drivers
and mechanisms underlying the dynamics of ecosystem
metabolism; yet, other abiotic processes that are also affected
by biological drivers (e.g. temperature) may amplify, dampen
or time-lag responses inδ13CR, obfuscating the signal of bi-
ological respiration (Br̈uggemann et al., 2011). Soil respira-
tion, which can represent 20 to 70 % of total ecosystem res-
piration, is an integrative signal driven by many abiotic and
biological processes. Recent studies have shown that factors
such as diffusivity of soil CO2, dissolution of CO2 from bi-
carbonates, and advection of soil gas may be responsible for
strong13C-isotopic disequilibria between the CO2 efflux at
the soil surface and concurrent soil respiration (Crow et al.,
2006; Kayler et al., 2008, 2010a; Nickerson and Risk, 2009;
Ohlsson, 2009; Gamnitzer et al., 2011). Likewise, the oxy-
gen isotope composition of soil respired CO2 (δ18OS) not
only carries the isotopic signature of the soil water it inter-
acted with, but also is influenced by the carbonic anhydrase
in soil microorganisms that accelerate isotopic equilibration
between CO2 and soil water (Wingate et al., 2009, 2010b).
Despite their potential to propagate uncertainties in isotopic
information through the soil–canopy continuum, such pro-
cesses merit inclusion in isotope ecosystem models, enhanc-
ing the interpretation of patterns and drivers ofδ13CR.

Flux partitioning

Conventional partitioning methods based on eddy covariance
methods typically require several days or weeks of data to
cover key phenological periods in order to obtain robust re-
gression parameters (e.g. Reichstein et al., 2005), neglecting
ecosystem responses at shorter time scales. These are, for
example, “switches” of ecosystem states (Baldocchi et al.,
2006; Lee et al., 2007) or the pulse-like response of soil res-
piration to strong rain events, occurring at time scales from
minutes to hours (e.g. Xu et al., 2004; Unger et al., 2010b,
2012). It would be helpful if the partitioning scheme could
resolve episodic responses of this kind, because it is the tran-
sient, non-equilibrium responses that provide a rigorous test
of model performance and validity. Assimilating continu-
ous measurements of CO2 and H2O fluxes and their isotopic
compositions (e.g.δ13C,δ18O,δ2H) into process-based mod-
els should therefore provide a better-constrained solution.
Similarly, assimilating chamber-based flux measurements of
these isotopic fluxes should help to explain and constrain
our model predictions during metabolic switches, especially
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when photosynthetic products may become limiting such as
during drought (Unger et al., 2010a), rainy periods (Wingate
et al., 2010a) or when post-photosynthetic fractionation pro-
cesses dominate the isofluxes, e.g. at dawn (Barbour et al.,
2011a).

2.5 Regional scale isotope variation in precipitation and
linkages to carbon cycling

High frequency, spatially dense precipitation isoscapes (i.e.
spatial distribution maps of isotope records) over long time
periods are continuing to assist our understanding of plant
water relations, water sources and the extent to which they
are driven by seasonally varying water sources and how these
sources vary at the regional, inter-annual to inter-decadal
scales (Rozanski et al., 1993; Welker, 2000; Vachon et al.,
2007). Knowledge on the spatial distribution of the isotope
signatures of the source water taken up by plants is also pre-
requisite to disentangle the climatic and physiological infor-
mation laid down as18O signal in plant organic matter and
isotopic archives (Augusti and Schleucher, 2007) on larger
scales. At the regional scale, we now fully appreciate that
seasonally snow covered systems provide meltwater to soils
and river systems that reflect the highly depleted values of
winter precipitation (Dutton et al., 2005; Vachon et al., 2010),
and that this snow meltwater allows high rates of stomatal
conductance and high rates of carbon fixation (Alstad et al.,
1999). The duration and extent to which snowmelt and sum-
mer precipitation sources are available to the vegetation may
be critical to supporting higher plant water use, thus affect-
ing stomatal conductance as well as carbon fixation and gross
ecosystem production. The complexity of seasonal patterns
of snow meltwater availability at the regional scale is re-
flected in the vegetation at higher latitudes where Arctic and
North Atlantic Oscillation phase changes are recorded in the
carbon and oxygen isotope composition (Welker et al., 2005).
Our emerging understanding of the temporal patterns ofδ18O
andδD during swings in the major climate oscillations pro-
vides a modern basis for calibrating storm track, climate os-
cillations and the source water of vegetation in conjunction
with carbon fixation rates and variability.

Progress and challenges

Tracing climate phase variation

Understanding the role of moisture sourced from multiple
regions (i.e. different storm tracks), and how those sources
vary with climate phases (i.e. climate oscillations and modes,
such as El Nĩno) as it affects vegetation carbon fixation is
unknown (Holmgren et al., 2001; Birks and Edwards, 2009;
Sjostrom and Welker, 2009). We continue to recognize that
tree rings may be recorders of the general isotopic history
of source water (Briffa, 2000; Csank et al., 2011) regard-
less of geologic time period. However, understanding the

extent to which these moisture sources and climate phases
are recorded and how plant physiology alters the source wa-
ter signal in the long-term growth record of trees is one of
the great challenges today.

Isotope tracers in back trajectory analysis

Back trajectory analysis of weather and thus precipitation
(Draxler and Hess, 2004; Sjostrom and Welker, 2009) is a
modelling tool that has been used extensively to quantify
long-distance transport of pollutants, and more recently for
studies of isotopic characteristics of precipitation (Burnett et
al., 2004). Combining this tool with isotopic measurements
of continental precipitation and water vapour (e.g. networks
such as MIBA and GNIP) and carbon and water fluxes (e.g.
networks such as Fluxnet) may be means by which almost
real-time linkages between climate phases, moisture sources,
plant water relations, carbon exchange and continental car-
bon cycling may be possible.

2.6 Isotopic archives and relevant aspects of
spatio-temporal integration

Over the past decades, the use of stable isotope ratios in a
wide range of materials – from tree, sediment and ice cores
to corals, hair, cactus spines, the balleen of whales and fish
odoliths – has provided some of the most important and novel
insights into the patterns of past environmental changes and
organismal response to these changes of almost any type of
recorder (Dawson and Siegwolf, 2007). Such archives not
only provide a way to look back in time but more recent ex-
amples show that one can also assign causes to responses
to environmental changes on a mechanistic basis (e.g. Ogée
et al., 2009). Stable isotope analysis of biological or abiotic
archives can thus provide excellent tracers for spatial- and
temporal-integration over different scales. Here we discuss
progress and challenges of a few selected examples of bio-
logical archives.

Progress and challenges

Isotopic archives in trees

Tree rings enable retrospective analyses of intra- and in-
terannual variation of carbon and oxygen isotope composi-
tion and the related ecophysiological drivers over many cen-
turies (Sidorova et al., 2009; Nock et al., 2010; Knorre et
al., 2010; Andreu-Hayles et al., 2011; Peñuelas et al., 2011).
The advantages of tree rings are that they (i) can be reliably
dated with a high temporal and spatial resolution; (ii) con-
tain several proxies (stable C, H, O and N isotopes, tree ring
width and tree ring density) in the same matrix (tree ring
wood/cellulose), which was formed at the same time, loca-
tion, and environmental conditions; and (iii) mostly the inclu-
sion of a limited number of trees and species may provide a
strong signal. However, single tree ring chronologies provide
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only limited spatial and community integration and report
only local signals (ca. 10−1 to 102 m). Signal strength is fur-
ther reduced by species-specific responses to environmental
impacts. Furthermore, the tree response is strongly affected
by ontogeny (e.g. Monserud and Marshall, 2001) and site
specific properties such as competition, soil type, water and
nutrient availability, resulting in a considerable variability of
the signal expression, even within the same species (Saurer
et al., 1997). Thus, constructions of ecosystem chronologies
depend on the combination of several tree ring records from
trees of different locations within the same site. This requires
additional information, such as knowledge of past species
dynamics.

Isotopic archives of herbaceous vegetation

The life span of herbaceous vegetation is much shorter than
that of trees. However, isotopic reconstructions of climate
change in herbaceous vegetation (crops and grassland) are
possible if plants were sampled and preserved during the
epoch. Such archives are relatively rare and are mainly repre-
sented by herbaria (e.g. Penuelas and Azcón-Bieto, 1992). In
general, herbarium specimens have been sampled at different
locations, so that long-term isotopic records from these in-
volve a spatially disperse representation of a species’ chang-
ing isotopic composition. Because of site differences, such
isotopic records display relatively high variation. Rare op-
portunities for community-scale isotopic reconstructions are
presented by long-term (agro-) ecological experiments with
crops and grassland where biomass samples have been stored
in dedicated archives (Zhao et al., 2001; Köhler et al., 2010).

Grazer tissues as isotopic archives

For grassland, an analogy to tree rings is given by the yearly
rings (annuli) of horns (or hoofs) of obligate grazers (Bar-
bosa et al., 2009, 2010). These can yield carbon isotopic
records over many years, which reflect that of grassland veg-
etation (Schnyder et al., 2006). The spatial integrations of
tree and horn ring isotope compositions are quite contrasting:
local and stationary for the tree, and vast and cyclic for horns,
reflecting visits of the different parts of the year-round graz-
ing grounds. Still, the use of grazer tissue for reconstructions
of grassland isotopic chronologies usually rests on a number
of assumptions, e.g. concerning the selectivity of grazing, the
constancy of the relationships between isotopic composition
of grazer tissues, and contributions of diet components of dif-
ferential digestibility (Wittmer et al., 2010). Such assump-
tions can be and should be validated (Wittmer et al., 2010).
A significant advantage of keratinous tissue (horn, hair/wool
and hoofs) is given by its homogenous chemical composi-
tion, which reduces variation associated with metabolic iso-
tope fractionation that can be significant in chemically het-
erogeneous tissue.

Micro-scale environmental record

A particular case of small-scale environmental records are
carbon and oxygen isotope ratios of non-vascular plants
(NVP). Cyanobacteria, algae, lichens, and bryophytes inte-
grate local changes of CO2 (e.g. Máguas and Brugnoli, 1996)
and water over long time periods due to their passive ex-
change with environmental conditions, low growth rates (ca.
0.02–30 mm a−1) and long life spans (hundreds to thousands
of years). Therefore, NVP can be used, for example, for
geochronologic aging (e.g. lichenometry), particularly dating
deposited surfaces over the past 500 years with an accuracy
of 10 % error (Armstrong 2004). Theδ13C of NVP archives
environmental impacts over the whole life span in bulk or-
ganic material, and over several years if a chronosequence is
sampled from the thallus margins or young shoots. Short-
term and online records can be obtained from analysing
respired CO2 and extracted bulk water.δ13C of NVP can be
used to trace environmental CO2 gradients (Flanagan et al.,
1999; Lakatos et al., 2007; Meyer et al., 2008), whereas fossil
bryophytes record ancient CO2 levels (Fletcher et al., 2005,
2006). Additionally, epiphytic plants function as atmospheric
water traps (Helliker and Griffiths, 2007; Helliker 2011). Be-
cause epiphytic NVP are commonly in equilibrium with wa-
ter vapour, it is inferred thatδ18O of bulk water and organic
material might serve as a short and long-term recorder for at-
mospheric vapour, respectively (Helliker and Griffiths, 2007;
Hartard et al., 2008, 2009). In the same line, peat mosses
serve as proxies for palaeoenvironmental changes (Loader et
al., 2007; Lamentowicz et al., 2008; Moschen et al., 2009;
Loisel et al., 2010). However, approaches that use oxygen
isotopes as long-term recorder of environmental conditions
need to account for the contributions of the different water
signals from rain, dew and vapour, as well as physiological
offsets which add considerable uncertainties (Moschen et al.,
2009).

3 New technical and methodological developments in
stable isotope research

The past decade has seen tremendous progress in the devel-
opment of new techniques that complement or rival tradi-
tional Isotope Ratio Mass Spectrometry (IRMS) for the de-
termination of stable isotope abundances. This has lead to
new dimensions in measurement speed, number of quantifi-
able isotopologues and sensitivity, increased the repeatabil-
ity, precision and sample turn-over considerably, and offered
new opportunities for in situ observations at natural abun-
dance and in tracer experiments. Most important for carbon
and water cycle research was the introduction of instruments
using light absorption properties of small molecules for de-
termination of stable isotope abundances, as well as the intro-
duction of innovative techniques for compound-specific sam-
ple extraction.
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Laser absorption spectroscopy (LAS)

The development of absorption spectroscopy instrumenta-
tion (LAS) provided new dimensions of measurement speed
and number of quantifiable isotopologues offering data rich-
ness that had never been possible to achieve in field-
deployable instrumentation (e.g. Bowling et al., 2003, Kam-
mer et al., 2011, Sturm et al., 2012; but see Schnyder et
al., 2004). The laser absorption spectroscopy is based on
analysis of absorption of light in selected wavelengths in
the near and mid-infrared to determine the mole fractions
of individual isotopologues (Kerstel, 2004; Kerstel and Gi-
anfrani, 2008; Fried and Richter, 2006). Optical measure-
ment methods based on Fourier Transform Infrared Spec-
troscopy (FTIR), Cavity Ringdown Spectroscopy (CRDS),
Integrated Cavity Output Spectroscopy (ICOS) and Tunable
Diode Laser Absorption Spectroscopy (TDLAS) now ap-
proach levels of detection of small-molecule isotopologues
comparable to laboratory-based isotope ratio mass spectrom-
eters (IRMS). Measurement by absorption spectroscopy is
non-destructive and can therefore be repeated to increase
measurement precision (Werle et al., 2004). Furthermore,
LAS enables a high temporal resolution of accurate isotope
ratios, an ideal property for the visualisation of processes and
temporal variability (e.g. Bowling et al., 2003; Lee et al.,
2005; Tuzson, 2008). Further, new multi-species instruments
that are becoming available enable so-called “clumped iso-
tope” measurements (Eiler, 2007), wherein the occurrence
of two heavy isotopes in the same molecule can serve as a
unique stable isotope tracer itself.

Compound Specific Isotope Analysis (CSIA)

The IRMS has experienced technological and method-
ological development, particularly Compound Specific Iso-
tope Analysis (CSIA), which includes IRMS coupled to
Gas Chromatography-Combustion (GC-C-IRMS; Maier-
Augenstein, 1999) or Liquid Chromatography (LC-IRMS;
Godin et al., 2007). This facilitates the analysis of different
compounds such as structural and labile carbohydrates ex-
tracted from plant organs, leaf wax alkanes, phloem sap and
soil fractions (see review by Sachse et al., 2012). For com-
pound specific isotope analysis, the extraction method is cru-
cial and might strongly affect the results obtained (Richter
et al., 2009). Moreover, the need for derivatization of po-
lar metabolites for GC-MS (gas chromatography-mass spec-
trometry) analysis and thus the introduction of additional car-
bon and oxygen via the derivatization agent to the analyte
complicates the measurement of natural abundance stable
isotope composition of these compound classes (e.g. Gross
and Glaser, 2004). This problem does not occur with LC-
IRMS systems, which are currently, however, restricted to
carbon isotope analyses.

Nuclear Magnetic Resonance (NMR)

At the advent of development of new techniques for nu-
clear magnetic resonance spectroscopy (NMR), new options
arise for studies of, e.g. starch-sugar partitioning and com-
plementary information on (photo-)respiration by analyses
of non-homogeneous distribution of13C within carbohydrate
molecules (e.g. Gilbert et al., 2009, 2011). Analogously, op-
tions to distinguish between different water pools within the
plant arise from new techniques for18O positional analyses
by novel derivatiation approaches (Sternberg et al., 2006).

Nano-scale secondary ion mass spectrometers
(NanoSIMS)

Linking isotopic analysis with high resolution microscopy
has provided significant progress of spatially resolved infor-
mation on the molecular and isotopic compositions of (bi-
ological) materials. New Nano-scale Secondary Ion Mass
Spectrometers (NanoSIMS) represent a significant improve-
ment in sensitivity and spatial resolution (down to 50 nm).
In a destructive manner, NanoSIMS analysis involves con-
tinuous bombardment of the sample surface with an ion
beam and subsequent analysis of the released secondary ions
according to their mass-to-charge ratios (Herrmann et al.,
2007). Although adequate sample preparation remains chal-
lenging, imaging mass spectrometry via NanoSIMS repre-
sents a promising avenue for mapping the spatial organisa-
tion, metabolic pathways and resource fluxes within cells,
plants and at the root–fungus–soil interface, in particular in
labelling studies (e.g. Clode et al., 2009).

Progress and challenges

The pool of various new and improved techniques currently
available for application of stable isotopes in environmen-
tal, physiological and ecological research is large. However,
from the user’s perspective, particularly for laser absorp-
tion spectroscopy, some general issues, as described below,
should be resolved.

Instrument accuracy and calibration

Calibration biases for water vapour isotope laser spectrom-
eters can result, for instance, from evaporation efficiency of
the reference water, instrument nonlinearity and impurity of
the carrier gas. Calibration of water vapour analysers is done,
for example, using a liquid water injector (“dripper”) into a
flow of dry air (Lee et al., 2005; Wen et al., 2008; Baker and
Griffis, 2010; Griffis et al., 2010; Sturm and Knohl, 2010). In
addition, a heated vaporisation system is used wherein the
liquid standard is completely vaporized without fractiona-
tion. Nevertheless, any concentration dependence in the anal-
yser itself can bias the overall calibration of the instrument,
especially when measuring ambient water vapour of widely
varying mixing ratios (Lee et al., 2005; Wen et al., 2008;
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Schmidt et al., 2010; Sturm and Knohl, 2010). For CO2, cal-
ibration against two or more mixtures of CO2 and dry air,
which are tied to international reference standards, are criti-
cal. Impurities in the water sample to be analysed can cause
a spectral interference with organic contaminants and have
been observed in analysis of liquid samples extracted from
biological sources, e.g. leaf water (West et al., 2010; Schultz
et al., 2011).

High instrument precision at short detection intervals

Free of sample preparation and processing, new optical tech-
niques can achieve much faster detection than IRMS. In-
situ measurements of CO2 and H2O isotope ratios in am-
bient air, especially if made on a long-term basis and cali-
brated precisely, can provide a powerful tool for atmospheric
inverse analysis of the terrestrial carbon sink and tracking
of water transport in the atmosphere. However, to measure
the source/sink signature properly near the land surface,
one should interface the isotopic analyser with plant (Bar-
bour et al., 2007; Barthel et al., 2011) and soil chambers
(e.g. Wingate et al., 2010a, b) and deploy it in the gradient-
diffusion mode either over the vegetation (Griffis et al., 2004)
or over the soil surface inside the canopy (Santos et al.,
2010), or combine it with a sonic anemometer for direct eddy
covariance measurement of isotopic fluxes (Lee et al., 2005;
Griffis et al., 2008, 2010) or landscape scale measurements
in high elevation or airborne conditions (e.g. Tuszon et al.,
2010). In all these configurations, suitable interfaces between
the analyser and the sample and calibration periphery are
useful. The system as a whole must be robust and designed
and tuned for minimal interference, memory effects or signal
drifts. Fast detection is particularly critical for eddy covari-
ance applications, which require an instrument response to
be faster than 10 Hz and relies on continuous-flow sampling.
However, fast detection is also desired for chamber based
measurements in studies of short-term events, such as wa-
ter vapour and CO2 flux pulses after rain (Santos et al., 2010;
Unger et al., 2012). Maximizing precision at short integra-
tion times and maintaining accuracy for long periods should
be a high priority in future instrument development.

Instrument and infrastructure cost

High instrument and maintenance costs limit the broad adop-
tion of new technologies in field research. It is highly desir-
able that the costs are brought down to a level comparable
to that of a broadband infrared gas analyser, which is now
an indispensible tool for ecosystem carbon and water flux
monitoring worldwide (Baldocchi et al., 2001). We envision
the development of a network with real-time observations of
isotopic fluxes of CO2 and H2O to help diagnose changes
in biospheric processes. This can become a realistic goal if
instrumentation costs are lower.

Multi-isotopologue instruments

New instruments are becoming available and enable so-
called “clumped isotope” measurements (Eiler, 2007),
wherein the occurrence of two heavy isotopes in the same
molecule can serve as a unique stable isotope tracer itself.
Currently its applicability as a paleo-thermometer is being
tested. The basic assumption is based on the observation that
the heavier molecules and atoms are not randomly distributed
within the same matrix, but rather form a clumped aggre-
gate of substrates with the heavier isotope. For the distinc-
tion of such clumped isotopes highly sensitive instruments
are needed.

4 Outlook

New research opportunities at all scales of isotope biogeo-
chemistry of carbon and water are arising from deepened
process-based understanding and improved analysis tools,
together with the development of mechanistic models. Espe-
cially combinations of multiple isotope and non-isotope vari-
ables have the potential to stimulate our understanding across
a wide range of scales, including leaves, plants, mesocosms,
natural ecosystems, and the atmosphere. The scale-spanning
assessment of carbon and water fluxes is, on the one hand, a
great opportunity offered by stable isotope approaches. On
the other hand, deeper insights into the multitude of pro-
cesses affecting carbon and oxygen isotope discrimination
during photosynthesis and transpiration, as well as during
downstream metabolic processes, are challenging a general-
isation of the information contained in the isotopic signature
and a transfer to higher temporal and/or spatial scale. One
example is the knowledge that plant phenology or growth
patterns (Sect. 2.1.3) might complicate the comparison of
the isotopic composition of bulk material between species.
However, we can apply appropriate techniques such as the
assessment of organic matter pools with a well defined turn-
over time and chemical composition to avoid misinterpreta-
tion. Moreover, experimental designs focussing on changes
in environmental conditions or species interactions and on
the effect of such changes on the isotopic composition can
often overcome the problem. While the isotopic composition
might not be directly comparable between species, the direc-
tion and magnitude of change can give quantitative informa-
tion on physiological reactions within and between species,
communities and ecosystems.

At the leaf-level (see Sect. 2.1), combined analyses of dif-
ferent isotopes might lead to a better understanding of mes-
ophyll conductance and related components, including dif-
fusion through intercellular airspaces and transport through
barriers in cells such as the cell wall, membranes, or stroma.
It might also help to assess the possible role of cooporins
(membrane proteins acting as pores for CO2) in facilitating
and controlling transport of CO2. Combined measurements
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of the isotopologues of CO2 and H2O will further allow
quantifying the extent of equilibration between dissolved
CO2 and leaf water, and thus can provide a non-invasive re-
construction of leaf water dynamics. These are critical as-
pects for validation and further development of carbon and
water isotope approaches and models. Information on differ-
ent species and ecotypes will in turn enhance our understand-
ing of the different morpho-physiological factors controlling
carbon and water fluxes and, hence, water use efficiency of
leaves.

Although the last ten years have seen a large increase in
knowledge of post-carboxylation fractionation phenomena
(see Sect. 2.1.2), we expect no slowdown in the develop-
ment of this field. In part, empirical progress will be facil-
itated by improvements in NMR technology as well as in
derivatisation techniques (see Sect. 3) which permit mea-
surements of natural intramolecular isotope distribution pat-
terns in intermediates of primary and secondary metabolism,
and respiratory substrates. Dynamic labelling experiments
with 13C-enriched or depleted CO2 or with (intra-molecular)
position-labelled metabolites will permit better assessment
of metabolic networks and turnover times of different car-
bon pools. Such work will also enhance our understanding
for the metabolic causes of variations in post-carboxylation
fractionation. Temporal dynamics of apparent fractionation
during dark respiration may vary, depending on the identity
of the different metabolic intermediates, their synthesis path-
ways and metabolic functions as well as on the demand for
substrates in the respiratory pathways.

Investigations of natural intra-molecular13C and18O dis-
tribution patterns might also be key to quantify isotope frac-
tionation phenomena during loading, phloem transport and
unloading of different organic compounds (see Sect. 2.2).
These include assessments of isotopic exchange reactions
along the path from leaves to sites of assimilate use, and
fractionation or isotopic exchange during biosynthetic pro-
cesses such as cellulose synthesis. Such approaches may
elucidate the mechanisms underlying spatio-temporal vari-
ation of δ13C and δ18O during transfer from the chloro-
plast to heterotrophic tissues, the rhizosphere/soil and atmo-
sphere. The mechanistic understanding, on the other hand,
will strengthen climatological and physiological interpreta-
tion of tree ring cellulose and similar isotope archives such
as grass, sediments, hair, horn, or tooth enamel of herbivores
(see Sect. 2.6). We are of the strong opinion that a deeper
knowledge of fractionation during photosynthesis, transport
and post-carboxylation metabolism is an important basis for
understanding ecosystem-scale isotope discrimination and
for linking the carbon balance with water relations at differ-
ent scales. Whereas the mechanistic understanding of pho-
tosynthetic carbon isotope fractionation and evaporative18O
enrichment of water in leaves is relatively advanced, equiva-
lent understanding of fractionation phenomena in the down-
stream metabolism – as expressed in quantitative models – is
still in its infancy.

It is, therefore, not surprising that the interpretation
of ecosystem scale fractionation remains challenging (see
Sect. 2.4). We expect that significant steps for resolving this
complexity will include similar approaches as advocated for
leaf- and plant-level studies: (i) joint flux measurements of
the different isotopologues of CO2 and H2O in natural sys-
tems – which will enable a better distinction of the CO2 and
H2O flux components and pools, (ii) tracing metabolite and
intramolecular labelling patterns between and within system
components in artificial setups as well as in field labelling ex-
periments – shedding light on allocation, turnover of differ-
ent carbon pools as well as plant-soil-atmosphere interaction,
and (iii) hypothesis-testing mesocosm-scale experiments –
testing our system-scale understanding. Insights from these
approaches may then help to improve and test stable-isotope-
enabled models of carbon and water fluxes at the ecosystem
scale.

Regional-scale studies (see Sect. 2.5) of the water iso-
tope cycle are becoming more important to our understand-
ing of synoptic climates, ecosystem processes, the role of
abiotic processes (e.g. temperature of condensation), mois-
ture sources, and storm tracks on the ecohydrology of en-
tire landscapes and continents. However, isotope fraction-
ations are quite uncertain on global and continental scales
and it is therefore important to identify robust features that
can be constrained by large-scale isotope observations. C4-
plant distribution is one such feature that might become well
constrained by13C isotopes. But isotope studies will benefit
greatly from the combination with other non-isotope tracers
also on landscape, regional and continental scales. It might
be the tapping into the above-mentioned multitude of infor-
mation that will advance the usage of isotope signals on the
global scale.

In conclusion, we are in the midst of a rapid growth in
process-based understanding of the behaviour of carbon and
oxygen stable isotopes in organisms and in the environment.
On the one hand, we are increasingly recognising the com-
plexity of 13C and18O fractionation processes and their spa-
tial and temporal variation. On the other hand, new technolo-
gies (see Sect. 3) can deliver high resolution records of short-
and long-term variability in isotope signatures, overcoming
the constraints of earlier laborious procedures. New analyti-
cal tools and process-based understanding will allow further
development of isotope-enabled biogeochemical models for
investigations of the complex interplay of soil, plant, ecosys-
tem and atmosphere processes in the carbon and water cy-
cles.
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Gamnitzer, U., Scḧaufele, R., and Schnyder, H.: Observing13C la-
belling kinetics in CO2 respired by a temperate grassland ecosys-
tem, New Phytol., 184, 376–386, 2009.

Gamnitzer, U., Moyes, A. B., Bowling, D. R., and Schnyder, H.:
Measuring and modelling the isotopic composition of soil res-
piration: insights from a grassland tracer experiment, Biogeo-
sciences, 8, 1333–1350,doi:10.5194/bg-8-1333-2011, 2011.

Gan, K. S., Wong, S. C., Yong, J. W. H., and Farquhar, G. D.: O-18
spatial patterns of vein xylem water, leaf water, and dry matter in
cotton leaves, Plant Physiol., 130, 1008–1021, 2002.

Gessler, A., Keitel, C., Kodama, N., Weston, C., Winters, A. J.,
Keith, H., Grice, K., Leuning, R. and Farquhar, G. D.: Delta C-13
of organic matter transported from the leaves to the roots inEuca-
lyptus delegatensis: short-term variations and relation to respired
CO2, Funct. Plant Biol., 34, 692–706, 2007a.

Gessler, A., Peuke, A. D., Keitel, C., and Farquhar, G. D.: Oxygen
isotope enrichment of organic matter inRicinus communisdur-
ing the diel course and as affected by assimilate transport, New
Phytol., 174, 600–613, 2007b.

Gessler, A., Rennenberg, H., and Keitel, C.: Stable isotope compo-
sition of organic compounds transported in the phloem of Eu-
ropean beech – Evaluation of different methods of phloem sap
collection and assessment of gradients in carbon isotope com-
position during leaf-to-stem transport, Plant Biol., 6, 721–729,
2004.

Gessler, A., Tcherkez, G., Peuke, A. D., Ghashghaie, J., and Far-
quhar, G. D.: Experimental evidence for diel variations of the
carbon isotope composition in leaf, stem and phloem sap organic
matter inRicinus communis, Plant Cell Environ., 31, 941–953,
2008.

Gessler, A., L̈ow, M., Heerdt, C., Op de Beeck, M., Schumacher,
J., Grams, T. E. E., Bahnweg, G., Ceulemans, R., Werner, H.,
Matyssek, R., Rennenberg, H., and Haberer, K.: Within-canopy
and ozone fumigation effects onδ13C and118O in adult beech
(Fagus sylvatica) trees: relation to meteorological and gas ex-
change parameters, Tree Physiol., 11, 1349–1365, 2009.

Ghashghaie, J., Duranceau, M., Badeck, F. W., Cornic, G., Adeline,
M. T., and Deleens, E.:δ13C of CO2 respired in the dark in rela-
tion to δ13C of leaf metabolites: comparison betweenNicotiana
sylvestrisandHelianthus annuusunder drought, Plant Cell Env-
iron., 24, 505–515, 2001.

Ghashghaie, J., Badeck, F. W., Lanigan, G., Nogués, S., Tcherkez,
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and Dawson, T. E.: Combiningδ13C andδ18O analyses to un-
ravel competition, CO2 and O3 effects on the physiological per-
formance of different-aged trees, Plant Cell Environ., 30, 1023–
1034, 2007.

Griffis, T. J., Black, T. A., Gaumont-Guay, D., Drewitt, G. B., Nesic,
Z., Barr, A. G., Morgenstern, K., and Kljun, N.: Seasonal varia-
tion and partitioning of ecosystem respiration in a southern bo-
real aspen forest, Agr. Forest Meteorol., 125, 207–223, 2004.

Griffis, T. J., Sargent, S. D., Baker, J. M., Lee, X., Tanner, B. D.,
Greene, J., Swiatek, E., and Billmark, K.: Direct measurement
of biosphere-atmosphere isotopic CO2 exchange using the eddy
covariance technique, J. Geophys. Res.-Atmos., 113, D08304,
doi:10.1029/2007JD009297, 2008.

Griffis, T., Sargent, S., Lee, X., Baker, J., Greene, J., Erickson, M.,
Zhang, X., Billmark, K., Schultz, N., Xiao, W., and Hu, N.; De-
termining the oxygen isotope composition of evapotranspiration
using eddy covariance, Bound.-Lay. Meteorol., 137, 307–326,
2010.

Griffiths, H. (Ed.): Stable Isotopes – integration of biochemical,
ecological and geochemical processes, BIOS Scientific Publish-
ers Ltd, Oxford, 1998.

Gross, S. and Glaser, B.: Minimization of carbon addition during
derivatization of monosaccharides for compound-specific delta
C-13 analysis in environmental research, Rapid Comm. Mass
Sp., 18, 2753–2764, 2004.

Gubsch, M., Roscher, C., Gleixner, G., Habekost, M., Lipowsky, A.,
Schmid, B., Schulze, E. D., Steinbeiss, S., and Buchmann, N.:
Foliar and soil delta15N values reveal increased nitrogen parti-
tioning among species in diverse grassland communities, Plant
Cell Environ., 34, 895–908, 2011.

Guehl, J. M., Bonal, D., Ferhi, A., Barigah, T. S., Farquhar, G., and
Granier, A.: Community-level diversity of carbon-water relations
in rainforest trees, in: Ecology and Management of a Neotropi-
cal Rainforest, dited by: Gourlet-Fleury, S., Laroussinie, O., and

Guehl, J. M., Elsevier, Paris, 65–84, 2004.
Guerrieri, M. R., Siegwolf, R. T. W., Saurer, M., Jäggi, M.,
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