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Abstract

Recent studies have detected hubs in neuronal networks using degree, betweenness centrality, motif and synchronization
and revealed the importance of hubs in their structural and functional roles. In addition, the analysis of complex networks in
different scales are widely used in physics community. This can provide detailed insights into the intrinsic properties of
networks. In this study, we focus on the identification of controlling regions in cortical networks of cats’ brain in
microscopic, mesoscopic and macroscopic scales, based on single-objective evolutionary computation methods. The
problem is investigated by considering two measures of controllability separately. The impact of the number of driver nodes
on controllability is revealed and the properties of controlling nodes are shown in a statistical way. Our results show that the
statistical properties of the controlling nodes display a concave or convex shape with an increase of the allowed number of
controlling nodes, revealing a transition in choosing driver nodes from the areas with a large degree to the areas with a low
degree. Interestingly, the community Auditory in cats’ brain, which has sparse connections with other communities, plays
an important role in controlling the neuronal networks.
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Introduction

Synchronization is widely observed in many fields such as

coupled nonlinear systems and complex networks [1–6]. Especial-

ly, synchronization of distributed brain activity has been found to

play an important role in neural information processing [7–11].

The experimentally observed brain activity, characterized by

synchronization phenomena over a wide range of spatial and

temporal scales, reflects the relevance for cognitive dysfunctions

and pathophysiology [8]. Structurally, the analysis of the

anatomical connectivity of the mammalian cortex has uncovered

that large-scale neuronal networks display both high clustering and

short pathlength [12,13]. The cortical network also shows a

hierarchy of complex connectivity [12,14–17].

Extensive information in mammalian cortex, such as the brains

of macaque monkeys and cats, has been collected [18–22].

Recently, hub regions, which are believed to play pivotal roles in

the coordination of information flow in brain networks [22–24],

have been identified using modern tools from complex networks

[20,22]. The hub regions of cortical networks are analyzed using

node degree, structural motif, path length and clustering

coefficient distributions [22]. The results in [20] highlight the

influence of the topological connectivity in the formation of

synchronization, revealing a few cortical areas forming a Rich-

Club connectivity pattern.

Control of complex networks is a hot topic, which is closely

related to synchronization of complex networks [25–27]. Some

vertices in complex networks serve as reference sites, leaders or

pacemakers [28] and drive all the other vertices toward desired

targets or evolutions and thus synchronization is achieved. It is

valuable to study the controllability of complex networks,

especially for cortical networks due to the technical [29,30] and

neuroscience backgrounds [8,16,20]. By fully utilizing the

structure of the networks, Lu et al. [27] found out the minimum

number of controllers for the pinning synchronization control of

complex network with general topology and derived some efficient

criteria to judge the success of the designed pinning controllers,

which are illustrated by small-world and scale-free networks to be

valid and efficient for large-scale networks.

Recently, controllability of complex networks has been studied

using control theory or master stability function (MSF) [25,29,31].

Most recently, in [32], the authors reported on a generic

procedure to steer a network’s dynamics towards a given desired

evolution, where techniques from MSF were used in connection

with a greedy algorithm to determine a specific, suboptimal,

sequence of nodes to be driven in order to control a network

toward a desired dynamics. It is shown that there is a striking

correlation between the suboptimal ranking and the inverse of the

degree sequence [32]. However, it is still not clear how to
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determine the locations of optimal driving sequences, which is

crucial in to achieve the most efficient controlling performance.

Understanding a complex network’s structure is beneficial to

understanding its function [33,34]. The past decade has witnessed

an increasing of methods developed in this cross-disciplinary of

physics community [35]. Structural properties in complex

networks exist on both the microscopic level, arising from

differences between single node properties, and the mesoscopic

level resulting from features shared by groups of nodes. In [34], it

is shown by benchmark problems how multiscale generative

probabilistic exponential random graph models combined with

efficient inference techniques can be used to achieve this

separation of scales, resulting in an improved detection accuracy

of latent classes. In [20,36], extensive numerical evidences are

given to confirm the original claims that the microscopic and

mesoscopic dynamics of synchronized patterns indeed follow

different routes. In [33,37], mesoscopic analysis of networks is

applied to exploratory analysis and data clustering.

In this study, we use the cortico-cortical network of cats’

brain, which is a weighted and directed network with

community structure [22]. We aim to identify controlling

regions (driver nodes) of brain networks of a cat, which is

equivalent to enhancing controllability of cortical networks. By

converting the problem of identification of controlling nodes

into a single-objective optimization problem, a recent well-

studied evolutionary computation method, the self-adaptive

differential evolution (JaDE), is utilized to uncover the

controlling nodes of the neuronal network. By utilizing JaDE,

the controlling nodes are identified in microscopic, mesoscopic

and macroscopic ways. In addition, the controlling nodes

selected by JaDE are compared with the usual hubs [22],

which are identified using node degree, betweenness centrality,

closeness and node importance. In contrast to the usual hubs,

most of the controlling nodes are selected from the nodes with a

small degree. Our results reveal that the number of driver nodes

plays a key role in the controllability of neuronal networks.

Results

Firstly, several examples are provided to verify the performance

of JaDE [38]. JaDE is used to detect the controlling nodes/areas/

regions of the cortical network of cats’ brain in microscopic,

mesoscopic and macroscopic ways, respectively.

We will analyze three different scales of controlling nodes/

areas/regions in the cortical network: (1) the microscopic scale

refers to the mean degree, the mean betweenness centrality (BC)

and the mean closeness of driver nodes that are calculated under

different numbers l of driver nodes; (2) the mesoscopic scale

corresponds to the controlling communities; (3) the macroscopic

scale is the controlling nodes sorted according to their total times

of serving as driver nodes.

In the following, the reliability of evolutionary computation

methods is shown in terms of the convergence speed, the mean

value and the best value of ten runs. In order to show that JaDE is

suitable for identification of controlling nodes of the cortical

network, we compare it with some well-known efficient evolution-

ary computation approaches CLPSO [39], jDE [40], SaDE [41]

and CoDE [42]. Also, JaDE is compared with some methods in

complex networks theory.

Parameter Setting
The population sizes NP of all DEs and Particle Swarm

Optimizations (PSOs) are set as 20 and the search range in

each dimension is set to (0,N� (see Materials and Methods). The

maximum fitness evaluation fe, max is set as fe, max~NP�T�D,

where T~250 is a constant and D~2�l is the size of problem

dimension. If a large T is given, the accuracy of the solutions

might be refined and the computation consumption is increased

linearly and vice visa. Evolutionary computation algorithms will

be repeated 10 times independently for eliminating random

discrepancy. Algorithms will be terminated when they achieve

fe, max.

Comparison of JaDE with Evolutionary Computation
Methods

The best value B and the mean value M of the solutions in ten

runs are listed in Table 1. The number of driver nodes is increased

from 6 to 48 with a stepsize 6. B is used to describe the best

solution of algorithms found in 10 times and M is used to

represent the mean value of solutions in 10 times. Note that both

the best value and the mean value of solutions are of great

significance for measuring the reliability of algorithms, hence we

use [43]

Q~
ffiffiffiffiffiffiffiffiffiffiffi
B�M
p

, ð1Þ

where both B and M are involved. Obviously, Q should be made

as small as possible. Therefore, we also sort Q of five algorithms in

an ascending way under different l and their orders Pi. The mean

order of each algorithm is calculated as follows

Qm~
1

8

X8

i~1

Pi,(l[f6,12,18,24,30,36,42,48g), ð2Þ

and is also listed in Table 1. Based on the mean order Qm, the final

rank of five algorithms is obtained in Table 1 (See ‘‘Score’’).

Table 1 and Fig. 1 show that JaDE, CoDE and jDE perform

better than the other two algorithms in terms of both search speed

and convergence rate. From Table 1, JaDE ranks first and has

good reliability of finding potential optimum with a satisfactory

convergence speed. It is worth mentioning that JaDE is equipped

with an elitism approach. Therefore, JaDE is able to find the

global optimum when fe, max??. In reality, it is unreasonable to

run an algorithm with infinite generations. However, the

performance of JaDE is confirmed by our simulation results

(Table 1 and Fig. 1). Furthermore, a series of scientific experiments

in [38] reveal that JaDE is a powerful and efficient algorithm for

handling real-world optimization problems. In the following, JaDE

is adopted to all the following simulations.

Comparison of JaDE with Network-based Methods
JaDE is compared with some other schemes (See Materials and

Methods) from complex networks in terms of enhancement of

controllability of the cortical network. The best solutions in 10

runs of JaDE under different l are used to produce the following

results. It is worth pointing out that one can run JaDE for one time

due to its reliability, as confirmed above.

Figs. 2 and 3 show that JaDE always performs better than the

other methods. When l is large, the degree descending strategy,

the BC descending strategy and the closeness ascending strategy

are getting worse. Conversely, the degree ascending strategy, the

BC ascending strategy and the closeness descending strategy are

becoming better. The U and S-based strategies are intermediate

among all the algorithms.

When only minimizing s and neglecting the effect of R, Fig. 3

shows that s (See Materials and Methods) can easily reach zero

Controlling Nodes in Neuronal Networks
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when applying JaDE, implying that it is easy to enhance

controllability in the cortical network in terms of s. This

phenomenon supports the finding in [44,45], in which the

imaginary part of the eigenvalues of network connection matrix

can be neglected to measuring synchronizability of complex

networks. When minimizing R and increasing l, the controlla-

bility of the cortical network is becoming better using all the

methods. However, when minimizing s and increasing l, the

controllability of the cortical network is getting better when only

using JaDE, which is strongly different from the case of only

minimizing R.

Controllability of the Cortical Network - a Microscopic
Way

When only minimizing R, Figs. 4, 5, 6, 7, 8 and 9 depicts the

mean values of degree, BC and closeness of driver nodes by

various methods. Figs. 4, 6 and 8 show that, the driver nodes

selected by JaDE are the nodes with a large degree, a small

closeness and a large BC at the very beginning. Then, the driver

nodes selected by JaDE abruptly change to the nodes with a small

degree, a small BC and a large closeness, when increasing l.

Specially, when p~
l

N
� 100% is near 20%, the mean value of

degree of the controlling nodes selected by JaDE achieves its

minimum value. After the mean value of degree of driver nodes

reaches its minimum value, it increases gradually and finally

attains the mean value of degree of the cortical network. As a

whole, Fig. 4 shows that the mean values of degree of driver nodes

display a concave shape as a function of l. The standard deviation

also becomes gradually larger when increasing l. The observed

phenomenon indicates that, when l is not large, driver nodes are

usually selected from the nodes with a small degree and nearly no

nodes with a large degree are chosen. Some similar phenomena

are observed when the BC and closeness of the driver nodes are

shown (Figs. 6 and 8). This finding is consistent with the work in

[29], in which the nodes with a large degree should be avoided

choosing as driver nodes. It is worth mentioning that there exists a

major difference with the finding in [29], i. e., when l is very small,

the nodes with a large degree should be considered as driver

nodes, as illustrated in Fig. 4.

Different from optimizing R, when minimizing s, Figs. 5, 7 and

9 show that the mean values (degree, BC and closeness) of driver

nodes selected by JaDE fluctuate around the mean values (degree,

BC and closeness) of the network. The standard deviations

(degree, BC and closeness) of driver nodes selected by JaDE keep

stable when l increases. All the findings indicate that one should

select the nodes to make the mean values (degree, closeness and

BC) of driver nodes around those of the network.

Finally, the relationship between R, lr
1, lr

N and l (See Materials

and Methods) is investigated in terms of minimizing R. Fig. 10

shows that R(l)!l{c, which can help to predict R when knowing

Table 1. Comparison among five algorithms for different l of
driver nodes of the cortical network with size N~53, see
Fig. 1.

CLPSO jDE SaDE CoDE JaDE

Mean 29.062 28.1897 28.0292 28.0522 28.2284

l = 6 Best 28.0472 27.9476 27.9219 27.9043 27.9205

Q 28.5501 28.0684 27.9755 27.9782 28.074

order 5 3 1 2 4

Mean 14.3663 14.6584 13.8698 13.6785 13.9635

l = 12 Best 13.6478 13.9661 13.4678 13.4074 13.5064

Q 14.0025 13.9648 13.6673 13.5423 13.733

order 5 4 2 1 3

Mean 9.0286 9.1186 9.1235 8.6427 8.8656

l = 18 Best 8.7532 8.8488 8.7087 8.4847 8.5209

Q 8.8898 8.8572 8.9137 8.5634 8.6916

order 4 3 5 1 2

Mean 6.4847 6.283 6.5348 6.2908 6.1799

l = 24 Best 6.2396 6.1598 6.2228 6.0923 6.0876

Q 6.361 6.1699 6.3769 6.1908 6.1336

order 4 2 5 3 1

Mean 5.4265 4.7714 5.1642 4.9089 4.7174

l = 30 Best 4.9943 4.6826 5.041 4.6569 4.675

Q 5.2059 4.7 5.1023 4.7812 4.6961

order 5 2 4 3 1

Mean 4.8641 3.8225 4.2491 3.9336 3.8081

l = 36 Best 4.3501 3.7998 4.0914 3.7856 3.7968

Q 4.5999 3.8039 4.1695 3.8589 3.8025

order 5 2 4 3 1

Mean 4.2617 3.0524 3.5074 3.084 3.0436

l = 42 Best 3.8142 3.0412 3.3905 3.0244 3.0324

Q 4.0318 3.0424 3.4485 3.0541 3.038

order 5 2 4 3 1

Mean 4.13 2.3967 2.9995 2.4638 2.4119

l = 48 Best 3.8012 2.3825 2.8596 2.3702 2.3826

Q 3.9622 2.3972 2.9287 2.4166 2.3972

order 5 1 4 3 1

Qm 4.75 2.375 3.625 2.375 1.75

Score 5 2 4 2 1

The measurements of Q and Qm are provided in (1) and (2). ‘‘Order’’ is obtained
by sorting Q and ‘‘Score’’ is obtained by sorting Qm in an ascending way.
doi:10.1371/journal.pone.0041375.t001

Figure 1. Performance of five evolutionary computation
algorithms for controllability of the cortical network with
different numbers l of driver nodes, when minimizing R

according to (8). The ‘‘FEs’’ here means the numbers of fitness
evaluations of objective (8) or (9), when l~48.
doi:10.1371/journal.pone.0041375.g001
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l. Moreover, in order to minimize R under a small l, lr
N should be

suppressed near a constant value and lr
1 should be enlarged as

much as possible. As l increases, both lr
N and lr

1 grow

exponentially and the growth of the amplitude of lr
1 is larger

than that of lr
N . Fig. 10 illustrates that the shape of R largely

depends on lr
1. The observed phenomena indicate that lr

1 plays a

more important role in minimizing R than lr
N does. When l~N,

it is shown that lr
1&lr

N , which makes R&1. In summary, when

minimizing R, enlarging lr
1 is more important than reducing lr

N .

This finding is similar to our finding in [43], where only

undirected complex networks are studied.

Controlling Nodes of the Cortical Network - a
Macroscopic Way

By means of JaDE, we control the cortical network under

different l in terms of minimizing R and s, respectively. Denote

Figure 2. Optimizing R with different pinning schemes under different l.
doi:10.1371/journal.pone.0041375.g002

Figure 3. Optimizing s with different pinning schemes under different l.
doi:10.1371/journal.pone.0041375.g003
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TR,i~
XN

l~1

dM(i),when minimizing R,

And

Ts,i~
XN

l~1

dM(i),when minimizing s,

where dM(i) can be referred to Materials and Methods. TR,i and

Ts,i indicate the times of each node selected as driver nodes in

terms of minimizing R and s, respectively. The nodes with large

TR,i and Ts,i play a vital role in controlling the cortical network.

Figure 4. The mean values of degree information of driver nodes with various l under different schemes when minimizing R.
doi:10.1371/journal.pone.0041375.g004

Figure 5. The mean values of degree information of driver nodes with various l under different schemes when minimizing s.
doi:10.1371/journal.pone.0041375.g005
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The controlling nodes of the cortical network are identified for N

different times. Then, TR,i and Ts,i are sorted in a descending

way. The results are shown in Figs. 11, 12 and Table 2. Fig. 11

shows that when minimizing R, the standard deviation of TR,i is

large, which means that some nodes in the cortical network, such

as VPc, 2 and AMLS, are of great importance to be controlled.

Some areas are negligible to be selected as driver nodes, such as

20a, CGp and 5AI. When minimizing s, the standard deviation of

Ts,i is small and nearly all the areas in the cortical network are

important for minimizing s. Hence, the controlling nodes are

different from the usual hubs, which are generally selected from

nodes with a large degree [22]. In addition, the controlling nodes

in the case of minimizing R are different from those in the case of

minimizing s (Table 2). In order to show what factors have

impacts on selection of controlling nodes, Dk~kin{kout of each

area in the cortical network is depicted in Table 2, where kin and

kout can be referred to Materials and Methods. Table 2 shows that,

when optimizing R, most of the controlling nodes are selected

from the nodes with a large kin and a small kout. Therefore, the

areas with Dkw0 should be considered as controlling nodes when

Figure 6. The mean values of BC information of driver nodes with various l under different schemes when minimizing R.
doi:10.1371/journal.pone.0041375.g006

Figure 7. The mean values of BC information of driver nodes with various l under different schemes when minimizing s.
doi:10.1371/journal.pone.0041375.g007
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minimizing R. Whereas the situation is more complicated, when

minimizing s and there exist other factors which influence the

selection of controlling nodes.

Controlling Communities of the Cortical Network - a
Mesoscopic Way

In the following, we show which module/community is

significant to be controlled in a mesoscopic way. According to

Table 2, we sort and choose the nodes with TR,i and Ts,i in the

first ½1,floor(
1

3
�N)� as controlling nodes (CN),

½floor(
1

3
�N)z1,floor(

2

3
�N)� as intermediate controlling nodes

(ICN) and ½floor(
2

3
�N)z1,N� as weak controlling nodes (WCN),

respectively. The number of CN, ICN and WCN in each

community are presented in Tables 3 and 4. We also calculate

the proportions of the locations of CN, ICN and WCN in each

Figure 8. The mean values of closeness information of driver nodes with various l under different schemes when minimizing R.
doi:10.1371/journal.pone.0041375.g008

Figure 9. The mean values of closeness information of driver nodes with various l under different schemes when minimizing s.
doi:10.1371/journal.pone.0041375.g009
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community, respectively. Tables 3 and 4 show that most of the

areas in the community Auditory serve as CN. Specifically, when

minimizing R, most of the areas in the community Visual work as

CN and ICN, most of the areas in the community Somato-motor

belong to ICN and WCN and most of the areas in the community

Fronto-limbic serve as ICN and WCN. When minimizing s, most

of the areas in the community Visual work as ICN and WCN,

most of the areas in the community Somato-motor belong to CN

and ICN and most of the areas in the community Fronto-limbic

serve as WCN. From the above observations, when minimizing R,

the importance of each community is listed in a descending order:

Auditory]Visual]Somato{motor]Fronto{limbic. When

minimizing s, the importance of each community is listed in

a descending order: Auditory]Somato{motor]Visual]
Fronto{limbic. Hence, although the community Auditory is

sparsely connected with other communities and is the smallest

community, it is the most important one to control the cortical

network. The observed phenomenon indicates that community

with sparse connection to other communities should be paid

special attention to control the network efficiently.

Figure 10. The relationship between log10 R, log10 lr
1, log10 lr

N and
log10 l by JaDE.
doi:10.1371/journal.pone.0041375.g010

Figure 11. TR,i of each node in cortical networks of cat.
doi:10.1371/journal.pone.0041375.g011
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Discussion

The cortical hubs are believed to play pivotal roles in the

coordination of information processing in cortical networks. In

previous studies, the identification and classification of hub

regions have been analyzed in terms of node degree, structural

motif, path length, clustering coefficient distributions and

synchronization [20,22]. In these works, the intrinsic relationship

between structural and functional connectivity is analyzed by

using ensembles of neurons coupled by a cortical network of cats’

brain. By means of statistical methods, the crucial importance of

nodes and clusters are revealed to analyze the separation and

integration of sensory information in the cerebral cat cortex

[24,46].

Additionally, one of the major challenges for human is to

control natural systems or networks efficiently. As a typical natural

network, identifying controlling nodes of a realistic anatomical

network of cat cortical connectivity is of crucial significance to

provide insights into avoiding abnormal synchronization in typical

neural diseases [8,9,12]. In the light of previous studies, the

problem of identification of controlling nodes of cortical networks

remains open.

In this study, we have investigated the identification of

controlling nodes in a network representing the connectivity

among cortical areas in cats’ brain. The issue regarding

controllability of the cortical network is converted into a

combinatorial optimization problem [43]. A representative evolu-

tionary computation method, JaDE, which is a self-adaptive and

efficient algorithm to solve real-world optimization problems [38],

is used to identify controlling nodes with an appropriate encoding

scheme. The comparison with some well-known network-based

methods and evolutionary computation methods is presented,

revealing JaDE performs best among all the algorithms.

The controlling nodes of the cortical network are detected in

microscopic, mesoscopic and macroscopic ways. Using such

various scales will help us to understand the controllability of

neuronal networks in depth. We have shown a close relationship of

the number of driver nodes and the locations of the driver nodes,

indicating a concave shape of the mean degree of driver nodes as

an increase of the number of driver nodes. For low values of the

number of driver nodes, the areas with a large degree govern the

coordination dynamics of the network. As a whole, the nodes with

a small degree are important to be selected as controlling regions,

which is in contrast to the work in [22] and supports the finding in

Figure 12. Ts,i of each node in cortical networks of cat.
doi:10.1371/journal.pone.0041375.g012
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[29,32]. More importantly, the most prominent community in the

cortical network of cats is the community Auditory, which has

sparse connections with other communities. The comparative

results of two quantities for measuring controllability of complex

networks are also investigated in detail.

The model and methods can be extended and improved in

several ways. Firstly, it is meaningful to propose more efficient

optimization methods to deal with controllability of cortical

networks. Secondly, we have only focused on the highest level of

cortical networks and thus large subnetworks [14,47,48] with other

biologically realistic features [11,49,50] should be considered.

Finally, the results should be applied to other realistic natural

systems to illustrate controlling rules. The achievements would

require further developments in neuroscience, in the theory of

dynamical complex networks, in optimization methods as well as

in control science.

Materials and Methods

Notations
Throughout this paper, l[½1,N� denotes the number of driver

nodes of a network. dM(:) denotes the characteristic function of

the set M, i.e., dM(i)~1 if i[M; otherwise, dM(i)~0. Define a

graph by G~½V,E�, where V~f1, � � � ,Ng denotes the vertex set

and E~fe(i,j)g the edge set.

Cortico-cortical Network of Cats’ Brain
The cortico-cortical network of cats’ brain is a biological

network that describes the anatomical connectivity of cats’ brain

[18,19]. Here, we use a version of a dataset in [21]. The cat

cerebral cortex can be divided into 53 cortical areas, linked by

about 830 fibres of different densities into a weighted and directed

complex network. It consists of four topological clusters that

broadly agree with four functional cortical sub-divisions: visual

cortex (16 areas), auditory (7 areas), somato-motor (16 areas) and

fronto-limbic (14 areas). We also refer to the topological clusters as

communities or modules. The community Auditory is sparsely

connected while the communities Visual, Somato-Motor and

Fronto-Limbic are densely connected among each other [16].

Model and Problem Formulation
We consider a reference evolution/state as follows:

da(t)

dt
~f (a(t)):

Table 2. Controlling times, Dk and their communities of each
node when optimizing R and s.

R S

Name TR,i Community Dk Name Ts,i Community Dk

VPc 50 Auditory 4 5Bm 43 Somato-motor 26

2 50 Somato-motor 7 20b 40 Visual 0

AMLS 48 Visual 7 AII 39 Auditory 1

21b 48 Visual 4 AI 37 Auditory 21

PS 48 Visual 7 PS 36 Visual 7

21a 47 Visual 5 5Am 36 Somato-motor 28

ALLS 45 Visual 4 PMLS 35 Visual 2

Sb 45 Frontolimbic 8 VPc 34 Auditory 4

Hipp 45 Frontolimbic 2 61 34 Somato-motor 0

AAF 44 Auditory 3 3a 33 Somato-motor 2

Tem 42 Auditory 2 6 m 33 Somato-motor 24

P 40 Auditory 3 Cga 33 Frontolimbic 213

SIV 40 Somato-motor 5 7 32 Visual 21

3a 39 Somato-motor 2 Tem 32 Auditory 2

1 39 Somato-motor 5 1 32 Somato-motor 5

DLS 38 Visual 1 20a 31 Visual 26

SII 38 Somato-motor 3 PFCI 31 Frontolimbic 210

PSb 38 Frontolimbic 3 ALLS 30 Visual 4

4 36 Somato-motor 3 SII 30 Somato-motor 3

PLLS 33 Visual 5 SSAi 30 Somato-motor 25

AII 33 Auditory 1 PFCMiI 30 Frontolimbic 23

RS 32 Frontolimbic 22 CGp 30 Frontolimbic 210

PMLS 30 Visual 2 36 30 Frontolimbic 9

20b 30 Visual 0 5AI 29 Somato-motor 210

VLS 29 Visual 22 5BI 28 Somato-motor 210

PFCMiI 29 Frontolimbic 23 3b 27 Somato-motor 1

Enr 29 Frontolimbic 21 4 g 27 Somato-motor 21

19 27 Visual 3 2 26 Somato-motor 7

3b 27 Somato-motor 1 4 26 Somato-motor 3

17 25 Visual 1 21b 25 Visual 4

SSAo 25 Somato-motor 25 SIV 25 Somato-motor 5

18 22 Visual 2 Ia 25 Frontolimbic 23

4 g 21 Somato-motor 21 Ig 25 Frontolimbic 5

AI 20 Auditory 21 AES 24 Visual 21

PFCI 20 Frontolimbic 210 AAF 24 Auditory 3

36 20 Frontolimbic 9 P 24 Auditory 3

61 19 Somato-motor 0 19 23 Visual 3

7 18 Visual 21 RS 23 Frontolimbic 22

SSAi 16 Somato-motor 25 Enr 23 Frontolimbic 21

5Bm 14 Somato-motor 26 21a 22 Visual 5

Ig 14 Frontolimbic 5 35 22 Frontolimbic 7

6 m 12 Somato-motor 24 17 21 Visual 1

PFCMd 11 Frontolimbic 26 VLS 21 Visual 22

AES 10 Visual 21 EPp 21 Auditory 26

Ia 9 Frontolimbic 23 AMLS 20 Visual 7

EPp 8 Auditory 26 PFCMd 20 Frontolimbic 26

5BI 7 Somato-motor 210 18 19 Visual 2

Table 2. Cont.

R S

Name TR,i Community Dk Name Ts,i Community Dk

Cga 6 Frontolimbic 213 DLS 18 Visual 1

35 5 Frontolimbic 7 SSAo 18 Somato-motor 25

5Am 4 Somato-motor 28 Sb 17 Frontolimbic 8

20a 3 Visual 26 PLLS 13 Visual 5

CGp 2 Frontolimbic 210 PSb 13 Frontolimbic 3

5AI 1 Somato-motor 210 Hipp 11 Frontolimbic 2

TR,i and Ts,i can be seen from Eqs. (3) and (4), respectively.
doi:10.1371/journal.pone.0041375.t002
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This equation is general, since many real-world systems such as

social networks, biological systems and other natural systems can

be modeled as differential equations [30].

Then, the following model of a diffusively coupled array of

identical systems is considered as a general complex network:

dxi(t)

dt
~f (xi,t){k

XN

j~1

gijh(xj(t)),i[V, ð5Þ

where xi(t)~½xi1(t),xi2(t), � � � ,xin(t)�T[Rn(i~1,2 � � � ,N) is the

state vector of the i th node and f (xi,t)~½f1(xi,t), � � � ,fn(xi,t)�T
is a continuous vector function. k is the coupling gain of the

network. In the coupling term, the node is connected through a

generic output function h(xi(t)). The matrix G stands for the

connectivity about the cortical network topology. The graph G is

supposed to be directed, weighted and simple (without self-loops

and multiple edges). Let weighted and directed matrix

G~½gij �Ni,j~1 be the adjacency matrix of graph G, which is defined

as follows: for any pair i=j,gijv0 if e(i,j)[E; otherwise, gij~0.

gii~{
PN

j~1,j=i gij (i~1,2, � � � ,N). The adjacency matrix G can

be converted into the Laplacian matrix L by neglecting the

weights over the networks. For any pair i=j,lij~{1 if e(i,j)[E;

otherwise, lij~0. lii~{
PN

j~1,j=i lij , (i~1,2, � � � ,N). The output

degree kout(i)~{
PN

j~1,i=j lij of a node i is the number of efferent

connections that it projects to other nodes, and its input degree

kin(i)~{
PN

j~1,i=j lji, is the number of the afferent connections it

receives. Denote by mi~mr
i zjmm

i (j~
ffiffiffiffiffiffiffiffi
{1
p

),i[V, the set of

eigenvalues of G and assume that they are ordered in such a

way that mr
1ƒmr

2ƒ � � �ƒmr
N .

To control such a cortical network to the reference evolution

a(t), feedback controllers are added to (5):

dxi(t)

dt
~f (xi,t){k

XN

j~1

gijh(xj(t))

{kdM(i)ci(h(a(t)){h(xi(t))),i[V, ð6Þ

where ci are control gains or coupling strengths. Suppose that

1ƒ

PN
i~1 dM(i)ƒN. We aim to lead the cortical network (5)

toward the desired reference evolution a(t), i. e.,

x1(t)~x2(t)~ � � �~xN (t)~a(t).

By linear manipulations, the stability analysis of (6) can be

transformed into the dynamics of N independent blocks in the

parameters ei~kli,i~1,2, � � � ,N [26,51,52],

dji

dt
~½Jf (a(t)){eiJ(h(a(t)))�ji,i~2, � � � ,N, ð7Þ

where Jf (a(t)) and J(h(a(t))) are the Jacobians of the functions f

and h calculated around the time varying reference evolution a.

li~lr
i zjlm

i ,i[V are the eigenvalues of the N-dimensional

structural matrix

W~

W11 g12 . . . g1N

g21 W22 . . . g2N

..

. ..
.

P
..
.

gN1 gN2 . . . WNN

0
BBBB@

1
CCCCA

,

where Wii~giizdM(i)ci,i[V. Without loss of generality, we

assume that lr
i are sorted as lr

1ƒlr
2ƒ � � �ƒlr

N .

As pointed out in [25,26], through above transformation, the

problem of controllability of complex networks is converted into

synchronizability of networks. Similar to the analysis method of

checking synchronizability of networks, the enhancement of

controllability can be characterized by reducing the eigenratio.

R~
lr

N

lr
1

,

and make

Table 3. The proportions of controlling nodes in four communities when minimizing R.

Number of CN Number of ICN Number of WCN percent for CN percent for ICN percent for WCN

Visual 6 7 3 6/16 = 37.5% 7/16 = 43.75% 3/16 = 18.75%

Auditory 4 2 1 4/7 = 57.1% 2/7 = 28.57% 1/7 = 14.29%

Somato-motor 5 4 7 5/16 = 31.25% 4/16 = 25% 7/16 = 43.75%

Fronto-limbic 2 5 7 3/14 = 14.29% 5/14 = 35.71% 7/14 = 50%

doi:10.1371/journal.pone.0041375.t003

Table 4. The proportions of controlling nodes in four communities when minimizing s.

Number of CN Number of ICN Number of WCN percent for CN percent for ICN percent for WCN

Visual 5 3 8 5/16 = 31.25% 3/16 = 18.75% 8/16 = 50%

Auditory 4 1 2 4/7 = 57.1% 2/7 = 14.29% 1/7 = 28.57%

Somato-motor 6 9 1 6/16 = 37.5% 9/16 = 56.25% 1/16 = 6.25%

Fronto-limbic 2 5 7 2/14 = 14.29% 5/14 = 35.71% 7/14 = 50%

doi:10.1371/journal.pone.0041375.t004
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s~ maxflm
i g,

as small as possible [25,44], i. e., the smaller the R and s are, the

easier the network is controllable. Previous works have shown that

s can be neglected, since usually s is very small and has only

minor effects on synchronizability/controllability of networks [45].

We also consider s and illustrate the impact of s on controllability,

since s is important when one considers some special graphs, e. g.,

normalized Laplacian graph.

It should be noted that the selection of driver nodes is a typical

combinatorial optimization problem [43], where the locations of

driver nodes are discrete variables, and the design of control gains

is a continuous optimization problem. Taking the locations of

driver nodes and their control gains into account together, the

controllability of networks can be viewed as a multimodal

optimization problem.

Here, minimizing R and s by determining locations of driver

nodes dM(i) and designing ci(i[M) can be formulated as follows:

min
dM(i),ci

R~
lr

N

lr
1

,(i[M): ð8Þ

min
dM(i),ci

s~ maxflm
i g,(i[M): ð9Þ

From the above equations, we study the controllability of

cortical networks by minimizing R and s, respectively. Evolution-

ary computation methods are employed to study the controllability

and identify controlling regions.

The Strategies for Determining the Locations of Driver
Nodes

Several well-known strategies for determining the locations of

driver nodes or controlling nodes are illustrated as follows [43].

(1) Degree-based strategies. Degree-based pinning schemes

are the most popular methods to select potential driver nodes,

in which the locations of driver nodes are chosen according to

degree information of networks in a decreasing or an

ascending way [25,30,53]. Here, the two schemes are called

ascending and descending degree-based strategies, respective-

ly. The output degree kout is used to provide degree

information.

(2) Betweenness centrality (BC)-based strategies. Similar

with the degree-based scheme, we consider descending and

ascending BC-based strategies.

(3) Closeness-based strategies. Two kinds of closeness-based

strategies, i. e. descending and ascending closeness-based

strategies are taken into account.

(4) Node importance-based strategies. Since the controlla-

bility of the cortical network is mainly related to its

eigenvalues, it is interesting to determine the locations of

driver nodes by considering their importance in the network

[54]. We analyze two measures of node importance for the

cortical network. The first one is to minimize
mr

N

mr
2

of G upon

sequential removal of nodes, which is called U~
mr

N

mr
2

-based

strategy. The other one is to minimize S~ maxfmm
i g of G

upon sequential removal of nodes, which is called S-based
strategy. It should be noted that U and S are usually used to

measure synchronizability performance of complex networks

[44].

(5) Evolutionary algorithm-based strategies. Using an

appropriate encoding scheme, differential evolution (DE) is

used to select driver nodes and design control gains.

Evolutionary algorithms have been successfully used in the

synchronization of two coupled systems in [55], the

coordination of unmanned aircraft vehicle [43] and networks

topology with optimal synchronizability [56]. Here, adaptive

differential evolution is adopted to identify the controlling

nodes [38].

In the degree-based, the BC-based, the closeness-based and the

node importance-based strategies, control gains in all the nodes

are considered to be identical and one can tune the control gains

of driver nodes in the cortical network gradually with a step size

0.1, like [25,26].

Differential Evolution and its Encoding Scheme
In order to determine the locations of driver nodes in the

cortical network and design their control gains, an appropriate

encoding scheme is used according to [43]. In addition, equipped

with this encoding scheme, JaDE [38] is used to detect the

controlling nodes/areas/regions of the cortical network of cats’

brain in microscopic, mesoscopic and macroscopic ways, respec-

tively.
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