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Abstract

Design of a digital infinite-impulse-response (IIR) filter is the process of synthesizing and implementing a recursive filter
network so that a set of prescribed excitations results a set of desired responses. However, the error surface of IIR filters is
usually non-linear and multi-modal. In order to find the global minimum indeed, an improved differential evolution (DE) is
proposed for digital IIR filter design in this paper. The suggested algorithm is a kind of DE variants with a controllable
probabilistic (CPDE) population size. It considers the convergence speed and the computational cost simultaneously by
nonperiodic partial increasing or declining individuals according to fitness diversities. In addition, we discuss as well some
important aspects for IIR filter design, such as the cost function value, the influence of (noise) perturbations, the
convergence rate and successful percentage, the parameter measurement, etc. As to the simulation result, it shows that the
presented algorithm is viable and comparable. Compared with six existing State-of-the-Art algorithms-based digital IIR filter
design methods obtained by numerical experiments, CPDE is relatively more promising and competitive.
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Introduction

Filtering problem [1,2] is a widely studied research topic in

various fields of control and signal processing. The main objective

of filtering is synthesizing and implementing a filter network [3] to

modify, reshape, or manipulate the frequency spectrum of a signal

according to some desired specifications. As one of the most

successful filter networks, the well-known Digital infinite-impulse-

response (IIR) filter has been extensively used in many practical

systems [4–7], such as engineering system, network system,

nuclear reactor, biological system, chemical system and electrical

networks system. However, it has been recognized now that the

IIR filter will generally not guarantee satisfactory performance if

its feedback coefficients are chosen not appropriately during the

adaptation process [8]. Apart from this disadvantage, the

possibility of having a multi-modal and nonlinear error surface is

another important design challenge for recursive filters [9,10]. To

improve the robustness, in recent years, many heuristic optimiza-

tion design methods have been developed, such as simulated

annealing (SA) [11], ant colony optimization (ACO) [12], particle

swarm optimization (PSO) [13], seeker optimization algorithm

(SOA) [14], artificial bee colony (ABC) [15,16] and differential

evolution (DE) [17], etc.

A SA is usually sensitive to its starting point of the search and

requires too many function evaluations to converge to the global

minima. The ACO imitates the social behavior of real ant colonies

and it has been originally developed for combinatorial optimiza-

tion problems. But, it may occasionally be trapped into local

stagnation or premature convergence resulting in a low optimizing

precision or even failure [18]. What’s more, the conventional PSO

algorithm [19] as shown in several studies can easily fly into the

local optima. It also lacks the ability to jump out of the local

optima when solving complex multimodal tasks. The SOA

simulates the act of human searching and has been widely

developed for system identification [20]. Nonetheless, the perfor-

mance of SOA is also affected by its parameters, and it could not

easily escape from premature convergence.

Differential evolution, proposed by Storn and Price [21], is a

population-based heuristic search algorithm with dual features of

reliability and flexibility. It implements the evolutionary genera-

tion-and-test paradigm for global optimization by using the

current population information of distance and direction to guide

the search. It has many advantages such as simplicity, reliability,

high performance and easy implementation, which gives great

potential application to IIR design. In the seminal DE algorithm,

perturbation is operated by adding a weighted moving vector (the

weight F is called scale factor) and modifying the values of some

randomly selected coordinates. The perturbed solution, namely

the offspring, is then evaluated by means of its objective function

and compared with its corresponding parent. If the newly

generated solution outperforms its parent, then a replacement

occurs; otherwise the parent solution is retained. To provide a

rigorous proof for its probabilistic convergence, [22] has modeled
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the population as a dynamical system in which the probability

density function (PDF) of the population vectors changes with

time. It was shown therein that the dynamics is asymptotically

stable (which implies convergence) at the equilibrium PDF, which

is a Dirac delta function placed at the global optima. Later on,

various mutation strategies [23] were used for the generation of

new solutions to augment the robustness of the underlying

algorithm.

In DE, it is often the case that, for optimization problems such

as single-objective, multi-objective, large scale, constrained and

dynamic problems, the population size is naturally fixed on a

constant value; see, e.g., [24]. Unfortunately, it is usually difficult

to determine how large the population size is suitable for solving

numerical optimization problems. For instance, a definite popu-

lation size is given in [25] which increases linearly with the

problem dimension; yet the sparse and noisy data makes it difficult

to accurately estimate the maximum population size. Inspired by

this fact, an efficient population utilization strategy for DE

(DESAP) [26] was developed to automatically tune its population

size from initialization to completion right through the evolution-

ary search process. Nevertheless, the population utilization method

depends on its encoding methodology, which is a restriction for the

current population with complex dynamical behaviors [27]. No

significant advantages can be observed while using relative

encoding. Subsequently, the idea of population adaptation has

been applied in solving dynamic optimization problems [28],

where multi-population approach (DynDE) is placed onto DE

aimed at locating optima faster. Yet such a method requires a

determinated topology that may be sensitive to the noise of

measurement in some extent [29]. It is worth mentioning that

although the population may not be as large as possible, it ought to

meet the requirements of given engineering. Therefore, a new

reduction method for the population size was shown up for the

jDE in order to enhance algorithmic performance [30], where the

population size was progressively declining until the arrival of the

final budget during the optimization process. Unfortunately, this

method can not keep track of the progress of individuals in the

sustainable reduction.

Many studies have indicated that various computational

predictors or models developed in biology and biomedicine, such

as those in identifying DNA-binding proteins [31], predicting G-

protein-coupled receptors (GPCRs) and their types [32], identify-

ing nuclear receptors and their subfamilies [33,34], identifying the

subcellular localization of proteins from various organisms [35–

39], can timely provide very useful insights and informations for

both basic research and drug development. These predictors all

use the methods of digital signal processing. In view of this, the

present study is attempted to addresses an important problem in

designing digital IIR filters in hopes that it may become a useful

tool for the related information-treating areas. However, most of

the developed adaptive population methods have their advantages

and disadvantages. So far, it remains open that how to utilize the

dynamic population strategy to solve real-world practical problem.

We aim at employing a Markov jumping (switching) population

updating DE for digital IIR filter, so that the dynamic population

can quickly converge to the potential global optimum by taking

advantage of the current search information. Thus, the CPDE-

based evolutionary method is simulated in digital IIR filter design,

and its performance is compared to that of three versions of DE,

CMA-ES, GL-25 and SOA. In the community of six digital IIR

filter design problems, it is shown empirically that CPDE is

capable of producing highly competitive results compared with

other EAs.

Results

0.1 Illustration
Application of the IIR filter in system identification has been

widely studied since many problems encountered in signal

processing can be characterized as a system identification problem

(Figure 1) [40,41]. Therefore, in the simulation study, IIR filters

are designed for the system identification purpose. In this section,

we will utilize a modified DE to adjust the parameters of the filters

until the error between the output of the filter and the unknown

system is minimized. Subsequently, we provide an overall

comparison between the performance of CPDE and several other

State-of-the-Art algorithms to verify the effectiveness and useful-

ness of the proposed method.

Six typical system identification problems [14] make up the test

suite used for this comparative study, which are listed in Tables 1

and 2. Hs(z) and Hf (z) specify the system and filter transfer

functions, respectively; x(k) indicates the system input; SNR is the

Signal to Noise Ratio; v(k) is the system noise, which is

independent of x(k); N (0,1) presents the white Gaussian noise

(WGN) in zero-mean normal distribution with variance 1. In

Table 2, w records all coefficients of six digital IIR filters; Search

space is the predefined boundary constraints, that will be analyzed

in Section 05; N denotes the data length used in calculating the

mean-square-error (MSE). The examples were selected so as to

include problems with the following characteristics: unimodal/

multi-modal, no noise/noisy. For each algorithm and each test

function, 30 independent runs are conducted with 100,000 FES as

the termination criterion.

Traditionally,’’generation’’ is a natural form of computational

cost for statistical comparison [11–14,17]. However, the popula-

tion may not be the same in different algorithms. The algorithm

with a larger population may obtain a better performance together

with much more function evaluations in every generation. Thus, in

this paper, the function evaluations (FES) are conducted here to

represent its computational cost for algorithm comparison.

In all simulations, the population size of the most EAs is 100

with the exception of EPSDE and SaDE. As suggested in Ref.

[42,43], the population size of EPSDE and SaDE is chosen to be

50. Seven existing EA algorithms are shown in Table 3 in detail.

CMA-ES represents the state of the art of Evolution Strategies and

it is a referent in the continuous optimization field. GL-25 is a

hybrid real-coded genetic algorithm which combines the global

and local search. EPSDE is an adaptive DE with ensemble of

parameters which incorporates a self-organizing method. jDE is a

standard DE with adapted parameter setting. SaDE delivers a

mutation strategy pool where strategy is self-adapted based on

their previous performance. SOA is a novel heuristic stochastic

optimization algorithm based on the simulation of the act of

human searching. The parameters for these EAs are provided in

Table 3.

0.2 Comparison on the Solution Accuracy
In this section, an overall comparison of the performance is

provided between the CPDE variant and other six State-of-the-Art

EAs (i.e., CMA-ES, GL-25, EPSDE, jDE, SaDE and SOA). We

evaluate the performance of seven heuristic algorithms over six

typical nonlinear uncertain discrete-time problems. Fig. 2 illus-

trates the cost function value versus number of evaluations

averaged over 30 random runs for the seven algorithms. The

subfigures amplify the convergence graphs in clarity. Table 4

reports the experimental results of Examples 1–6, averaged over

30 independent runs with 100,000 FES.

CPDE-Based Digital IIR Filters Design
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From the Table 4 and Fig. 2, the CPDE provides the best

performance on the ex2{ex3, ex5 and ex6, then ranks the second

on the ex1 and ex4. SOA gives the best performance on the ex1

and ex4. The results show that GL-25 and SOA have good ability

of convergence speed. Fig. 3 also shows instance of evolution of the

parameters of two filters for CPDE.

To be specific, on the three multimodal problems (ex1{ex2

and ex6), CPDE performs much better than CMA-ES, GL-25,

EPSDE, jDE, SaDE and SOA on the latter two functions. SOA

delivers good accuracy and the highest convergence rate on ex1,

while CPDE outperforms other five methods. To sum up, CPDE is

the winner on multimodal functions. This might be due to the fact

that CPDE implements the overall adaptive variable population

size method, which can help the DE search the optimum as well as

maintain a higher convergence speed when dealing with

multimodal rotated functions. On the remaining three unimodal

functions (ex3{ex5), CPDE performs significantly better than six

others for ex3 and ex5. SOA can provide good accuracy on ex4,

while CPDE achieves the highest convergence rate. The

outstanding performance of CPDE is due to its dynamic PDS,

which leads to very fast convergence. Overall, the CPDE is the

best among the seven methods in the comparison conducted on

unimodal functions and expanded multi-modal functions. For a

thorough comparison, the t-test has also been carried out in this

paper. Table 4 presents the total score on every function of this

two-tailed test with a significance level of 0.05 between the CPDE

variant and other heuristic algorithms. Rows ‘‘+ (Better),’’ ‘‘ =

(Same),’’ and ‘‘– (Worse)’’ give the number of functions that the

CPDE performs significantly better than, almost the same as, and

significantly worse than the compared algorithm on fitness values

in 30 runs, respectively. As confirmed in t-test, the CPDE in

general offers more improved performance than the other six

State-of-the-Art EAs.

Figure 1. Block diagram of the system identification process using IIR filter designed by CPDE.
doi:10.1371/journal.pone.0040549.g001

Table 1. Problem Illustration.

Inst. Test Function x(k) v(k)

Example 1
Hs(z)~

0:05{0:4z{1

1{1:1314z{1z0:25z{2

a white-noise sequence

Hf (z)~
a0

1zb1z{1

Example 2
Hs(z)~

{0:3z0:4z{1{0:5z{2

1{1:2z{1z0:5z{2{0:1z{3

a uniformly distributed white-noise sequence, taking
values from ({0:5,0:5)mi, SNR~30 dB

Hf (z)~
a0za1z{1

1zb1z{1zb2z{2

Example 3 Hs(z)~ 1

1{1:2z{1z0:6z{2
a unit-variance white Gaussian pseudonoise sequence 0

and

Hf (z)~
a0

1zb1z{1zb2z{2
N (0,1)

Example 4
Hs(z)~

1:25z{1{0:25z{2

1{0:3z{1z0:4z{2

a white-noise input, SNR~40 dB

Hf (z)~
a0za1z{1za2z{2

1zb1z{1zb2z{2

Example 5
Hs(z)~

1

1{1:4z{1z0:49z{2

a colored noise by filtering a white Gaussian pseudo-noise
sequence with a FIR filter:

Hf (z)~
a0

1zb1z{1zb2z{2
Hc(z)~(1{0:7z{1)2(1z0:7z{1)2

Example 6
Hs(z)~

1

(1{0:6z{1)3

a colored noise by filtering a white Gaussian pseudo-noise
sequence with a FIR filter:

Hf (z)~
a0

1zb1z{1zb2z{2
inHc(z)~(1{0:6z{1)2(1z0:6z{1)2

doi:10.1371/journal.pone.0040549.t001

CPDE-Based Digital IIR Filters Design
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As mentioned above, the CPDE has shown a very competitive

performance in the six filtering problems. In practical engineering,

noise exist universally in nature [44]. Therefore, in the past few

decades researchers have witnessed significant progress on filtering

and control for linear/nonlinear systems with various types of

noises among which Gaussian noise is one of the most general

signals that has been widely studied [45,46]. Here, we further

evaluate the proposed framework on the six expanded stochastic

systems, where a zero-mean Gaussian white-noise is added. The

maximum number of FES is set to be 100,000 in all runs. Table 5

summarizes the experimental results.

From the Table 5, the CPDE provides the best performance on

the ex2, ex3{ex6, then ranks the second on the ex1. SOA offers

the best performance on the ex1. The results show that GL-25 and

jDE have a good ability of convergence speed.

More specifically, on the three multimodal problems (ex1{ex2

and ex6), although it worked slightly weaker on some functions,

the CPDE in general offered more improved performance than all

the EAs compared. It performs much better on the ex2 and ex6,

and attains slightly worse performances than the best solutions on

the ex1. On the remaining three unimodal functions (ex3{ex5),

CPDE performs much better than other EAs. Hence, CPDE

exhibits the highest performance in noise-expanded filtering

problems, which can efficiently adjust the population structure

and guide the evolution process toward more promising solutions.

The t-test is also summarized in Table 5. In fact, CPDE

performs better than CMA-ES, GL-25, EPSDE, jDE, SaDE and

SOA on 6, 6, 6, 6, 6 and 5 out of 6 test functions, respectively.

Thus, CPDE is better than other six competitors in filtering system

identification problems. Comparing the results and the cost

function graphs, among these seven EA algorithms, the GL-25

can converge to the best solution found so far very quickly though

it is easy to stuck in the local optima. The SOA has good global

search ability and slow convergence speed. The jDE have good

search capability on noise-expanded filtering problems. The

CPDE has good local search ability and global search ability at

the same time.

0.3 Comparison on Convergence Rate and Successful
Percentage

The convergence rate for achieving the global optimum is

another key point for testing the algorithm performance. Note that

in solving real-world optimization problems, the ‘‘function

evaluation’’ overwhelms the algorithm overhead [47]. Hence,

the computation times of these algorithms are not provided here.

Table 6 shows that CPDE needs the least FES to achieve the

acceptable solution on ex3{ex4 and ex6, which reveals that

CPDE has a higher convergence rate than other algorithms.

Though SOA or GL-25 might outperform CPDE on the other

functions, SOA and GL-25 have much worse successful ratio and

accuracy than CPDE on the problems for comparison. In

addition, CPDE can achieve accepted value with a good

convergence speed and accuracy on most of the problems, as

shown in Tables 4, 5 and Fig. 2. Tables 4, 5 also show that CPDE

yields a highest percentage for achieving acceptable solutions in 30

runs. According to the no free lunch theorem [48], any elevated

performance over one class of problems is offset by performance

over another class. Hence, one algorithm cannot perform better

on convergence speed and accuracy than the others on every

optimization problem.

In summary, the CPDE performs best on unimodal problems

with or without noise and has a good search ability of multimodal

problems. Owing to the controllable probabilistic technique, the

CPDE processes capabilities of fast convergence speed, highest

successful ratio and the best search accuracy among these EAs.

0.4 Performance of Controllable Probabilistic Approach
In this section, the controllable probabilistic (CP) approach is

used to test the search performance of CPDE. In all the

experiments, threshold f is adjusted in the following. Moreover,

the parameter p2 is also considered, which denotes the number of

potential candidates for perturbation.

In this paper, f indicates the trigger thresholds, which is used to

control the sensitivity of the dynamic CPDE. While f is set as one,

the population size will be adjusted in each generation. Setting a

higher f value will result in a lower sensitivity of the CPDE, while

a lower f value will lead to a higher efficiency of the population

adjustment. Notice that the parameter f should set to be larger

than one. Failure to do this will result in an instant elimination of a

newborn individual with poor performance, which may provide

some degree of diversity preservation. On the other hand,

coefficient p2 also influences the perturbation process substantially.

Table 7 shows the comparisons between CPDE with other three

parameter settings of CPDE over Examples 1–6 with noise

perturbation. It indicates that CPDE is not sensitive to the

adjustment of parameters. In order to make a balance of the

search accuracy and robustness, f~4 and p2~5 are used as a

representative parameter setting in our paper. This setting will

prevent the instant elimination of a newborn individual and keep

the CP approach high sensitivity.

Table 2. Parameters Illustration.

Inst. w Search Space N

Example 1 a0~{0:311 1000

b1~{0:906

Example 2 a0~{0:3948, a1~{0:0742 100

b1~{0:2230, b2~{0:5739

Example 3 a0~1 100

b1~{1:2, b2~0:6 ½{2,2�
Example 4 a0~0, a1~1:25, a2~{0:25 100

b1~{0:3, b2~0:4

Example 5 a0~1 100

b1~{1:4, b2~0:49

Example 6 a0~1:14 2000

b1~1:6, b2~{0:7

doi:10.1371/journal.pone.0040549.t002

Table 3. EA algorithms for comparison.

Algorithm Parameters Reference

CMA-ES¡¡ s~0:25 [54]

GL-25¡¡ PG~25%,NL
F ~5 [55]

EPSDE¡¡ F : 0:4{0:9,Cr : 0:1{0:9 [42]

jDE¡¡ t1~t2~0:1 [56]

SaDE¡¡ F : randN (0:5,0:3),LP~50 [43]

SOA v : 0:4{0:9,m : 0:0111{0:99 [14]

CPDE p1~1,p2~5,f~4 this paper

doi:10.1371/journal.pone.0040549.t003

CPDE-Based Digital IIR Filters Design
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Discussion

The CPDE is an improved differential evolution algorithm with

a controllable probabilistic population size. When particles are

clustered together in a region and trapped into the local basin,

CPDE perturbs the population and generates the necessary ‘‘fine’’

individuals to share their up-to-date information. In addition,

CPDE removes redundant individual with its entropy and ranking

metrics to save computational load. In this paper, a CPDE-based

digital filter design method has been proposed, and the benefits of

CPDE for designing digital IIR filters have been studied.

An overall comparison between the performance of the CPDE

and other six State-of-the-Art EAs (i.e., jDE, SaDE, EPSDE,

CMA-ES, GL-25 and SOA) was provided over 6 typical robust

Figure 2. Cost function value versus number of evaluations averaged over 30 random runs for the seven algorithms (a) ex1. (b) ex2.
(c) ex3. (d) ex4. (e) ex5. (f) ex6.
doi:10.1371/journal.pone.0040549.g002

Table 4. Experimental results of Examples 1–6, averaged over 30 independent runs with 100,000 FES.

Inst. CMA-ES GL-25 EPSDE jDE SaDE SOA CPDE

Mean Error 3.2236E–01 1.6756E–01 1.6856E–01 1.6804E–01 1.6896E–01 1.0246E–01 1.6719E–01

Example 1 Std Dev 2.1399E–01 2.2370E–03 2.9506E–03 2.3747E–03 2.2793E–03 4.2071E–03 2.1508E–03

T-test + + + + + –

Mean Error 1.4424E–02 6.8069E–03 6.7232E–03 6.6451E–03 6.9145E–03 6.6265E–03 6.3136E–03

Example 2 Std Dev 5.9387E–03 4.4369E–04 4.4507E–04 4.1499E–04 4.7206E–04 3.1431E–04 5.0418E–04

T-test + + + + + +

Mean Error 1.4517E–01 8.9999E–33 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Example 3 Std Dev 5.1851E–01 3.4254E–32 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T-test + + & & & &

Mean Error 1.2372E–04 4.6732E–64 1.4751E–71 4.2794E–73 1.4999E–83 3.9896E–100 0.00E+00

Example 4 Std Dev 6.7762E–04 2.5596E–63 4.5215E–72 2.0951E–73 6.7257E–83 1.8653E–99 0.00E+00

T-test + + + + + +

Mean Error 2.4285E–01 3.9674E–20 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Example 5 Std Dev 6.0577E–01 1.8016E–19 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

T-test + + & & & &

Mean Error 1.8801E+00 1.0167E–01 1.0162E–01 1.0127E–01 1.0199E–01 1.0168E–01 1.0063E-01

Example 6 Std Dev 2.9858E+00 1.3400E–03 1.6198E–03 9.8318E–01 1.3437E–03 1.2518E–03 1.1027E–03

T-test + + + + + +

doi:10.1371/journal.pone.0040549.t004

CPDE-Based Digital IIR Filters Design
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system identification problems, and the result clearly indicated the

CPDE achieved a substantially significant improvement on the

performance. Furthermore, convergence rate was also validated

that the CPDE has good convergence performance to achieve the

fixed accuracy level with acceptable generations. Thus, it is

believed that the proposed CPDE is capable of rapidly and

efficiently adapting the parameters of a wide variety of IIR

structures and will become a promising candidate for digital filter

design.

Previous work has shown the importance of system identifica-

tion on digital IIR filter design. Furthermore, CPDE has

effectively been applied to estimate the structure of nonlinear

uncertain discrete-time system. Therefore, our method is possible

to be used to reconstruct the topology structure for on-line

Figure 3. Instance of evolution of the parameters of two filters for CPDE (a) ex2. (b) ex4.
doi:10.1371/journal.pone.0040549.g003

Table 5. Experimental results of Examples 1–6 with noise perturbation, averaged over 30 independent runs with 100,000 FES.

Inst. CMA-ES GL-25 EPSDE jDE SaDE SOA CPDE

Mean Error 1.3351E+00 9.9644E–01 1.0013E+00 9.9526E–01 1.0001E+00 6.4329E–01 9.8494E–01

Example 1 Std Dev 2.2756E–02 1.3799E–02 1.1911E–02 1.3331E–02 1.5337E–02 2.7742E–02 1.2588E–02

T-test + + + + + –

Mean Error 8.6191E–01 5.2458E–01 5.5239E–01 5.3305E–01 5.4549E–01 5.4789E–01 5.1608E–01

Example 2 Std Dev 7.7377E–02 2.7869E–02 1.9928E–02 2.3498E–02 2.2388E–02 2.2444E–02 1.8810E–02

T-test + + + + + +

Mean Error 1.0701E+00 5.3043E–01 5.3999E–01 5.3420E–01 5.4608E–01 5.4132E–01 5.0512E–01

Example 3 Std Dev 6.8551E–01 2.2359E–02 2.9233E–02 2.3386E–02 2.5721E–01 2.2572E–02 2.2874E–02

T-test + + + + + +

Mean Error 8.9973E–01 5.4311E–01 5.5414E–01 5.3367E–01 5.5998E–01 5.3624E–01 5.2156E–01

Example 4 Std Dev 7.9829E–02 2.8612E–02 2.5562E–02 2.1445E–02 3.2593E–02 2.6400E–02 2.1444E–02

T-test + + + + + +

Mean Error 1.6026E+00 5.3366E201 5.4711E–01 5.2517E–01 5.4717E–01 5.2705E–01 5.0945E–01

Example 5 Std Dev 1.1095E+00 2.8589E–02 2.7466E–02 2.5575E–02 2.4434E–02 3.4826E–02 1.6459E–02

T-test + + + + + + +

Mean Error 2.7866E+00 9.8570E–01 9.8841E–01 9.8231E–01 9.8739E–01 9.8765E–01 9.7624E–01

Example 6 Std Dev 2.9110E+00 1.3256E–02 9.7794E–03 9.2576E–03 1.3060E–02 1.0416E–02 7.8179E–02

T-test + + + + + +

doi:10.1371/journal.pone.0040549.t005
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adaptive filtering applications [49]. Another possible application is

to identify topology and parameters of complex networks [50–52]

and biological time series [53] by dynamic population strategy,

provided online measurement and increasing/decreasing tech-

niques are feasible. Generally, the suggested technique enables us

to identify the unknown parameter of real networks which allows

the required control applications (perturbations). Some possible

experimental research is now under our investigation in controller

design and tuning.

Materials and Methods

0.5 Description of the Problem
Consider the digital IIR filter with the input-output relationship

governed by the difference equation:

y(k)z
XM
i~1

biy(k{i)~
XL

i~0

aix(k{i), ð1Þ

where x(k) and y(k) are the filter’s input and output, respectively,

and M(§L) is the filter order. The transfer function of this IIR

filter can be written in the following general form:

H(z)~
A(z)

B(z)
~

PL
i~0 aiz

{i

1z
PM

i~1 biz{i
: ð2Þ

Hence, the design of this filter can be formulated as an

optimization problem with the cost function J(w) stated as follows:

J(w)~
1

N

XN

k~1

e2(k)~
1

N

XN

k~1

(d(k){y(k))2, ð3Þ

where d(k) and y(k) are the desired and actual responses of the

filter, respectively; and e(k)~d(k){y(k) is the filter’s error signal;

N is the number of samples used to calculate the objective

function.

w~½aT bT �T~½a0a1:::aLb1:::bM �T ð4Þ

denotes the filter coefficient vector. The aim is to minimize the

cost function J(w) by adjusting w. An important consideration

during the adaptive process is to maintain the stability of the IIR

filter. Not all filters defined by Eq. (1) are feasible or implementable.

Table 6. Convergence speed and algorithm reliability comparisons on Examples 1–6 with noise perturbation; ‘{’ representing no
runs reached an acceptable solution.

Inst. CMA-ES GL-25 EPSDE jDE SaDE SOA CPDE

Example 1 Mean Generations – 313.5 438.6 397.1 380.5 10.8 341.7

Right Percentage(%) 0 86.7 73.3 90 76.7 100 100

Example 2 Mean Generations 406.7 295.9 378.6 370.3 477.3 587.9 356.8

Right Percentage(%) 56.7 90 70 86.7 73.3 56.7 96.7

Example 3 Mean Generations – 554.1 560.6 454.6 513.9 716.8 406.5

Right Percentage(%) 0 66.7 53.3 66.7 36.7 63.3 100

Example 4 Mean Generations 329.2 313.2 467.5 493 508.5 546.6 290.4

Right Percentage(%) 23.3 90 73.3 90 66.7 90 100

Example 5 Mean Generations – 388.1 422.5 295.4 516.6 513.1 363.3

Right Percentage(%) 0 90 80 93.3 66.7 100 100

Example 6 Mean Generations – 340.3 510 298.7 364.8 520.4 291.9

Right Percentage(%) 0 90 80 93.3 86.7 100 100

Mean Reliability 13.3 85.6 71.6 86.7 67.8 85 99.45

doi:10.1371/journal.pone.0040549.t006

Table 7. Effects of f and p2 on search accuracy of CPDE.

Inst. f~1,p2~5 f~1,p2~1 f~4,p2~1 f~4,p2~5

Mean Error ± Std Dev Mean Error ± Std Dev Mean Error ± Std Dev Mean Error ± Std Dev

Example 1 9.8904E–011.2771E–02< 9.8780E–011.1698E–02 9.9147E–0167.5527E–03+ 9.8494E–0161.2588E–02

Example 2 5.1568E–0162.8237E–02 5.3038E–0161.7731E–02+ 5.2603E–0162.1477E–02+ 5.1608E–0161.8810E–02

Example 3 5.1935E–0161.6915E–02+ 5.0609E–0162.3654E–02 5.2400E–0162.2003E–02+ 5.0512E–0162.2874E–02

Example 4 5.2926E–0162.5568E–02 5.2539E–0162.5586E–02< 5.2821E–0162.5189E–02< 5.2156E–0162.1444E–02

Example 5 5.1930E–0162.5434E–02+ 5.1788E–0162.3220E–02+ 5.2145E–0163.0849E–02+ 5.0945E–0161.6459E–02

Example 6 9.7708E–0161.2567E–02< 9.7858E–0161.1414E–02< 9.7989E–0168.3052E–03< 9.7624E–0167.8179E–02

doi:10.1371/journal.pone.0040549.t007
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An efficient way of maintaining stability is to convert the direct form

to a lattice form and make sure that all reflection coefficients ki,

0ƒiƒM{1, have magnitudes less than one. We will adopt a

similar approach as in [11] to guarantee the stability of the IIR filter

during adaptation. Thus, the actual filter coefficient vector used in

optimization is w~½a0a1:::aLk0:::kM{1�T . In the circumstances, the

coefficient space Y is formed by the constraints of

ai[½{2,2�(i~1,:::,L) and the magnitudes of ki that are less than

one. For the sake of simplicity, we adopt the predefined boundary

constraints as ½{2,2� to compare other existing EAs fairly.

0.6 A Controllable Probabilistic DE
The stochastic system is iterated forward in time using a

synchronous DE updating scheme. In our work, a mode-

dependent population updating equation with Markovian switch-

ing parameters is introduced with the hope to keep track of the

progress of individuals and further improve the search abilities. A

detailed algorithm design of CPDE can be found in Documen-
tation S1.

In CPDE, there are two levels of sub-optimizers, population

decreasing strategy (PDS) and population increasing strategy (PIS).

The probability of selecting different sub-optimizer to improve the

online solution-searching status is completely up to its non-

homogeneous Markov chain. For choosing required sub-optimiz-

ers adaptively, consider the following probability transition matrix

in Eq. (5):

P~

Qa Qb Qc

1{Qc 0 Qc

1{Qb Qb 0

2
64

3
75, ð5Þ

Here, M(1)~a, M(2)~b and M(3)~c stand for the

population maintaining state, population increasing state and

population decreasing state, respectively. The expectations of

Markov chain P are automatically updated by the search

environment. It is worthwhile to mention that p22 and p33 are

set to be 0. In this case, the increasing and decreasing operators

will not be performed in consecutive generations.

If few trial vectors can outperform the corresponding parent in

selection operation, particles may be clustered together and

trapped into the local basin. In such a case, the PIS is employed

to add new individuals into the population and share their up-to-

date information to help the individuals escape the local basin.

d2~a:
(1{l(G{

1

l
))2

(1{l(G{
1

l
))2z(1zl(G{

1

l
))2

zb

2
64

3
75, ð6Þ

where d2 is the number of dimensions for perturbation, which is

monotonically decreasing through the evolutionary search.

Parameters a and b are the magnification coefficient. Parameters

l and G are here considered as the generation variables. During

early stages of the optimization process, much more reproductions

will be generated to spread out its particles within the decision

space. Nevertheless, solutions of the population tend to concen-

trate in specific parts of the decision space during the later period

of optimization process.

However, in case most of individuals can spawn new promising

offspings in the evolutionary process, it then signifies that

redundant intermediate particles exist. In this case, we introduce

the PDS to remove poor particles to avoid undesirable compu-

tational cost and excessive search complexity.

t~ 1{
1

rankiz1

� �
|(1{Hi(D)), ð7Þ

where t denots an overall deletion indicator. The variable ranki and

Hi(D) indicate the rank metric and the entropy metric for

individual i, respectively. It can be observed that from Eq. (7), for

the individuals that have high rank values (i.e., away from the global

best solution) or low entropy values (i.e., located in the crowded

regions); these particles will have a higher probability of elimination.

Supporting Information

Documentation S1 A material algorithm design of
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(PDF)
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