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Abstract. In the ongoing political debate on climate change, 1 Introduction

global mean temperature chang&Tgop) has become the

yardstick by which mitigation costs, impacts from unavoided

climate change, and adaptation requirements are discussedilPacts of anticipated future climate change on ecosystems
For a scientifically informed discourse along these lines, sys@nd human societies are reason for major concern. Projec-
tematic assessments of climate change impacts as a functidiPns of such impacts are, however, characterised by un-
of ATyop are required. The current availability of climate Ccertainties in greenhouse gas (GHG) emissions scenarios,
change scenarios constrains this type of assessment to a ndReir implementation in climate models (involvinger alia

row range of temperature change and/or a reduced ensembiiructural uncertainties of climate models) and their subse-
of climate models. Here, a newly composed dataset of cli-duent use in impact models. Despite intense research sum-
mate change scenarios is presented that addresses the spaarised, for example, by the Intergovernmental Panel on Cli-
cific requirements for global assessments of climate chang&ate Change’s Working Group Il repoRérry et al. 2007),
impacts as a function of Tgop. A pattern-scaling approach assessments commonly lack systematic guantification of im-
is applied to extract generalised patterns of spatially ex-Pacts as a function of global warming, as only a small and
plicit change in temperature, precipitation and cloudinessoften opportunistic selection of available climate change sce-
from 19 Atmosphere—Ocean General Circulation Modelsharios is employed. This hampers direct comparisons be-
(AOGCMs). The patterns are combined with scenarios oftween studies (e.dMller et al, 2011) and also our under-
global mean temperature increase obtained from the reducedanding of how impacts and their likelihood change over
complexity climate model MAGICCS to create climate sce- time or as a function of global mean temperatufgo).
narios covering warming levels from 1.5 to 5 degrees abovel Ne magnitude of impacts to be expected given specific de-
pre-industrial levels around the year 2100. The patterns argees ofTgiop rise has gained increasing attention in recent
shown to sufficiently maintain the original AOGCMs’ cli- Years due to the United Nations Framework Convention on
mate change properties, even though they, necessarily, utiliselimate Change’s stipulation to prevent “dangerous climate
a simplified relationships betweexTg o and changes in lo- change” and the ensuing _dlS(_:USSlon on whether this would
cal climate properties. The dataset (made available onlind€ met by a 2 degree mitigation target (rather than, for ex-
upon final publication of this paper) facilitates systematic @Mple, a 1.5 or 3 degree target). Besides requiring an under-
analyses of climate change impacts as it covers a wider angtanding of how impacts individually and collectively accu-

finer-spaced range of climate change scenarios than the orignulate with increasin@gion, an understanding of the conse-
inal AOGCM simulations. guences of missing a given target is important for this discus-

sion (e.g.Mann, 2009. Compilations of individual impact
studies have helped to illustrate the underlying “reasons for
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1690 J. Heinke et al.: A new dataset for systematic climate impact assessments

concern” Smith et al, 2009 but do not provide the consis- the so-called “pattern-scaling” techniquBli{chell, 2003
tent quantitative information needed. that makes use of the correlation between local long-term
In view of the importance of mitigation targets for the de- mean changes of climate variables ahdyon. Scaling co-
bate on climate change mitigation and the substantial investefficients were found to differ spatially and seasonally, but
ments required to meet them, the number of studies that scryparticularly for temperature they are nearly independent of
tinise systematically and consistently the worldwide impactsthe GHG emission scenarios considered and sufficiently ac-
to be expected as a function &fTyop, let alone their un-  curate over a wide range & Tgon (Solomon et al.2009
certainties, is surprisingly small. Examples for global assessMitchell, 2003 Huntingford and Cox2000. Hence, pattern-
ments of impacts ordered alorglyop and derived with sin-  scaling is an efficient method to generate climate scenarios
gle impact modelling frameworks are those Agnell et al.  for systematic analyses of climate impacts as a function of
(2011); Gosling et al.(2010, andMurray et al.(2012 for ATylob.
freshwater availability, and those Wyerber et al.(2009; Using a comprehensive pattern-scaling approach covering
Scholze et al(2000; Sitch et al.(2008, andHeyder et al.  monthly mean surface temperature, cloudiness and precip-
(2017 for ecosystems and the carbon cycle. Other assesstation, we here present a newly collated global dataset of
ments have focused on diverse impacts given&yon of climate change scenarios that overcomes most of the above
4 degrees (seldew et al, 2011). problems and is suited for systematic, macro-scale impact
While much of the uncertainty iffyop is attributable to  assessments with empirical or process-based impact models.
the fact that the exact development of future GHG emissiondt is based on GCM-specific scaling patterns that are com-
cannot be known — requiring a scenario approa¢émkins  bined with time series oA Ty0p generated by a reduced-
and Sutton 2009 — the parameterisation of Atmosphere— complexity climate model, MAGICC6Meinshausen et al.
Ocean General Circulation Models (AOGCMs) additionally 20113. The emissions scenarios are designed such that each
contributes to uncertainty in regional temperature and precipof eight ATy o levels (1.5 to 5 degrees above pre-industrial
itation changes associated with a givefigo, (Hawkins and  levels in 0.5 degree steps) is reached by 2100. Monthly cli-
Sutton 2017). Most of above-mentioned studies could ac- mate anomaly patterns are derived for each of 19 AOGCMs
count only partly for the latter, as they either relied on a smallavailable from the World Climate Research Programme’s
selection of AOGCMs or grouped larger ensembles accord{WCRP’s) Coupled Model Intercomparison Project phase 3
ing to the ATgop reached by the individual AOGCMs by (CMIP3) multi-model dataset. Scaling the derived generic
the end of their simulation period (e.8cholze et a).2006). change patterns per degree of global mean warming with the
More rigorous assessments of impacts as a function of global Tyop, trajectories generates transient time series of climate
warming are generally limited by the availability of AOGCM anomalies up to 2100. This dataset enables consistent analy-
simulations in the CMIP3 archive. The range of warming lev- ses of impacts as a function &7 o at the end of the cen-
els covered by the different AOGCMs differs widely and the tury, and improved comparability of climate patterns and re-
increase irfyon Over the twenty-first century for the highest sulting impacts for giverTyop levels. The dataset is referred
emission scenario A2 is only 3.4 in the multi-model meanto as “PanClim” (PAtterN scaling CLIMate dataset) to in-

(Meehl et al, 2007). dicate its methodological background and its wide-spanning
Overall, systematic assessments of climate change impactsoverage of the scenario space (pan, Greek for “all”, “involv-
as a function of global warming require that a laly&gon ing all members”). The complete PanClim dataset is avail-

range be covered (from, for example, 1.5 to 5 degrees), andble for download fronittp://www.panclim.org

that the respective\Ty|op levels are reached at around the

same time. Furthermore, for evenTyop level, information

on local changes in key climate variables (such as tempera-

ture, precipitation, radiation or cloudiness) should consider2 Methods

an AOGCM multi-model ensemble as large as possible, in

order to account for the substantial climate model-structuraFigure 1 sketches the steps of data processing and combi-

uncertainty. Such consistent information is not directly avail- nation involved in the creation of the climate scenarios, de-

able in the existing CMIP3 and CMIP5 climate databases —itscribed in detail in the following sections. Secti@rl de-

requires fusion of comprehensive datasets on climate changecribes the extraction of scaling patterns — i.e. the spatial

patterns from different AOGCMs with differem Tyqp, tra- fields of local (monthly) climate change per one degree of

jectories (and underlying emissions trajectories), informationA Ty, — from AOGCM simulations. SectioB.2 covers the

on observed climate (without AOGCM biases), and reduced-generation offyop trajectories by the MAGICC6 model, and

complexity models able to overcome the high computationtheir combination with the derived scaling patterns to gener-

requirements of AOGCMs. ate time series of mean local climate anomalies for the given
To address some of these features, a number of studiesarming scenarios. Sectiéh3 focuses on the combination

(e.g.Gosling et al.201Q Murray et al, 2012 have used em- of these local anomalies with data on observed variabil-

ulated rather than original AOGCM output, calculated with ity and climatological means to generate climate scenarios
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(expressed by the linear relationship Ady0p(y)) and in-
@ @ terannual variation around the long terrr? mean. This equa-
tion has the form of a simple linear regression model that
provides the basis for estimating scaling coefficients from
Sl Fesissin G i AOGCM simulations. For the estimation &f*(x, m) from
AOGCM simulations, the monthly data were linearly inter-
polated from their original spatial resolution to the target res-

(Referencecnma:ej (CIimaceAnomalies) olution used here, a regularS3x 0.5 arc-degree grid. Esti-
mates ofV(x,m) are obtained from the pre-industrial con-
/ \ / trol run (equilibrium simulation without any anthropogenic
( obsenveaistoriallimate | climatescenaris forcing) available for all AOGCMs with lengths between 100

and 990 simulation years. Subtractionofx, i) from simu-
Fig. 1. Flow chart of data processing for the generation of climate lations with climate forcing yields deviations from the long-
scenarios. term climatological mean that are taken as a dependent vari-
able in the estimation o¥ *(x, m) by linear regression. The
corresponding independent variabilyon(y) is obtained
®rom estimates ofyon(y) that are calculated as annual area-
weighted global averages (including oceansy@t, m, y).
Since the extraction of patterns 8f(x, m) is based on lin-
ear regression, the residual errels, m, y) in Eq. ) are
in fact a mixture of interannual variability and the imperfec-

The basic concept behind the methodology described in thiion of the regression model. The quality of the fit obtained
paper is that any simulated or observed monthly time serie§@n thus be evaluated by comparison of residual errors and
V(x,m,y) of a climate variable/ (e.g. air temperature) in r€Spective interannual variability estimated from the control

harmonised with historical observations, covering the entir
global land area.

2.1 Derivation of scaling patterns from AOGCM
simulations

lows: ogy to estimate scaling patterns for near-surface air temper-
ature, cloudiness and precipitation. Additionally, we stud-

Vx,m,y)=V(x,m)+AV(x,m,y)+e(x,m,y), (2) ied logarithmic precipitation to reflect an alternate assump-
B B tion of exponential rather than linear precipitation change.
whereV (x, m) denotes the long-term mean and (x,m,y)  In the logarithmic precipitation regression model, exclusion

the long-term mean change of variablethe terme(x,m,y)  of dry months alters the estimated trend of precipitation
describes the natural interannual variability around the long-amounts under climate change. This problem is not purely
term mean. of numerical nature but highlights that the change in fre-
The general idea of the pattern scaling approach is to requency of rain months and the change in the rainfall amounts
late the local anomalies in the long-term me®¥W (x,m,y)  for rain months represent qualitatively different information
in Eg. (1) to a global scaler for which scenario trajectories that should be addressed separately. Hence, we removed dry
can be easily obtainedjtchell, 2003. In agreement with  months « 1mm per month) from the linear fit (EQ) of
previous studies (e.g-untingford and Cox200Q Mitchell,  both precipitation and logarithmic precipitation so that both
2003, we here use global mean temperatty&yop as scaler  regression models capture the change in rainfall amounts for
and assume a linear relationship between local monthly clivain months only.

mate anomalied V (x,m, y) and ATgiob(y): Building on the basic principle of the pattern-scaling ap-
_ . proach, the change in frequency of rain monthswas con-
AV (x,m,y) =V (x,m) - ATgiop(y), () sidered separately by applying a logistic regression model,

in which probabilities are logit-transformed and related to
a linear predictor term, which gives a generalised linear re-
gression model:

whereV*(x, m) is thescaling coefficienti.e. the change in
V(x,m) per degree oA Tyion for each location and month
but independent of timey]. The entirety of all scaling co-
efficientsV*(x, m) for a particular variable and AOGCM is logit (p(x.m. y)) = In( p(x,m,y) )
referred to ascaling pattern 1-—p(x,m,y)

Substitution of Eg. 2 in Eq. (1) and subtraction of = Bo(x,m) + B*(x,m) - ATgiob(»), (4)

V (x,m) from both sides of the equation gives: where Bo(x,m) and B*(x,m) denote the pre-industrial

V(xm,y) = Vx.m) = VF.m) - ATgop(y) +e(x.m, y). (3) value and the scaling coefficient, respectively, for logit-
transformed probability of rain month occurrence in location

Equation 8) describes all deviations of from the long-  x and monthn. For the estimation of both model coefficients

term mearV (x, m) as sum of changes in the long-term mean from time series of dry/rain month occurrence we used the
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glm() function (Generalised Linear Model) from the core Temperature Paths
package “stats” of the statistical softwareRDevelopment o
Core Team2011). ‘

2.2 Construction of climate scenarios from
derived patterns

+1.5K
2.2.1 Construction of scenarios of global mean ==
. T T T T T
temperatu re InCrease 2020 2040 2060 2080 2100
future period
The derived scaling patterrig*(x, m) for the different cli- Concentration Paths

mate variables are the basis for constructing time series of lo-

cal anomalies of climate variables consistent with prescribed

Tyiob trajectories. We ran the MAGICC6 model to obtain

physically and systemically plausibleTy oy, trajectories and

corresponding trajectories of atmospheric&0Oncentration

([CO2)) (required for some impact models). MAGICCEG is

a highly efficient reduced-complexity carbon cycle climate : : : : :

model Meinshausen et al20113 that has been shown to 2020 2040 2060 2080 2100

closely emulate mean results of complex AOGCMs from the e

CMIP3 data baseMeinshausen et al20111. Here, MAG-  Fig. 2. Trajectories of global mean temperature increase used in this

ICC6 was used to calculat&Tyn and [CO] for a large  study and corresponding atmospheric Q@ncentrations from the

number of artificial emissions pathways, constructed as deMAGICC6 model. The shaded area indicates the the time period for

scribed by Meinshausen et al.2009. For that purpose Which the temperature targets are calculated.

MAGICC's carbon cycle parameters were adjusted to repro-

duce the Bern carbon cycle model and the climate model pa-

rameters were chosen to reproduce the median responses @din unfold before a further reduction of @@missions even-

the CMIP3 AOGCM ensemble. Climate sensitivity, for ex- tually results in an overall decrease in radiative forcing and

ample, was set to 3.0K. temperature. Conversely, the g@missions in the high tem-
From the generated large ensemble of pathways we seperature scenarios are accompanied by high aerosol emis-

lected those pairs ok Tg0p and [CG] trajectories where av-  sions that maintain the cooling effect. Besides the possibil-

erageATgop in the period 2086-2115 reached 1.5, 2.0, 2.5, ity to produceTgop Scenarios together with consistent [¢]O

3.0, 3.5, 4.0, 4.5, and 5.0 degrees above the pre-industriatajectories, the consideration of such effects is the major ad-

level (see Fig2). The definition of the temperature target for vantage of applying MAGICCS in this study.

a period rather than for a single year (e.g. 2100) was cho-

sen because the analysis of time periods is common practic2.2.2 Construction of local time series of

in impact assessments to avoid spurious effects from inter- climate anomalies

annual variability. 30yr is a typical length used in impact

studies in hydrology, agriculture, and ecosystems, for whichLocal time series of climate anomali@sV scer{x, m, y) for

our new data set is designed. the four climate variables were obtained by multiplying the
An outstanding feature in Fi@ that illustrates the above- scaling coefficientd * (x, m) with the ATyon(y) trajectories

mentioned physical and systemic plausibility is the initially for each scenario (E®). Because the obtained time series

stronger increase ifyop in the lower than in the high of anomalies are combined with climate observations in the

temperature scenarios. Stronger mitigation scenarios tend toext step (see Sec2.9), it is necessary to account for the

show a much faster decrease in aerosol emissions than iclimate change signal already present in these observations.

CO, emissions, as a rapid decrease of;@&missions is ac- Anomalies are therefore calculated relative to the last year

companied by a switch to “cleaner” sources of energy. Thisof observations, 2009. This is achieved by subtracting the

correlation between CQand aerosol emissions results from Tgop increase above pre-industrial level for the year 2009

our use of the Equal Quantile Walk methdddinshausen  (~ 0.9K) from the Tyop trajectories of the MAGICC6 sce-

et al, 2006 to create the different emission profiles that led narios before multiplying them with the anomaly patterns. In

to the various warming levels. The drop in aerosol emis-all cases, anomalies were only calculated if the significance

sions in combination with the much shorter residence time oflevel of the slope of the regression modeti®).9; otherwise

aerosols in the atmosphere results in a rapid reduction of théhey were set to zero.

aerosol cooling effect (sdeamanathan and Fen2009. As For temperature, the obtained local anomalies can be

a consequence, the committed warming from currentz[CO used without any restriction. In the case of cloudiness and

ppm]

400 600 800 1000 1200 1400
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precipitation, however, the obtained anomalies may result irexcluded. Altogether, 767 grid cells were introduced by inter-
an exceedence of the lower and, in the case of cloudinesgolation, 298 grid cells were directly taken from CRU TS3.1,
also the upper limit of possible values for these variables.and 1013 grid cells were omitted from the GPCC dataset.
For cloudiness this problem is less critical as it is not used 106-yr reference time series covering the scenario period
directly in impact models but serves, among other parame{2010-2115) were composed as a random sequence of years
ters, as a proxy for atmospheric transmissivity and emissivityfrom historical observations of the period 1961-2009. To
in the estimation of radiation budgets. We therefore consideipreserve interannual autocorrelation, spatial coherence, and
a simple capping of anomalies to prevent the exceedance aforrelation among climate variables, all months and grid
upper and lower limits, a sufficiently accurate solution. In cells for all climate variables were taken from the same year.
contrast to cloudiness, precipitation is an essential variabld®rior to resampling, the trend in temperature was removed
and calculation of anomalies that would result in physically in a way that the detrended time series of temperature are
implausible negative precipitation rates should be avoidedepresentative for the climatologic mean of year 2009 ob-
from the beginning. Anomalies for decreasing precipitationtained from the trend analysis. In the process of data prepara-
are therefore estimated from the regression models for logation, observations of precipitation and cloudiness were found
rithmic precipitation, which is equivalent to the assumption to exhibit strong interannual/interdecadal variability, which
of exponential precipitation decrease. As there is no indi-negatively affects the robustness of estimated trends. In or-
cation that precipitation would increase exponentially with der to avoid spurious effects from removing these trends, the
Tyiob, Precipitation increases are estimated from the linearoriginal data were used directly for generating the reference
regression models for untransformed precipitation. For smaltime series for cloudiness and precipitation. The time series
change rates, the linear and the exponential approach yieldf resampled observations obtained are assumed to represent
very similar anomalies, while for large change rates the lineawvariability and climatology for the reference year 2009, to
approach avoids unrealistically augmented increases and thge consistent with the reference year for the derived anoma-
exponential approach avoids negative precipitation rates (sekes. This consistency between the constructed reference time
alsoWatterson2008. For estimating rain month frequency series, derived anomaly time series, and observations allows
anomalies, changes in the linear predictor term of BY. ( for seamless combination of historic observations with future
i.e. anomalies of logit probabilities, were calculated. Theseclimate projections and thus for transient impact model runs.
obtained anomalies can be used without restrictions, as the The combination of the anomalies with the reference time
range of logit probabilities is unconstrained. For the trans-series is a crucial step and related to the general problem of
formation into actual frequency anomalies see S28t4 whether to apply climate anomalies as an absolute change:

2.3 Creation of climate scenarios from observed climate ~ VscerX, ., y) = Vret(x,m, y) + AV scedx, m, y) ®)
and derived climate anomalies : i
or a relative change:
In order to obtain complete scenario time series of climate B Vbasdx, m) + AVscerdx, m, y)
variablesVscer{x, m, y) that can be used for transient impact Vscerlx: ., y) = Viet(x.m. y) - Vonade. ) . (6)
model simulations, the local scenario time series of climate ’
anomaliesAVseer(x, m, y) are combined with time series — where Viyasdx, m) is the basis for the anomalies in the
here referred to as “reference time seri€gi(x, m, y) —that AOGCM, i.e. the long-term climatological mean of the
provide the long-term climatological mean(x, m) and in-  AOGCM’s representation of present-day climate. Where bi-
terannual variabilite (x, m, y) (Eq.1). Reference time series ases in the AOGCM’s representation of present-day climate
for temperature and cloudiness are constructed from and arare small, the application of anomalies as relative change im-
consistent with the CRU TS3.1 global climate databetr(is ~ poses a similar mean change to the scenario time series than
et al, 2013; reference time series for precipitation are basedthe application as absolute change. That is, the difference be-
the GPCC full reanalysis dataset versionRudolf et al, tween the mean of the scenario time series and the reference
2010. time series is similar to the original anomaly. As biases in-
Because GPCC and CRU datasets have a slightly differentrease, climate anomalies are progressively altered with the
land mask, the GPCC dataset was adjusted to the CRU lancklative approach. This alteration is an expression of the ad-
mask (67 420 grid cells) by filling up missing cells by inter- justment of the absolute anomaly derived from a biased base
polation. For this, the five neighbouring cells with the high- level in the AOGCM to the observed level, which is the actual
est weight — calculated from distance and angular separatiomotivation for using the relative approach. The relevance of
(New et al, 2000 — within a 450 km radius were used. If this adjustmentis particularly apparent where decreases from
< 5 values were available, the interpolation was performedoverestimated levels in the AOGCM are applied to lower ob-
on this reduced data basis; # 2, the precipitation from served levels. Without the attenuation of the anomaly by the
the CRU TS3.1 dataset was used. Grid cells only present imelative approach the application of a negative change might
the GPCC land mask but not in the CRU land mask werewell lead to negative values. However, for the reverse case —

www.geosci-model-dev.net/6/1689/2013/ Geosci. Model Dev., 6, 188®3 2013



1694 J. Heinke et al.: A new dataset for systematic climate impact assessments

increases from underestimated levels — this approach is lesmean for the year 2009. It is estimated by adding the cloudi-
favourable as it may lead to an unrealistic augmentation ofness anomaly for a 0.9 K warming to the climatological mean
the absolute anomaly. of the control run (see Se@.2.9.

Another difference between the two approaches is that
with the absolute application of anomalies interannual vari-2-3.3  Precipitation

ability remains unchanged, while with the relative applica- h licati ‘ o les i cularl
tion interannual variability is altered in a way that the coef- The application of precipitation anomalies is particularly

ficient of variation remains constant. The relevance of thischallenging because of the importance of precipitation as

variability adjustment is most apparent for cases where neg|-<ey var|able n |mpact assessments and Fh? part|ally very
ative anomalies bring the mean of the scenario time serieé-arge biases in simulated present-day precipitation. In cases

close to zero. In these cases a corresponding decrease of va\‘Y—helrle st|)mullatteq precipitation in the %or;trol runlls very lIO\;\'I,
ability is required to prevent the occurrence of negative val-SMa!l a@bSOlUte Increases correspond 1o very large relative

ues. changes. When applied to significantly higher observed pre-

The procedures used to apply the anomaly time series tgipitation rates, the absolute changes can become unrealis-

the reference time series for different climate variables ard!Cally 1arge. Other studies have therefore proposed to use
described in the remaining part of this section. In order to im-abSOIUte changes or limit the relative changes in such cases

prove readability, the parametersandm are omitted; only ~ (Carter etal.1994 Hulme et al, 1999. Fissel2003 notes
the parametey is used to differentiate terms that vary over that the problem depends on the degree of underestimation
time from time-invariant terms. Thus, Eqg)4(14) can be of present-day precipitation rates by AOGCMs and proposes

seen to describe the processes for a particular locatéd a seamless transition from a relative towards an absolute ap-
monthm but apply to all locations and months plication of anomalies, depending on the degree of underes-

timation. Here we adopt the approachmyssel2003 with
2.3.1 Temperature some modifications required for the application to time series
(see alsdGerten et al.2011, where a similar approach was
Since temperature biases in AOGCMs are very small comused). Anomalies are applied as relative change, but as the
pared to absolute temperature levels, the application as absonderestimation of present-day precipitation in the AOGCM
lute or relative change would give very similar results. How- increases, the applied relative change is reduced so that the
ever, temperature anomalies are commonly treated as abseesulting mean change in the scenario time series becomes
lute changes in the literature and are thus applied as absoluigcreasingly similar to the absolute change:
change here:

_ — A
AP P
Tscedy) = Tret(y) + ATscer()’)y (7) Pocer(y) = Pref(y) - | 1+ < ;Cer{y)> ( refe> - ®

ref Ppas

where Tscedy), Tref(y), and AT scedy) are the temperature  ith
time series of the scenario, the reference time series, and the

time series of anomalies, respectively. N /??p_ase for Ppase< Pref
= ref s

2.3.2 Cloudiness 1 for Ppase> Pref

(10)

For cloudiness, anomalies were applied as relative change®ith Pscer(y), Pref(y), andA Pscer(y) denoting the precipita-
Due to the problem of augmentation of anomalies when apdion time series of the scenario, the reference time series, and
plied as relative change to higher observed levels, there ithe time series of anomalies, respectively; @jgt and Ppase

a risk of exceeding the upper 100 % limit in these casesdenoting the climatological means of the reference time se-
Increases in cloudiness are therefore applied as relative deies and the year 2009 in the AOGCM, respectively. Esti-

creases of cloudlessness, i.e. 100 % — cloudiness: mation of Ppaseis analogous to estimation @ldpase (see
Sect.2.3.9. The exponent determines the degree to which
Cldscer(y)= an anomaly is applied as absolute or relative changefL,
Cldref()’)'%tidscw for ACldscery) <0 ) Eqg. ) is equivalent to the relative interpretation of precip-
100~ (Cldbaset AClcer)) g ACTdgcerfy) > 0 itation anomalies. If present precipitation is underestimated

100— (100— Cldret(y)) - 2= e
by the AOGCM, lower values of diminish the applied rel-
with Cldscer(y), Cldret(y), ACldscer(y), andCldyase denot- ative anomaly. IfA approaches zero, the factor applied to
ing the cloudiness time series of the scenario, the referencthe values of the reference time series results in a shift of
time series, the time series of anomalies, and the present-ddts mean equal to the absolute anomAlPsced y). Because
climatological mean cloudiness in the AOGCM, respectively. all anomalies are applied as a factor, the coefficient of vari-
For consistency with the anomalies and the reference time seation is preserved in the scenario time series, which implies

ries, Cldpaseneeds to represent the simulated climatologicalchanges in interannual variability.

Geosci. Model Dev., 6, 1683703 2013 www.geosci-model-dev.net/6/1689/2013/
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2.3.4 Rain month frequency Interpolation weights were calculated asNaw et al.(2000
with account for distance and angular separation.
Based on the |Ogi5tiC regression model estimated from the |n order to preserve the Spatia| and tempora| coherence
AOGCM simulations, the probability of rain month occur- of the precipitation field, the same random number sequence
rence was estimated for each month of the scaled scenarig () was used for all grid cells and months of the year. The
time series as follows: rationale behind this procedure is that for neighbouring cells
& _ _ with similar psce{y) and pref, rain months get removed or

Pscerdy) = 77— with -z =logit (pref) + * - ATgon(y), (11) inserted in the same year. In order to avoid an overlap with

) - ) _ the removal of rain months, however, the reflected sequence
where pscer(y) is the probability of yeat in the scenario  1_,(y) was used as decision criterion for the introduction of
to be a rain month angher the probability of rain month  4in months. The procedure was applied prior to the scaling
occurrence in the reference time series — i.e. the fraction ofy precipitation amounts described in the preceding sections.

rain months in that series. In cases wherg is either 0 or  average reference precipitation used in Egs. (9) and (10) was
1, logit(prer) cannot be calculated and was set to a valueca|cylated from this modified reference time series.
of —7 and 7, respectively. This is equivalent to values for

pref Of about Y1100 and - 1/1100, respectively. The term 235 Wet-day frequency
B* - ATgon(y) denotes the anomaly of the logit rain month
probability estimated from the logistic regression model andAn additional information required by many impact models
Tgiob @anomalies (see Se@.2.9. Because the intercept and is the number of wet days per month. Due to the sparse avail-
the slope of the logistic regression model are both estimateebility of daily rainfall data from AOGCMs and strong bi-
by fitting the model to the scenario data, extreme values ar@ses in frequency distribution of rainfall intensities in many
sometimes obtained fg8* where rain month probability is AOGCMSs, this information is hard to extract from these
0 or 1 and some singular dry or rain months occur towardsmodels. The number of wet days per month is therefore es-
the higher end of the temperature range. When used wittimated based oMNew et al.(2000 using the relationship
the estimated intercepy, these slopes correspond to very between monthly precipitation sum and number of wet days:
small changes in rain month probability but produce unreal-
istically augmented probability changes when applieg:to WD (P(Y)>V
. . . . WD(y) = WDobs| = > (14)
in Eq. (11). In order to avoid this effect, only slopes with
a corresponding estimate for the intercept betwe&nand
7 were applied; otherwise no change was applied. This rul
applied to about 5.5 % of all significant estimates #ér

The application opscento the reference time series entails
the removal of excess and the introduction of additional rain
months by means of a stochastic process. For this procedur
a random sequence(y) of uniformly distributed numbers
between 0 and 1 is generated, which serves as a decision ¢
terion on whether a rain month is introduced or removed in
yeary. If pscedy) is smaller thanpes a rain month is re-

obs

é/vhereP(y) and WD(y) represent the time series for precipi-
tation sum and the estimated number of wet days of a month
and grid cell, respectively. The exponents assumed to be
0.45, which was found byNew et al.(2000 to yield best
esults. The value¥Dops and Pops represent the observed
961-1990 mean monthly wet-day frequency and precipita-
'l'ii_on sum, respectively. The former was derived from CRU
TS3.1 Harris et al, 2013 and the latter from GPCC version
5 (Rudolf et al, 2010. The means were calculated over the
entire 30-yr period, including totally dry months. Because

moved if s .
the datasets for wet days and precipitation are based on dif-

w(y) > Pscedy) (12) ferent station networks they are not fully consistent, i.e. there
T pret are cases where rain months have zero wet days (and vice

versa). The absolute minimum f9¥Dgps is the fraction of
rain months in the 30-yr period, which means that at least
one wet day has to exist for each rain month. If the estimate
1— pscedy) of WDgps is smaller than that, it was set to that minimum.
1-w@y) > ——————. 13) : - : . .
1— pref This estimation procedure delivers conservative estimates of
wet-day frequency for the scenario period, since the relation-

The precipitation event to be introduced is randomly cho-ghi, petween wet-day frequency and monthly precipitation
sen from the precipitation distribution of the respective refer-g, 1 is assumed to be constant over time.

ence time series. In cases where the reference time series has
no rain month at all, a synthetic rainfall distribution is gen-
erated by interpolation from up to five neighbour cells with

at least one precipitation event in their distribution. The se-
lection criterion for these cells was taken to be the highest
interpolation weight from all cells within a radius of 450 km.

Conversely, ifpscedy) is larger thanpet, a rain month is
introduced if

www.geosci-model-dev.net/6/1689/2013/ Geosci. Model Dev., 6, 188®3 2013



1696 J. Heinke et al.: A new dataset for systematic climate impact assessments

3 Results and discussion only positive trends occur, while the other variables display
a mixture of positive and negative trends (see F6).

3.1 Properties of scaling patterns extracted from This implies the existence of transition zones between ar-

AOGCM simulations eas with positive and negative trends in the monthly fields

where trends are de facto zero and therefore no significant

The scaling patterns extracted from AOGCM simulations areslopes can be found. In addition, cloudiness and precipita-
the core component of the scenario-building described intion both exhibit strong interannual variability that tends to
this paper. They provide information on spatial and tempo-mask weak trends that primarily occur around such transi-
ral heterogeneity of climate change signals for primary cli- tion zones. Similarly, the estimation of parameters of the lo-
mate variables as projected by different AOGCMSs. In this gistic regression model for change of rain month frequency
section, an overview is given of the spatial coverage of fitsis hampered by the stochastic nature of this variable. More-
that are significant and of basic properties of the derived patover, vast areas with a rain month frequency of 100 % (e.g. in
terns (mean and standard deviation). The focus is primarthe high latitudes and the wet tropics) remain unaffected by
ily on a comparison of the different climate variables with the occurrence of dry months under climate change @}ig.
some indication of the inter-model spread. A comprehensive For each derived anomaly pattern two statistics — mean and
overview with values for individual AOGCMs is presented in standard deviation — are calculated in order to characterise
Tablel. the patterns. We took into account the spatial and temporal

An apparent difference between the climate variables is theoverage of the individual slopes — i.e. by weighting them
spatial and temporal coverage of significant slope parameterwith the respective cell area and length of month. Because
of the regression models obtained from the AOGCM simu-the aim is to illustrate the properties of the entire pattern as it
lation. As described in Sec-2.2 only slope estimates with is applied, grid cells and months without a significant slope
a statistical significance- 0.9 were accepted and used for are included as zero values.
the scaling. Each slope estimate is representative for a spe- Averaged over all AOGCMs the mean anomaly of temper-
cific area (size of grid cell) and a specific time period of the ature increase over land is estimated to be 1.32K per 1K in-
year (length of month). In order to assess the spatial and termerease offyiop (from 14.0°C in the reference time series).
poral coverage of significant slope estimates, the product oBecauseTyon, anomalies and local temperature anomalies
area and duration for each significant slope is calculated andsed in the regression are estimated from the same data, the
summed up. The sum is related to the product of total landvalue demonstrates that the land surface heats up much more
area and length of the year to arrive at a percentage of spatidhan the whole of the global surface. This phenomenon is
and temporal coverage. well known and is caused by the higher heat storage capac-

Averaged over all AOGCMs, spatial and temporal cov- ity of the oceans, which cause them to heat up leasmbpert
erage of significant slopes is 99.9%, 82.0%, and 78.2 %and Chiang2007). Although temperature trends are found
for temperature, cloudiness and precipitation, respectivelyto be always positive over land (Fi§), there is consider-
(value for precipitation composed of 46.9 % significant in- able heterogeneity in the degree of warming in different re-
creases in the linear case and 31.3 % significant decreasggons and times of the year. This heterogeneity is captured
in the logarithmic case; Tablg). The average coverage of by the pattern’'s standard deviation, which on average over
significant slopes for the logistic regression models for rainall AOGCMs is 0.5 K. The mean and standard deviation for
month probability is 10.9% and 10.3 % if regression mod- individual models are in the range of 1.18-1.43 and 0.40-
els with extreme intercepts are excluded (see Sz&t4. 0.63, respectively (Tabl®).
Although there is considerable variation in spatial coverage The prevalence of a clear mean signal in the pattern is
of significant fits among individual AOGCMs (see Talile unique to temperature among the variables considered here.
the relative magnitude of coverage for the different variablesFor cloudiness the average pattern mear @49 % — less
is consistent over all models. Near full coverage is foundthan 1% of the mean cloudiness over land in the reference
for temperature, followed by moderate to high coverage fortime series (55.3%). The relatively small mean change is
cloudiness and precipitation (including both increases andontrasted by a higher standard deviation of 1.55 %, which
decreases). Coverage of significant precipitation increases ieveals the distinct spatial and temporal pattern of changes in
in all cases higher than for decreases although values areloudiness. This is consistent over all individual AOGCMs,
similar in some cases. In all cases, coverage of significantvhich are characterised by mean changes betwden9 and
changes of rain month frequency is smallest. 0.37%, and pattern standard deviations between 0.97 and

Although the coverage of significant changes for cloudi- 2.09 %, respectively.
ness, precipitation, and rain month frequency is significantly For the calculation of pattern mean and standard devia-
lower than for temperature, this must not be interpreted agion for precipitation, the decreases of logarithmic precipita-
an indication of limited applicability of the pattern-scaling tion that make up the decreasing part of the pattern need to
approach for these variables. A major difference betweerbe converted to absolute changes in precipitation. Although
temperature and the other variables is that for the formeithe nonlinearity of exponential decrease may lead to an
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N N

DAV m P =) [V (x,m) - ATgob()1?

- =1 y=1

Temperature Change
K

N
+Y [AV(x,m,y) = V*(x,m)- ATgiob()1* (15)
y=1

0.0

Based on this relationship, it is possible to evaluate the

Flg 3. Multi-model mean of the actual applled annual mean Changesigniﬁcance of the extracted patterns by Comparing the ex-
in near surface air temperature in K per 1 K&Tyon (Eq. 16). N
plained sum of square$_ [V*(x,m) - ATg|0b(y)]2 to the
y=1
. . - . . N
augmentation of precipitation decreases, the effect remaintotal sum of square$_ [AV (x,m, y)]? to provide a mea-

small due to the small magnitude of slopes of logarithmic ) y=1 ] o
precipitation decrease-0.10, average over all AOGCMs). Sure of _explalned variance. However, this measure is incom-
Averaged over all AOGCMs a mean precipitation change ofPlete Wlthoztjjt an analysis of how much of the residual sum
0.026 mm d* (millimetre per day)_ is_ fo_und, which is equiv? of squaresy_ [AV (x,m, y) — V*(x,m) - ATglob(y)]z can be
alent to~ 1% of the mean precipitation rate over land in y=1
the reference time series (2.27 mmiyl Similar than for  attributed to interannual variability inherent to the climate
cloudiness, this small mean change is contrasted by a muchystem. This variability cannot be captured by the linear re-
larger standard deviation of 0.22 mm'd(averaged over all  gression, and the separation of the climate signal from the
AOGCMs). Corresponding values for individual AOGCMs background variability is in fact the basic principle of the
range betweer-0.016 and 0.069 mmd, and between 0.15 pattern-scaling approach. For the analysis of the residual sum
and 0.32mmd? for mean and standard deviation, respec- of squares the variance of the control run Maf(x, m) was
tively (Tablel). multiplied with the number of value¥ in the residual sum
The slopes of the logistic regression for changes in rainof squares to obtain an estimate of the total sum of squared
month frequency are difficult to interpret in their original interannual variability to be expected in the scenario data.
form and were therefore converted to changes in the frac- Because Eq.10) is valid for every single regression
tion of rain months for the calculation of statistics. Averaged model, the evaluation metrics derived from its terms can be
over all AOGCMs the mean change-i€).0025 rain months  calculated for every model, grid cell, and month. In order to
per month, which corresponds to an average loss of one raifacilitate a comparison of the performance for different vari-
month in about 33yr on the entire land surface (including ables, area-weighted means over all land cells for the differ-
areas with no change). Average standard deviation of rairent square sums are calculated for each model and month and
month changes is 0.028 rain months per month. For individ-then again averaged.
ual AOGCMs mean rain month frequency changes are be- For the ratio of explained sum of squares to total sum
tween—0.0074 and 0.0034 rain months per month with stan-of squares (ESS'SS), ensemble means of 0.78, 0.20, 0.16,

dard deviations between 0.015 and 0.034. and 0.15 are found for temperature, cloudiness, precipi-
tation (increases only), and logarithmic precipitation (de-

3.2 Significance of scaling patterns extracted from creases only), respectively. Corresponding ensemble means
AOGCM simulations for ratios of residual mean of squares to control run vari-

ance(RSY (N - Vareny)) are 0.93, 1.01, 1.29, and 1.13, re-
The assumption of a linear relationship between change irspectively. Although ratios of explained variation for cloudi-
Tgiob and mean local change of a climate variablecon- ness, precipitation, and logarithmic precipitation appear to
sidered is central to pattern scaling. Although it is gener-be very small, the comparison of residual variance to the
ally accepted that this assumption holds well for temper-control run variance reveals that most of the unexplained
ature Mitchell, 2003, it may not be fully valid for other variation can be attributed to the high interannual variabil-
climate variables. The focus of this section is therefore onity of these variables. This is a clear indication that the de-
a comparison between the different variables rather than berived patterns have a strong significance and can be used
tween the different AOGCMs. However, values for individ- in a scenario-building framework such as the one applied
ual AOGCMs are presented in Taldle here. Even the relatively high value GRS/ (N - Varcnir))

For ordinary linear square models, such as those fitted tdor increasing precipitation (1.29) is not critical if one con-
the AOGCM data for pattern extraction, the total sum of siders that increases of mean precipitation are usually ac-
squares (TSS) equals the sum of explained sum of squaresompanied by increases in variability. Because a transfor-
(ESS) and residual sum of squares (RSS). For the pattern exnation to logarithmic values diminishes this effect, the ra-
traction, this is described in EqL). tio of residual variance to control run variance is very close
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Table 2.Overview of individual AOGCMSs’ ratios of explained sum squares (ESS) to total sum of squares (TSS) and ratios of residual sum of
squares (RSS) to scaled control run variangée Varcng) for temperature, cloudiness, increasing precipitation, and decreasing logarithmic
precipitation. In all cases, only significant linear regression models are included. The scaling of control run variance is necessary to make it
comparable to RSS, which is calculated fowvalues.

Temperature Cloudiness Increasing Decreasing Log.
Precipitation Precipitation
ESYTSS RSSHY - Varcnt) ESSYTSS RSSHY - Varcnty) ESYTSS RSSHY - Varcny) ESYTSS RSSHY - Varentr)
CCCMA-CGCM3.1 0.86 0.88 0.28 0.92 0.19 1.31 0.18 1.09
CNRM-CM3 0.81 0.87 0.21 0.96 0.15 1.28 0.16 1.14
CSIRO-MK3.0 0.72 0.98 0.20 1.34 0.10 1.23 0.12 1.12
GFDL-CM2.0 0.69 0.99 0.18 1.04 0.12 1.37 0.13 1.18
GFDL-CM2.1 0.70 0.98 0.18 1.01 0.10 1.30 0.16 1.15
GISS-EH 0.66 0.89 0.18 1.01 0.24 1.20 0.21 1.03
GISS-ER 0.74 0.96 0.16 0.97 0.25 1.26 0.16 1.03
IAP-FGOALS-g1.0 0.70 0.82 0.11 0.93 0.15 1.09 0.09 0.96
INM-CM3.0 0.72 0.89 0.15 0.96 0.15 1.20 0.13 1.09
IPSL-CM4 0.83 0.95 0.32 1.00 0.27 1.53 0.18 1.20
MIROC3.2(hires) 0.86 0.98 0.28 1.00 0.14 1.40 0.13 1.17
MIROC3.2(medres) 0.86 0.97 0.28 1.01 0.17 1.37 0.13 1.15
MIUB-ECHO-G 0.87 0.89 0.21 0.97 0.24 1.38 0.16 1.22
MPI-ECHAMS5 0.79 1.00 0.14 1.05 0.11 1.34 0.11 121
MRI-CGCM2.3.2a 0.82 1.01 0.23 1.01 0.14 1.25 0.13 1.15
NCAR-CCSM3 0.82 0.88 0.19 1.00 0.20 121 0.12 113
NCAR-PCM1 0.77 0.82 0.11 1.01 0.14 1.15 0.08 1.10
UKMO-HadCM3 0.79 0.98 0.25 1.01 0.15 1.33 0.22 1.22
UKMO-HadGEM1 0.81 0.95 0.19 1.00 0.13 1.34 0.19 1.19
all 0.81 0.92 0.21 1.00 0.17 1.30 0.14 1.14
min 0.66 0.82 0.11 0.92 0.10 1.09 0.08 0.96
max 0.87 1.01 0.32 1.34 0.27 1.53 0.22 1.22
median 0.79 0.95 0.19 1.00 0.15 1.30 0.13 1.15
mean 0.78 0.93 0.20 1.01 0.16 1.29 0.15 1.13

to unity (0.98) if it is calculated for increasing logarithmic in the preceding section, this section explores the actual
precipitation. It should be mentioned, however, that precipi-anomalies by which the scenario time series are shifted. For
tation change in the AOGCM simulations is also influencedeach variable the scaling patterns that represent the anoma-
by factors such as atmospheric aerosol loading, as these elies for a 1-degree increase 1o are applied to the refer-
fects are not captured by the extracted patterns and therefoence time series according to the methodology described in
contribute to highefRSY (N - Vareni)) ratios. The ratio of  Sect.2.3). Thereby, the absolute chanfjé(x,m) -1 K is al-
residual variance to control run variance smaller than unitytered, depending on the application method and the degree of
for temperature means that the residual variation is generallglisagreement between observed and simulated present-day
slightly smaller than expected from the interannual variabil- climate. From the obtained time series multi-model means of
ity estimated from the control run. This is an indicator for the actual applied annual mean change are calculated:

the strong relationship between local temperature anomalies

. . . 19 12 .
andTgiop anomalies captured by the derived patterns. Whenav ;1 k(x) = lez > [Vscent k(x,m.i) = Vietx,m)]. (16)
using these patterns to predict local temperature anomalies TCi=im=1

in conjunction with actual\ Tyon(y), the part of interannual

variability that can be explained by interannual variability of A . ) !
AT, is included which reduces the residual error. In of the scenario time series foffgiop increase by 1K in loca-
glob(Y) " ' tion x, monthm, and AOGCM;.

contrast, the estlm:_:ltlon of control run variance is based on The alteration of anomalies by the application procedure
a constant mean climatology and therefore includes the parits an important aspect of the methodology described in this
of variability that is correlated to the variability tNTgion(y). P P gy

paper. It is, however, a very general problem how to interpret
and apply AOGCM-derived changes in climatological means
3.3 Applied local anomalies for 1 degree of when these means are biased. If the observed climatology
global warming is underestimated the simulated change may underestimate
the actual change and vice versa, providing that changes de-
The dataset for systematic climate impact assessment preived from a biased representation of reality are a meaningful
sented here is a combination of extracted patterns and the refource of actual change at all. All assessments that are based
erence time series of temperature, precipitation, and cloudion anomalies obtained from AOGCM simulations are con-
ness. While properties of the scaling patterns were discussefilonted with this problem and have to deal with the question

whereV scen1 k (x, m, i) is the long-term climatological mean

www.geosci-model-dev.net/6/1689/2013/ Geosci. Model Dev., 6, 188®3 2013
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whether to use the unchanged absolute anomalies or adjug T — e

them according to the biases in the AOGCM's presenta- |-
tion of actual conditions. In cases where anomalies are com- ?&.
bined with observations, an adjustment is often inevitable, as @ g P

a direct use of anomalies can cause an exceedance of vali b b S
ranges for some variables (e.g. most variables have a positiv ‘ ¢ | — -2
ity constraint). In these cases a relative application of anoma- -3
lies provides a convenient and plausible way of accounting
for the different base levels in simulations and observations.I = g
There are, however, no objective criteria on whether and how 2
to perform this adjustment. Hence, any solution represents oy e’ T !
a choice that cannot be validated in a meaningful way. Our ’
methodology is no exception from that. It is grounded on o
common practice found in the impact literature, aiming to
fulfil the particular requirements of the pattern-scaling ap-
proach, while minimising alterations of the original signal. Fig. 4. Upper panel: multi-model mean of the actual applied an-
In place of a validation, we here complement the presentation, ;a1 mean change in cloudiness in % cloud cover per 1K Bfjop

of applied anomalies in the end product by a presentation ofgq. 16). Lower panel: multi-model mean of the alteration of the
the alteration of the original anomalies. Multi-model means original anomaly in % cloud cover for 1K af Tyiop (E. 17); pos-

Cloud Cover Change
[% Cover]

Alteration of Anomaly
[% Cover]

of the alteration of the original anomaliés*(x,m) -1 K in itive values indicate an augmentation and negative values indicate
Vscen1 k(x,m, i) are calculated as an attenuation, regardless of the direction of change.
_ 1 912
AVarik(x) = —— Vscen1k(x,m, i) . . :
@ 19. 12;’1;1“ seen are found in the Mediterranean, the Middle East, southern

Africa, southern Australia, Central America, and the Ama-
zon region. Increases are constrained to the higher north-
The omission of the sign of change by the modulo functionern latitudes and the Horn of Africa. In some areas, such
in Eq. (17) ensures that augmentations always have a positives the northernmost latitudes, the Amazon, and some parts
sign and attenuations always have an negative sign, regar@f Africa, variation of projected annual cloud cover change
less of the sign of change. among AOGCMs is high with inter-model standard devia-
For temperature, the actual applied anomalies for a 14ion exceeding the mean change (see Supplement). Signifi-
degree increase iffigjon (Fig. 3) are identical to the scal- cant seasonality in the multi-model mean is limited to a few
ing pattern, as temperature anomalies are applied as absolutegions such as the Amazon, Central Asia and northeastern
changes (Eq7). The spatial distribution of mean annual tem- Canada only (see Supplement). Regions with pronounced
perature changes across all AOGCMs exhibits the same oveseasonality do not always coincide with regions of strong
all behaviour as presented and discussed for the CMIP3 ermean change, which indicates a mix of increases and de-
semble inrSolomon et al(2007). For the considered land area creases throughout the year that cancel out each other in the
there are no incidents of decreasing local temperature wittannual mean.
increasingTgiob. Below average warming (green colours) is  Alteration of the absolute signal, averaged over all months
only found in the vicinity of oceans, which is the result of and AOGCMs, by the application method described in
the thermal inertia of the oceans. Overall, warming on theSect.2.3.2is depicted in the lower panel of Fig. In most
land surface is above average with a distinct pattern of polacases the application method augments the original signal,
amplification (stronger warming towards higher latitudes). which means that decreases of cloudiness tend to be associ-
Behind the multi-model annual mean change there is subated by underestimation and increases by overestimation of
stantial variation in regional temperature change both amongresent-day cloud cover. However, in most cases the average
different AOGCMSs and during the course of the year (seealteration of the original signal is less thai®.5 %. Signifi-
Supplement). Disparity among AOGCMs is lower than the cant alteration of the signal only occurs in northern Canada,
projected mean change — i.e. there is some disagreement the Amazon, the Middle East, and some parts of Africa — all
the magnitude but not in the direction of change. Seasonalef these regions being characterised by strong mean changes
ity of change is particularly strong in the high northern lati- (Fig. 4, upper panel).
tudes and broadly follows the pattern of polar amplification. The multi-model mean of annual precipitation change
Hence, the strong average increase projected for these aressshown in Fig.5 (upper panel). As for temperature and
does not occur uniformly over the year. cloudiness, precipitation changes are consistent with re-
Actual applied anomalies for cloudiness are a mix of cloudsults presented irfSolomon et al.(2007). Significant de-
cover increases and decreases (M. Strong decreases creases prevail in the Mediterranean, the Middle East, South

—Vief(x,m)| — | V*(x,m,i) - 1K]]. (17)
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Fig. 5. Upper panel: multi-model mean of the actual applied annual Fig. 6. Upper panel: multi-model mean of the actual applied annual
mean change in precipitation rate in mmldper 1K of ATgiob mean change in rain month frequency in month/month fa7gop

(Eqg. 16). Lower panel: multi-model mean of the alteration of the of 1K (Eq.16). Lower panel: multi-model mean of the alteration of
original anomaly in mmd? for 1K of ATyiop (EQ. 17); positive the original anomaly in month/month for 1K & 7yop (EQ. 17);
values indicate an augmentation and negative values indicate an apositive values indicate an augmentation and negative values indi-
tenuation, regardless of the direction of change. cate an attenuation, regardless of the direction of change.

Africa, southern Australia, Central America and Patagonia;than the original anomaly. With our approach, in contrast, the
increases are projected for the Boreal zone, South and Souttoriginal anomaly is also augmented with increasing underes-
east Asia, East Africa, and parts of South America. For somaimation in the AOGCM, but reaches a maximum augmenta-
regions such as the Amazon, Sub-Saharan Africa, and Southion by a factor of about two for a five-fold underestimation
east Asia inter-model standard deviation is high (see Supand then declines towards unity for a completely rain-free
plement), indicating considerable disagreement in the magAOGCM baseline.
nitude and in some cases even sign of mean annual pre- Changes in rain month frequency are rarely analysed and
cipitation change for the different AOGCMs. Seasonality of here their explicit consideration in a pattern-scaling frame-
change is less pronounced but seems to occur in regionwork is unique. The rain month frequency changes, averaged
where the inter-model spread is high — i.e. the wet tropicsover all AOGCMs and months, shown in the upper panel
but also in temperate North America and Europe (see Supef Fig. 6, exhibit both increases and decreases although de-
plement). creases prevail. As already discussed in S&dt. changes
Although large biases in the AOGCMs impair the appli- occur predominately in areas that are already today charac-
cability of derived anomalies the alteration of the scaledterised by intermittent rainfall occurrence while regions such
anomalies by the application method is well controlled andas North America, northern Europe, and Siberia remain un-
rarely exceeds-0.05 mm d1. Significant alterations primar- affected. Regions of strong rain month frequency decrease
ily occur in mountainous regions (Andes, Rocky Mountains, broadly agree with key regions of decreases in average rain-
Himalayas) where the AOGCMs’ coarse spatial resolutionfall, but some noteworthy differences exist. Almost entire
impedes the correct representation of sub-grid orographic efSouth America and Australia are, on average, affected by rain
fects. In average, our application method attenuates rathemonth frequency decrease while the picture for change in
than augments the original anomaly, which indicates thatrainfall amount is much more mixed. In the Mediterranean,
AOGCMs tend to overestimate observed precipitation ratessouthern Europe is much less affected by rainfall amounts,
It is not the progressive reduction of the relative anomalywhile the opposite can be stated for North Africa. In south-
by the A exponent with increasing underestimation in the ern Africa decreases in rain month frequency stretch much
AOGCM (Eq.9) that causes the overall attenuation. The re-further up north along the east coast.
duction of the relative anomaly applies to both increases and Variation of rain month frequency change among
decreases and merely compensates for the asymmetry in tt®OGCMs is pronounced but generally follows the pattern of
relative application of anomalies derived from differently bi- strong decreases (see Supplement). Thus, different models
ased AOGCM baselines. While the attenuation in case ofdisagree primarily in the magnitude rather than in the direc-
overestimation can never exceed the original anomaly wherion of change. Seasonality of change is in the same mag-
applied as relative change, the augmentation in case of umitude as the inter-model variation and also exhibits a simi-
derestimation in the AOGCM can become many times biggedar pattern (see Supplement). Hence, decreases in rain month
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frequency in some months can be very high, while little a necessary adjustment of anomalies obtained from biased

change occurs in others. AOGCM baselines. The additional material used for creating
Anomalies of rain month frequency are significantly al- the dataset — global datasets on observed historical climate

tered by the application method (see Fiy.lower panel). and the reduced complexity climate model MAGICC6 — are

Although logit-transformed frequency anomalies are appliednot further discussed in this paper. They are well documented

as absolute changes (see S8@.4), the different reference in other literature.

levels in the AOGCM and the observations result in very dif-

ferent actual frequency anomalies when transformed back.

Equation (1) implies a sigmoid shape for the relationship Supplementary material related to this article is

between rain month frequency andyon, Which means that ~ available online athttp://www.geosci-model-dev.net/6/

a givenp* - ATyion(y) produces the strongest change in rain 1689/2013/gmd-6-1689-2013-supplement.pdf

month frequency when applied to a rain month frequency

of 0.5; with reference values closer to 0 and 1 the effect

progressively decreases. Consequently, augmentations of the

signal occur when frequencies in the AOGCM are close to _
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