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1. Introduction 

The ongoing global climate change has severe effects on the entire biosphere of the Earth. 
According to the most recent IPCC report [1], it is very likely that anthropogenic influences 
(like the increased discharge of greenhouse gases and a gradually intensifying land-use) are 
important driving factors of the observed changes in both the mean state and variability of 
the climate system. However, anthropogenic climate change competes with the natural 
variability on very different time-scales, ranging from decades up to millions of years, which 
is known from paleoclimate reconstructions. Consequently, in order to understand the 
crucial role of man-made influences on the climate system, an overall understanding of the 
recent system-internal variations is necessary. 

The climate during the Anthropocene, i.e. the most recent period of time in climate history 
that is characterized by industrialization and mechanization of the human society, is well 
recorded in direct instrumental measurements from numerous meteorological stations. In 
contrast to this, there is no such direct information available on the climate variability before 
this epoch. Besides enormous efforts regarding climate modeling, conclusions about climate 
dynamics during time intervals before the age of industrial revolution can only be derived 
from suitable secondary archives like tree rings, sedimentary sequences, or ice cores. The 
corresponding paleoclimate proxy data are given in terms of variations of physical, 
chemical, biological, or sedimentological observables that can be measured in these archives. 
While classical climate research mainly deals with understanding the functioning of the 
climate system based on statistical analyses of observational data and sophisticated climate 
models, paleoclimate studies aim to relate variations of such proxies to those of observables 
with a direct climatological meaning. 



 
Fractal Analysis and Chaos in Geosciences 2 

Classical methods of time series analysis used for characterizing climate dynamics often 
neglect the associated multiplicity of processes and spatio-temporal scales, which result in a 
very high number of relevant, nonlinearly interacting variables that are necessary for fully 
describing the past, current, or future state of the climate system. As an alternative, during 
the last decades concepts for the analysis of complex data have been developed, which are 
mainly motivated by findings originated within the theory of nonlinear deterministic 
dynamical systems. Nowadays, a large variety of methods is available for the quantification 
of the nonlinear dynamics recorded in time series [2,3,4,5,6,7,8,9], including measures of 
predictability, dynamical complexity, or short- as well as long-term scaling properties, 
which characterize the dynamical properties of the underlying deterministic attractor. 
Among others, fractal dimensions and associated measures of structural as well as 
dynamical complexity are some of the most prominent nonlinear characteristics that have 
already found wide use for time series analysis in various fields of research. 

This chapter reviews and discusses the potentials and problems of fractal dimensions and 
related concepts when applied to climate and paleoclimate data. Available approaches 
based on the general idea of characterizing the complexity of nonlinear dynamical systems 
in terms of dimensionality concepts can be classified according to various criteria. Firstly, 
one can distinguish between methods based on dynamical characteristics estimated directly 
from a given univariate record and those based on a (low-dimensional) multivariate 
projection of the system reconstructed from the univariate signal. Secondly, one can classify 
existing concepts related to non-integer or fractal dimensions into self-similarity approaches, 
complexity measures based on the auto-covariance structure of time series, and complex 
network approaches. Finally, an alternative classification takes into account whether or not the 
respective approach utilizes information on the temporal order of observations or just their 
mutual similarity or proximity. In the latter case, one can differentiate between correlative and 
geometric dimension or complexity measures [10]. Table 1 provides a tentative assignment of 
the specific approaches that will be further discussed in the following. It shall be noted that 
this chapter neither gives an exhaustive classification, nor provides a discussion of all existing 
or possible approaches. In turn, the development of new concepts for complexity and 
dimensionality analysis of observational data is still an active field of research. 
 
 

 Methods based on univariate 
time series 

Methods based on multivariate 
reconstruction 

Self-similarity / scaling 
approaches 

Correlative: Higuchi estimator 
for D0, estimators of the Hurst 
exponent (R/S analysis, 
detrended fluctuation analysis, 
and others)

Geometric: fractal dimensions 
based on box-counting and 
box-probability, Grassberger-
Procaccia estimator for D2 

Approaches based on auto-
covariance structure 

Correlative: LVD dimension 
density 

Complex network approaches Correlative: visibility graph 
analysis

Geometric: recurrence network 
analysis

Table 1. Classification of some of the most common dimensionality and complexity concepts  mainly 
discussed in this chapter. 
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In order to illustrate the specific properties of the different approaches discussed in this 
chapter, the behavior of surface air temperature data is studied. Specifically, the data 
utilized in the following are validated and homogenized daily mean temperatures for 2342 
meteorological stations distributed over Germany (Figure 1) and covering the time period 
from 1951 top 2006. The raw data have been originally obtained by the German Weather 
Service for a somewhat lower number of stations before being interpolated and post-
processed by the Potsdam Institute for Climate Impact Research for the purpose of 
validating regional climate simulations (“German baseline scenario”). Before any further 
analysis, the annual cycle has been removed by means of phase averaging (i.e. subtracting 
the long-term climatological mean for each calendar day of the year and dividing the 
residuals by the corresponding empirical standard deviation estimated from the same 
respective day of all years in the record). This pre-processing step is necessary since the 
annual cycle gives the main contribution to the intra-annual variability of surface air 
temperatures in the mid-latitudes and would thus lead to artificially strong correlations on 
short to intermediate time-scales (i.e. days to weeks) [11]. In addition, since some of the 
methods to be discussed can exhibit a considerable sensitivity to non-stationarity, linear 
trends for the residual mean temperatures are estimated by a classical ordinary least-squares 
approach and subtracted from the de-seasoned record. 

 
Figure 1. Spatial distribution of the studied surface air temperature records over Germany. 

The remainder of this chapter will follow the path from established self-similarity concepts 
and fractal dimensions (Section 2) over complexity measures based on the auto-covariance 
structure of time series (Section 3) to modern complex network based approaches of time 
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series analysis (Section 4). Mutual similarities and differences between the individual 
approaches are addressed. The performance of the different approaches is illustrated using 
the aforementioned surface air temperature records. Subsequently, the problem of adapting 
the considered methods to time series with non-uniform (and possibly unknown) sampling 
as common in paleoclimatology is briefly discussed (Section 5). 

2. Self-similarity approach to fractal dimensions 

The notion of fractal dimensions has originally emerged in connection with self-similar sets 
such as Cantor sets or self-similar curves or objects embedded in a metric space [9]. The 
most classical approach to quantifying the associated scaling properties is counting the 
number of boxes needed to cover the fractal object under study in dependence on the 
associated length scale, which behaves like a power-law for fractal systems. More formally, 
studying the asymptotic behavior of the double-logarithmic dependence between number 
and size of hypercubes necessary to cover a geometric object with ever decreasing box size 
defines the box-counting dimension (often also simply called “the” fractal dimension) 

 0 0

log ( )lim .
log(1 / )l

N lD
l

  (1) 

Given a trajectory of a complex system in a d-dimensional space that is supposed to 
correspond to an attractive set, covering the volume captured by this trajectory by hypercubes 
in the way described above allows estimating the fractal dimension of the associated attractor. 
More general, considering the probability mass of the individual boxes, pi, one can easily 
generalize the concept of box-counting dimensions to so-called Renyi dimensions [12,13] 
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which give different weights to parts of phase space with high and low density (in fact, the 
box coverage probabilities pi serve as naïve estimators of the coarse-grained invariant 
density p(x) of the dynamical system under study). The special cases q=0,1,2 are referred to 
as the box-counting (or capacity), information, and correlation dimension. 

In typical situations, only a univariate time series is given, which can be understood as a 
low-dimensional projection of the dynamics in the true higher-dimensional phase space. In 
such cases, it is possible to reconstruct the unobserved components in a topologically 
equivalent way by means of so-called time-delay embedding [14], i.e. by considering vectors 

 ( 1)( , ,..., ),i i i i Ny x x x   
  (3) 

where the unknown parameters N and  (embedding dimension and delay, respectively) 
need to be appropriately determined. The basic idea is that the components of the thus 
reconstructed state vectors are considered to be independent of each other in some feasible 
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sense, thus representing the dynamics of different observables of the studied system. There 
are some standard approaches for estimating proper values for the two embedding 
parameters. On the one hand, the delay can be inferred by considering the time after which 
the serial correlations have vanished (first root of the auto-correlation function) or become 
statistically insignificant (de-correlation time) – in these cases, the resulting components of 
the reconstructed state space are considered linearly independent. Alternatively, a measure 
for general statistical dependence such as mutual information can be considered to estimate 
the time after which all relevant statistical auto-dependences have vanished [15]. On the 
other hand, the embedding dimension is traditionally estimated by means of the false 
nearest-neighbor method, which considers the changes in neighborhood relationships 
among state vectors if the dimension of the reconstructed phase space is increased by one. 
Since such changes indicate the presence of projective effects occurring when considering a 
too low embedding dimension, looking for a value of N for which the neighborhood 
relationships between the sampled state vectors do not change anymore provides a feasible 
estimate of the embedding dimension [16]. An alternative approach is considering the so-
called singular system analysis (SSA), which allows determining the number of statistically 
relevant eigenvalues of the correlation matrix of the high-dimensionally embedded original 
record as an estimate of the true topological dimension of the system under study [17,18]. 

Having reconstructed the attractor by finding a reasonable approximation of its original phase 
space as described above, one may proceed with estimating the fractal dimensions by means 
of box-counting. However, since this approach requires studying the limit of many data, is 
may become unfeasible for analyzing real-world observational time series of a given length. 
As alternatives, other approaches have been proposed for estimating some of the generalized 
fractal dimensions Dq, with the Grassberger-Procaccia algorithm for the correlation dimension 
[19,20] as the probably most remarkable example. Details on corresponding approaches can be 
found in any contemporary textbook on nonlinear time series analysis. 

A noteworthy alternative to considering fractal dimension estimates based on phase space 
reconstruction has been introduced by Higuchi [21,22], who studied the behavior of the curve 
length associated with a univariate time series in dependence on the level of coarse-graining, 
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(where [.] denotes the integer part), which scales with a characteristic exponent 
corresponding to the fractal dimension D0, 
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Figure 2 shows the actual behavior of the thus computed curve length with varying coarse-
graining level k (equivalent to the embedding delay in Equation (3)) for the daily mean 
temperature record from Potsdam. One can see that there are two distinct scaling regimes 
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corresponding to time scales up to about one week and above about ten days. For the 
shorter time-scales, the slope of the linear fit in the double-logarithmic plot yields values 
between 1.6 and 1.7, which are of the order of magnitude that is to be expected for low-
dimensional chaotic systems with two topological dimensions (note that the drawing of the 
curve underlying the definition of the curve length L(k) corresponds to a two-dimensional 
space). In turn, for larger time scales, the slope of the considered function takes values 
around 2, implying that the dynamics on these time-scales is less structured and resembles a 
random walk without the distinct presence of an attractive set in phase space with a lower 
(fractal) dimension. It should be emphasized that the shorter time-scale appears to be 
coincident with typical durations of large-scale weather regimes, whereas the second range 
of time-scales exceeds the predictability limit of atmospheric dynamics. 

 
Figure 2. Performance of the Higuchi estimator for the fractal dimension D0 for the saisonally adjusted 
and detrended daily mean temperature record from Potsdam. The dashed and solid lines give linear fits 
to the curve length in double-logarithmic plots based on short (1-7 days) and longer (10-100 days) time 
scales. 

The difference between both scaling regimes becomes even more remarkable when studying 
the corresponding spatial pattern displayed by all 2342 meteorological stations in Germany 
(Figure 3). On the shorter time-scales, the fractal dimension is significantly enhanced in the 
easternmost part of the study area, whereas the same region shows the lowest values of D0 
on the longer time-scales. The presence of two different ranges of time-scales with 
distinctively different spatial pattern is actually not unique to the fractal dimension, but can 
also be observed by other complexity measures (see Section 3.5 of this chapter). The 
probable reason for this finding is the presence of atmospheric processes (related to more 
marine and continental climates as well as low- and highlands) affecting the different parts 
of the study area in different ways on short and long time-scales. A more detailed 
climatological interpretation of this finding is beyond the scope of the present work. 
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Figure 3. Higuchi estimates of the fractal dimension D0 for short (1-7 days, panel a) and longer (10-100 
days, panel b) time scales. 

3. Complexity measures based on serial correlations 

As an alternative to concepts based on classical fractal theory, scaling properties based on 
the linear auto-covariance structure of time series data also contain valuable information. 
Corresponding approaches utilizing basic methods from multivariate statistics have been 
referred to as multivariate dimension estimates [11,23,24,25] and provide meaningful 
characteristics that can be reliably estimated even from rather short time series, which still 
constitute a fundamental limit for classical fractal dimension analysis.  

The original motivation for the introduction of multivariate dimension estimates to climate 
research has been that the ''complete'' information about the climate of the past requires 
considering a set of complementary variables, which form a multivariate time series. The 
fraction of dynamically relevant observables, which is interpreted as a measure for the 
average information content of a given variable, can vary itself with time due to the non-
stationarity of the climate system. Temporal changes of this information content, i.e. of the 
effective ''dimension'' of the record, can therefore serve as an indicator for changes in 
environmental conditions and the corresponding response of the climate system. Moreover, 
widely applicable ideas from the theory of nonlinear deterministic processes can be used to 
adapt this approach to univariate time series. In the following, the mathematical 
background of the corresponding approach will be detailed. 
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3.1. Dimensionality reduction of multivariate time series 

Quantifying the number of dynamically relevant components in multivariate data sets 
commonly requires an appropriate statistical decomposition of the data into univariate 
components with a well-defined variance. In the most common case, these components are 
required to be orthogonal in the vector space spanned by the original observables, i.e. 
linearly independent. A corresponding decomposition (typically with the scope of achieving 
a suitable dimensionality reduction of a given high-dimensional data set) is commonly 
realized by means of principal component analysis (PCA) [26,27], which is also referred to as 
empirical orthogonal function (EOF) analysis or Karhunen-Loève decomposition (KLD) 
depending on the particular scientific context and application. The basic idea beyond this 
technique is that a proper basis adjusted to the directions of strongest (co-)variation in a 
multivariate data set can be identified using a principal axis transform of the corresponding 
correlation matrix. In this case, the associated eigenvectors of the correlation matrix contain 
weights for linear superpositions of the original observables that result in the largest 
possible variance. The actual amplitude of this variance is characterized by the associated 
non-negative eigenvalues. 

Technically, consider simultaneous records Xij of different observables X(j) at times ti 
combined in a TxN-dimensional data set X=(Xij) with column vectors representing T 
successive observations of the same quantity and row vectors containing the simultaneous 
measurements of N different observables. Here, the columns of X may represent different 
variables measured at the same location or object, or spatially distributed records of the 
same observable or different variables. The associated correlation matrix is given as the 
covariance (or scatter) matrix S=YTY where the matrix Y is derived from X by subtracting the 
column means from all columns of X and then dividing the residual column vectors by their 
standard deviations. It should be emphasized that column mean and standard deviation 
represent here estimates of the expectation value and expected standard deviation of the 
respective observable. The elements of S are the linear (Pearson) correlation coefficients 
between all pairs of variables, which provide reasonable insights into mutual linear 
interrelationships between the different variables if the observations are normally 
distributed or the sample size is sufficiently large to neglect the former requirement 
according to the central limit theorem. By definition, S is symmetric and positive semi-
definite, i.e. has only non-negative eigenvalues i2. Without loss of generality, one may 
arrange these N eigenvalues in descending order and interpret them as the variances of the 
principal components of X given by the corresponding eigenvectors. 

It shall be noted that there are various generalizations of linear PCA, involving 
decompositions of multivariate data sets into projections onto curved manifolds that take 
the place of the orthogonal eigenvectors describing the classical linear principal 
components. Due to the considerably higher computational efforts for identifying these 
objects in the underlying vector space and correctly attributing the associated component 
variances, corresponding methods like nonlinear PCA [28], isometric feature mapping 
(Isomap) [29], or independent component analysis (ICA) [30], to mention only a few 
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examples, will not be further discussed here, but provide possibilities for generalizing the 
approach detailed in the following. 

3.2. KLD dimension density 

The idea of utilizing PCA for quantifying the number of dynamically relevant components, 
i.e. transferring this traditional multivariate statistical technique into a dynamical systems 
context, is not entirely new. In fact, it has been used as early as in the 1980s for identifying 
the proper embedding dimension for univariate records based on SSA (see Section 2 of this 
chapter). Ciliberti and Nicolaenko [31] used PCA for quantifying the number of degrees of 
freedom in spatially extended systems. Since these degrees of freedom can be directly 
associated with the fractal dimension or Lyapunov exponents of the underlying dynamical 
system [32,33,34], it is justified to interpret the number of dynamically relevant components 
in a multivariate record as a proxy for the effective dimensionality of the corresponding 
dynamical system. 

More formally, Zoldi and Greenside [35,36,37,38] suggested using PCA for determining the 
number of degrees of freedom in spatially extended systems by considering the minimum 
number of principal components required to describe a fraction f (0<f<1) of a multivariate 
record. Let i2, i=1,…,N, again be the non-negative eigenvalues of the associated correlation 
matrix S given in descending order. The aforementioned number of degrees of freedom, 
which is referred to as the KLD dimension, can then be defined as follows [23]: 

  2 2
1 1( ) min .p N

KLD i ii iD f p f 
 

     (6) 

For spatially extended chaotic systems, it has been shown that the KLD dimension increases 
linearly with the system size N, i.e. the number of simultaneously recorded variables [37]. 
This motivates the study of a normalized measure, the KLD dimension density  

 / ,KLD KLDD N   (7) 

instead of DKLD itself. 

3.3. LVD dimension density 

While the KLD dimension density can be widely applied for characterizing complex spatio-
temporal dynamics based on large data sets (i.e. both N and T are typically large), it reaches 
its conceptual limits when being applied to multivariate data sets with a small number of 
simultaneously measured variables (small N), or used for studying non-stationary dynamics 
in a moving-window framework (small T). On the one hand, small N implies that KLD can 
only have very few distinct values (i.e. multiples of 1/N), so that small changes in the 
covariance structure of the considered data set may lead to considerably large changes of 
the value of this measure. On the other hand, short data sets (small T) imply problems 
associated with the statistical estimation of correlation coefficients between individual 
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variables (particularly large standard errors and the questionable reliability of the Pearson 
correlation coefficient as a measure for linear interrelationships in the presence of non-
Gaussian distributions). However, both cases can have a considerable relevance in the field 
of geoscientific data analysis. 

As an alternative, Donner and Witt [11,23,24,25] suggested studying the characteristic 
functional behavior of KLD in dependence on the explained variance fraction f. Specifically, 
if the residual variances decayed exponentially, i.e. 

 2 2
1 1( ) 1 exp ,p N

r i ii i
pV p
N

  
 

 
    

 
   (8) 

the KLD dimension density would scale as 

   ( )ln(1 ) for [0, ].KLD f f         (9) 

in the limit of large N. The resulting coefficient (f) can be understood as characterizing the 
effective dimensionality of the system. The derived quantity  

 10* ( ) / logf e   (10) 

(the dependence on f will be omitted for brevity from now on) has been termed the linear 
variance decay (LVD) dimension density of the underlying data set. Its estimation by means 
of linear regression according to Equation (9) has been discussed in detail elsewhere [11,25]. 
It should be mentioned that * does not yet give a properly normalized dimension density 
with values in the range between 0 and 1, which can already be observed for simple 
stochastic model systems [23,25]. However, using the limiting cases of identical (lowest 
possible value min) and completely uncorrelated (highest possible value max) component 
time series, one can derive analytical boundaries and properly renormalize the LVD 
dimension density to values within the desired range [39] as 

 min

max min

* *
* *LVD
 


 





. (11) 

It shall be noted that using the LVD dimension density instead of the KLD dimension 
density solves the problem of discrete values in the limit of small N, but still shares the 
conceptual limitations with respect to the limit of small T. As another positive feature, LVD 
has a continuous range and a much smaller variability with f than KLD. This variability is 
mainly originates from insufficiencies of the regression model (Equation (8)) and would 
vanish in case of large N and an exactly exponential decay of the residual variances, which is 
a situation that is, however, hardly ever met in practice [27]. 

Possible modifications of the LVD dimension density approach include the consideration of 
alternative measures of pair-wise statistical association, such as Spearman’s rank-order 
correlation or phase synchronization indices [40,41], which may be of interest in specific 
applications. Although the formalism described above can applied in exactly the same way 
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to such matrices of similarity measures, the statistical meaning of the corresponding 
decomposition is not necessarily clear. 

3.4. Dimension densities from univariate time series 

The previously discussed approach can be easily modified for applications to univariate 
time series [42]. For this purpose, the correlation matrix S of the multivariate record is 
replaced by the Toeplitz matrix of auto-correlations estimated from a univariate data set. In 
other words, the PCA commonly utilized for defining the KLD and LVD dimension 
densities is replaced by an SSA step (i.e. a “PCA for univariate data”). 

As a particular characteristic of the resulting “univariate dimension densities”, it should be 
emphasized that the obtained results crucially depend on the particularly chosen 
“embedding” parameters, i.e. the “embedding dimension” N and time delay . In case of 
SSA-based methods, it is common to use an “over-embedding”, i.e. a number of time-shifted 
replications of the original record that is much larger than the actual supposed 
dimensionality of the studied data. Since serial correlations usually decay with increasing 
time delay, increasing N beyond a certain value (i.e. adding more and more dimensions to 
the embedded time series) will not change the number of relevant components in the record 
anymore. As a consequence, LVD asymptotically takes stationary values. In turn, selecting 
the “embedding delay”  allows studying the dynamical complexity of time series on 
various time-scales (i.e. from the minimum temporal resolution of the record to larger scales 
limited only by the available amount of data). Consequently, LVD can change considerably 
as  is varied. 

3.5. Application: Surface air temperatures 

For the purpose of discussing measures of dimensionality based on the auto-covariance 
structure of an observational record, it is useful to first examine the auto-correlation 
function itself. As a first example, let us consider again the daily mean temperature record 
from Potsdam, Germany (Figure 4a). For this time series, the auto-correlations decay within 
only about 7-10 days to values below 0.2 (Figure 4b). Consequently, using short time delays 
(below about one week) for embedding temperature records leads to components with 
considerable mutual correlations. In this case, one can expect a low LVD dimension density, 
since the information contained in one of the embedded components is already largely 
determined by the other components. In turn, for larger delays, the embedded components 
become approximately linearly independent of each other, implying that since correlations 
are generally weaker, more components need to be taken into account for explaining a given 
fraction of variance from the multivariate embedded record. Hence, the LVD dimension 
density should considerably increase with the delay. Indeed, this expectation is confirmed 
by Figure 4c, which displays a sharp increase of LVD with increasing embedding delay  
especially at the scales below one week, whereas there is a saturation for larger delays at 
values rather close to one. 
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Figure 4. (a) Daily mean surface air temperature record (raw data) from Potsdam, Germany. (b) 
Corresponding auto-correlation function after de-seasoning. (c) Dependence of the (normalized) LVD 
dimension density (f=0.9) on the embedding parameters dimension and delay. 

Another interesting feature can be observed in the behavior of the LVD dimension density 
with increasing embedding dimension N (Figure 4c). For small delays (i.e. time scales with 
considerable serial correlations within the observational record), LVD increases with 
increasing N towards an asymptotic value that can be well approximated by estimating this 
measure for large, but fixed N. In contrast, for large delays, we find a decrease of the 
estimated LVD dimension density with increasing N without a marked saturation in the 
considered range of embedding dimensions. A probable reason for this is the insufficiency 
of the underlying exponential decay model. In fact, the exact functional form of the residual 
variances for random matrices clearly differs from an exponential behavior, but displays a 
much more complicated shape [27]. Furthermore, it should be noted that as both delay and 
embedding dimension increase, the number of available data decreases as Teff=T-(-1)N, 
which can contribute to stronger statistical fluctuations (however, the latter effect is most 
likely not relevant in the considered example). For intermediate delays, one can thus expect 
a certain crossover time scale between both types of behavior, which is related to the typical 
time scale of serial correlations. 
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Figure 5. From left to right: AR[1] parameter 1 and the LVD dimension density LVD obtained with 
N=30 and =1 day and 14 days, respectively, for the daily mean temperatures over Germany (f=0.9). 

In order to further support these findings, Figure 5 shows the spatial pattern displayed by 
the LVD dimension density at all 2342 stations. For larger embedding delays (right panel), 
the components of the reconstructed multivariate record are in reasonable approximation 
linearly independent, resulting in high values of the LVD dimension density close to 1 (the 
limiting case for perfectly uncorrelated records). However, one can observe a marked 
West/East gradient with high values of LVD in the western and central part and much lower 
values in the eastern part of Germany. Referring to the interpretation of this measure, this 
finding could indicate that the temporal correlations decay slower in the eastern part that is 
subject to a more continental climate which typically varies on longer time scales than a 
marine climate present in the western part of the study area. It should be emphasized that 
the general spatial pattern closely resembles the behavior of the fractal dimension D0  
(Figure 3b). 

In turn, for low embedding delays (1 day), the observed spatial pattern is more complex 
with more fine-structure, yielding enhanced values (though still indicating considerable 
correlations) in the eastern and western parts of Germany and lower values in central 
Germany in a broad band from North to South, as well as in the southeastern part. The 
qualitative pattern again resembles that of the fractal dimension D0 (Figure 3a), with the 
exception that the enhanced values in the eastern part are less well-expressed, whereas the 
contrasts in the western part are considerably stronger.  

In general, both characteristics display similar differences between the behavior on short 
and longer time scales, which are clearly related to the presence of auto-correlations with a 
spatially different decay behavior. Regarding the short-term dynamics, this statement is 
supported by the fact that a qualitatively similar spatial pattern as for the considered 
dimension estimates (but with opposite trend) can be obtained by coarsely approximating 
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the temperature records by a first-order auto-regressive (AR[1]) process Xt=1Xt-1+t, where 
t is Gaussian white noise (Figure 5, left panel). In fact, for an AR[1] process, the Toeplitz 
matrix of auto-correlations has a very simple analytical form, Sij=1|i-j|. Even though there is 
no closed-form solution for its eigenvalues [43], one can easily show by means of numerical 
simulations that the resulting LVD dimension density for such processes depends hardly on 
N, but strongly on the value of the characteristic parameter 1. Since the latter is related to 
the time-scale of the associated exponential decay of auto-correlations as t*=-1/log 1, low 
values of 1 give rise to a fast decay and, hence, high values of the LVD dimension density, 
whereas the opposite is true for high values close to 1 (see Figure 6). This behavior is in 
excellent agreement with the theoretical considerations made above. 

 
Figure 6. Dependence of the LVD dimension density on the characteristic parameter 1 of an AR[1] 
process (f=0.9). The displayed error bars indicate the standard deviations (+/- 1) obtained from 
estimating LVD for various embedding dimensions N=2,...,100. 

4. Complex network-based approaches 

These days, the analysis of network structures is a common task in many fields of science 
such as telecommunication or sociology, where physical or social interactions (wires, 
friendships, etc.) can be mathematically described as a graph. When the corresponding 
connectivity pattern contains a certain number of interacting units (referred to as network 
vertices or nodes) and is neither completely random nor fully regular (e.g. a chain or lattice), 
but displays some less obvious type of structure, the resulting system is called a complex 
network. The structural features of such systems can be described using the rich toolbox of 
quantitative characteristics provided by the so-called complex network theory [44,45,46,47]. 

Besides the analysis of network structures based on a clearly “visible” substrate (such as 
infrastructures or communication systems), it has been demonstrated by various authors 
that complex network approaches can be useful for extracting and understanding the 
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dynamical backbone of systems composed of a large number of dynamically interrelated 
units or variables, such as financial markets [48], the neuro-physiological activity of different 
regions of the brain [49], or the functioning of the climate system [50,51,52,53]. In the 
aforementioned cases, a network structure is identified using suitable measures of statistical 
association (e.g., linear Pearson correlation or nonlinear mutual information) between 
records of activity in different areas or of different variables or coupled units. Information 
on the underlying functional connectivity of the large-scale system is inferred by 
considering only sufficiently strong interrelationships and studying the set of such 
connections among the variety of subsystems. 

In parallel to the development of complex network methods as a complementary tool for 
multivariate time series analysis, a variety of different approaches has been suggested for 
studying single univariate time series from a network perspective [54]. Existing approaches 
include methods based on transition probabilities after coarse-graining the time series’ 
range or the associated reconstructed phase space [55], convexity relationships between 
different observations in a record [56], or certain notions of spatial proximity between 
different parts of a trajectory [57,58,59,60,61,62,63], to mention only the most prominent 
existing concepts in this evolving area of research (for a more detailed recent review, see 
[54]). For two of these approaches, the so-called visibility graphs and recurrence networks 
discussed below, it has been shown that some of the resulting network properties can be 
related to the concept of fractal dimensions or, more general, scaling analysis. In the 
following, the corresponding recent findings are summarized. 

4.1. Visibility graph analysis 

Visibility graphs have been originally introduced as a versatile tool for studying visibility 
relationships between objects in architecture or robot motion planning [64,65,66,67]. Lacasa 
and co-workers [55] suggested transferring this idea to the analysis of time series from 
complex systems, where local maxima and minima of the considered observable play the 
role of hills and valleys in a one-dimensional landscape. Specifically, in a visibility graph 
constructed from a univariate time series, the individual observations are taken as network 
vertices, and edges are established between pairs of vertices xi=x(ti) and xj=x(tj) that are 
“mutually visible” from each other, i.e. where for all xk=x(tk) with ti<tk<tj the following local 
convexity condition applies: 

   .j k
k j i j

j i

t t
x x x x

t t


  


 (12) 

When describing the connectivity of this network in the most common way in terms of the 
binary adjacency matrix Aij (here, Aij=1 implies that there exists an edge between vertices i 
and j), the latter can be consequently expressed as follows: 

  1
1 ,j j kVG VG

ij ji j i j kk i
j i

t t
A A x x x x

t t


 

 
      
  

  (13) 



 
Fractal Analysis and Chaos in Geosciences 16 

where  denotes the Heaviside function defined in the usual way. 

As a simplification of the standard visibility graph algorithm, it can be useful considering 
the so-called horizontal visibility graph, in which the connectivity is defined according to 
the horizontal visibility between individual vertices, i.e. there is an edge (i,j) between two 
observations xi and xj if for all k with ti<tk<tj, xk<min(xi,xj). Consequently, the associated 
adjacency matrix reads 

    1
1 .jHVG HVG

ij ji i k j kk iA A x x x x
 

       (14) 

In other words, the horizontal visibility graph encodes the distribution of local maxima in a 
time series (i.e. short-term record-breaking events). Due to its simpler analytical form, it has 
the advantage that certain basic network properties can be more easily evaluated 
analytically than for the standard visibility graph. 

As a particularly remarkable result, it has been demonstrated both analytically and 
numerically that for fractal as well as multifractal processes, the degree distributions p(k) of 
visibility graphs, i.e. the probabilities of finding vertices with a given number of connections 
(degree) 

 ,i ijjk A  (15) 

exhibit a power-law (commonly called “scale-free property” in complex network theory) 
with a characteristic scaling exponent that is directly related to the associated Hurst 
exponent  H [68,69]. Moreover, it can be shown that for a wide class of such processes, the 
Hurst exponent is itself related with the fractal dimension D0 as D0=2-H, however, this 
relationship is not universal [70]. In this spirit, the scaling exponent obtained from visibility 
graphs can be considered as an alternative estimate of the fractal dimension. In turn, besides 
the validity of the aforementioned relationship between Hurst exponent and fractal 
dimension for the specific data set under study, the possible improvements with respect to 
computational efforts, required data volume and related issues still need to be 
systematically compared with those of existing estimators of the Hurst exponent. 

In addition to the potentially ambiguous interdependence between Hurst exponent and 
fractal dimension, using visibility graph approaches for the purpose of estimating fractal 
dimensions from geoscientific time series may be affected by a further problem. Towards 
the ends of a time series, there is a systematic tendency to underestimate the actual degree of 
vertices just due to a lower number of possible neighbors [71]. While this feature will have 
negligible influence for long time series, it may considerably contribute to a bias in the 
degree distribution estimated from small data sets common to many geoscientific problems. 
In turn, a potential advantage of visibility graphs is that they do not require uniform 
sampling in time, which makes them applicable to typically problematic types of data such 
as paleoclimate records [71] or even marked point process data such as earthquake 
catalogues [72]. 
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4.2. Recurrence network analysis 

Recurrence networks are another well-studied approach for transforming time series into an 
associated complex network representation [60,61,62,63]. In contrast to visibility graphs, the 
basic idea is reconstructing the spatial structure of the attractor underlying the observed 
dynamics in the corresponding phase space. That is, given a univariate record the 
dynamically relevant variables need to be reconstructed by means of time-delay embedding 
first if necessary. Consequently, the first step of recurrence network analysis consists of 
identifying the appropriate embedding parameters by means of the corresponding standard 
techniques. Having determined these parameters, time-delay embedding is performed. For 
the resulting multivariate time series, the mutual distances between all resulting sampled 
state vectors (measured in terms of a suitable norm in phase space, such as Manhattan, 
Euclidean, or maximum norm) are compared with a predefined global threshold value . 
Interpreting the state vectors as vertices of a recurrence network, only such pairs of vertices 
are connected that are mutually closer than this threshold, resulting in the following 
definition of the adjacency matrix: 

   ,RN
ij i j ijA x x       (16) 

where ij denotes Kronecker’s delta defined in the usual way. To put it differently, in a 
recurrence network only neighboring state vectors taken from the sampled trajectory of the 
system under study are connected. In this spirit, the recurrence network forms the structural 
backbone of the associated dynamical system. Moreover, since no information on temporal 
relationships enters the construction of the recurrence network, its study corresponds to a 
completely geometric analysis method. 

The structural properties of recurrence networks have already been intensively studied. 
Relating to the degree distributions, it has been demonstrated analytically as well as 
numerically that the presence of a power-law-shaped singularity of the invariant density 
p(x) of the studied dynamical system is a necessary condition for the emergence of scale-free 
degree distributions, the scaling exponent of which is, however, not necessarily associated 
with the system’s fractal dimension, but with the characteristic behavior of the invariant 
density near its singularity [73]. More generally, recurrence networks are a special case of 
random geometric graphs aka spatial networks, where the network vertices have a distinct 
position in some metric space and the connectivity pattern is exclusively determined by the 
spatial density of vertices and their mutual distances [74]. The latter observation allows 
calculating expectation values of most relevant complex network characteristics given that 
the invariant density is exactly known or can at least be well approximated numerically [75]. 
Specifically, the transitivity properties of recurrence networks on both local and global scale 
can be computed analytically for some simple special cases [75]. A detailed inspection of 
these properties demonstrates that the global recurrence network transitivity 
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can be considered as an alternative measure for the effective dimensionality of the system 
under study [76]. In contrast to established notions of fractal dimensions, the estimation of 
the associated transitivity dimension 

 ( ) log ( ) / log(3 / 4)TD     (18) 

does not require considering any scaling properties of some statistical characteristics. The 
definition in Equation (18) is motivated by the fact that at least using the maximum norm, 
for random geometric graphs in integer dimensions d the expectation value of the network 
transitivity scales as (3/4)-d [74,76]. However, it should be noted that the proper evaluation of 
the transitivity dimension is challenged by the fact that it alternates between two asymptotic 
values, referred to as upper and lower transitivity dimension, as the recurrence threshold  
is varied [76]. 

According to the aforementioned interpretation of the transitivity properties, it has been 
found that the associated local clustering coefficient providing a measure of transitivity on 
the level of an individual vertex is a sensitive tracer of dynamically invariant objects like 
supertrack functions or unstable periodic orbits [54,60,61,76]. In turn, global clustering 
coefficient (i.e. the arithmetic mean value of the local clustering coefficients of all vertices in 
the recurrence network) and network transitivity track changes in the dynamical complexity 
of a system under study that are related with bifurcations [10,61,77,78] or subtle changes in 
the dynamics not necessarily captured by traditional methods of time series analysis [10,79]. 
In a similar fashion, some other network measures based on the concept of shortest paths on 
the graph can be utilized for similar purposes. In summary, it has to be underlined that the 
recurrence network concept has already demonstrated its great potential for studying 
geoscientific time series, however, this potential has not yet been fully and systematically 
explored for different fields of geosciences. 

5. Complexity and dimensionality analysis in paleoclimatology 

Unlike for data obtained from meteorological observatories or climate models, the 
appropriate statistical analysis of paleoclimate proxy data is a challenging task. Particularly, 
a variety of technical problems arise due to the specific properties of this kind of data [24]. 

Firstly, paleoclimate data sets are usually very noisy due to significant measurement 
uncertainties, high-frequency variations, secondary (non-climatic) effects and the 
aggregation of the measurements over certain, not necessarily exactly known time intervals.  

Secondly, in Earth history environmental conditions have changed both continuously and 
abruptly, on very long time-scales as well as on a set of different ''natural'' frequencies the 
influence of which has changed with time. Especially during the last million years, there has 
been a sequence of time intervals with cold (glacial) and moderate (interglacial) global climate 
conditions, which can be interpreted as disjoint states of the global climate system. Even more, 
these two types of states have alternated in a way that displays some complex regularity, i.e., 
the timing of the (rather abrupt) transitions between subsequent states (glacial terminations 
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and inceptions) has been controlled by dominating frequencies of variations in the Earth’s 
orbital parameters [80], which is commonly referred to as Milankovich variability. As a 
consequence of these multiple transitions, paleoclimate time series are intrinsically non-
stationary with respect to variability on a variety of different time scales.  

Finally, in the case of sedimentary and ice core sequences as the most common types of 
proxy records, the core depth has to be translated into an age value with usually rather 
coarse and uncertain age estimates [81,82]. Since the rate of material accumulation has 
typically varied with time as well, an equidistant sampling along the sequence does usually 
not imply a uniform spacing of observations along the time axis. Both unequal spacing of 
measurements and uncertainties in both timing and value pose additional challenges to any 
kind of time series analysis approach applied to paleoclimate data. 

5.1. Analysis of time series with non-uniform sampling 

As stated above, non-uniform sampling is an inherent feature of most paleoclimate records. 
Hence, the appropriate statistical analysis of such records requires a careful specific 
treatment, since standard estimators of even classical and conceptually simple linear 
characteristics are not directly applicable (or at least do not perform well) in case of 
unequally spaced time series data. Consequently, in the last decades there has been an 
increasing interest in developing alternative estimators that generalize the established ones 
in a sophisticated way. 

Traditionally, many approaches for analyzing paleoclimate time series have implicitly 
assumed a linear-stochastic behavior of the underlying system, i.e. that the major features of 
the records can be described by ''classical'' statistical approaches like correlation or spectral 
analysis [83,84]. In particular, novel estimators for both time and frequency domain 
characteristics have been developed which do not require a uniform sampling 
[85,86,87,88,89]. In turn, many recent studies in the field of paleoclimatology, including such 
dealing with sophisticated statistical methods [84,90], have typically made use of 
interpolation to uniform spacing. It has to be underlined that this strategy, however, 
disregards important conceptual problems such as the appearance of spurious correlations 
in interpolated paleoclimate data [86] or the presence of time-scale uncertainty. At least the 
former problem can be solved by using improved more generally applicable estimators, 
whereas the impact of time-scale uncertainty can be estimated using resampled (Monte 
Carlo) age models and distributions of statistical properties estimated from ensembles of  
perturbed age models consistent with the original one [71]. 

Moreover, classical statistical methods such as correlation or spectral analysis are typically 
based on the assumption that the observed system is in an equilibrium state, which is 
reflected by the stationarity of the observed time series. However, this stationarity condition 
is usually violated in the case of paleoclimate data due to the variable external forcing (solar 
irradiation) and multiple feedback mechanisms in the climate system that drive the system 
towards the edge of instability. Hence, more sophisticated methods are required allowing to 
cope with non-stationary data as well [91]. One prominent example for such approaches is 
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wavelet analysis [92,93,94], which allows a time-dependent characterization of the 
variability of a time series on different time scales. As for the classical methods of correlation 
and spectral analysis designed for stationary data, estimators of the wavelet spectrogram are 
meanwhile also available for unevenly sampled data, for example, in terms of the weighted 
wavelet Z transform  [95,96,97,98,99,100], gapped wavelets [101,102], or a generalized multi-
resolution analysis [103,104]. Similar as for classical spectral analysis, such wavelet-based 
methods often exhibit scaling laws associated with fractal or multifractal properties of the 
system under study. 

5.2. Fractal dimensions and complexity concepts in paleoclimate studies 

The question of whether climate can be approximately described as a low-dimensional 
chaotic system has stimulated a considerable amount of research in the last three decades. 
Notably, much of the corresponding work has been related with the study of paleoclimate 
records. As a prominent example, the seminal paper “Is there a climatic attractor?” by 
Nicolis and Nicolis [105] considered the estimation of the correlation dimension D2 of the 
oxygen isotope record from an equatorial Pacific deep-sea sediment core. A direct follow-up 
[106] presented a thorough re-analysis of the same record utilizing the information 
dimension D1. Both manuscripts started an intensive debate on the conceptual as well as 
analytical limits of fractal dimension estimates for paleoclimate time series. Grassberger 
[107] analyzed different data sets and could not find any clear indication for low-
dimensional chaos. This absence of positive results has been at least partially triggered by the 
problematic properties of paleoclimate records, particularly the relatively small amount of 
data and their non-uniform sampling resulting in the need for interpolating the observational 
time series. Grassberger’s results were confirmed by Maasch [108] who analyzed 14 late 
Pleistocene oxygen isotope records and concluded that “the dimension cannot be measured 
accurately enough to determine whether or not it is fractal”. Fluegeman and Snow [109] used 
R/S analysis to estimate the fractal dimension D0 of a marine sediment record via the 
associated Hurst exponent H, whereas Schulz et al. [110] used the Higuchi estimator for a 
similar purpose. Mudelsee and Stattegger [111,112,113] estimated the correlation dimension of 
various oxygen isotope records using the classical Grassberger-Procaccia algorithm. 

Due to the inherent properties of paleoclimate data, estimating fractal dimensions and 
related complexity measures is a challenging task. Instead of using the classical fractal 
dimension concepts, in the last years it has therefore been suggested to consider alternative 
methods that allow quantifying the dimensionality of such records. Donner and Witt 
[11,23,24] utilized the multivariate version of the LVD dimension density (see Section 3.3) 
for studying long-term dynamical changes in the Antarctic offshore sediment 
decomposition associated with the establishment of significant oceanic currents across the 
Drake passage at the Oligocene-Miocene boundary. In a similar way, Donges et al. used 
recurrence network analysis for sliding windows in time for identifying time intervals of 
subtle large-scale changes in the terrigenous dust flux dynamics off North Africa during the 
last 5 million years [10,79]. These few examples underline the potentials of the 
corresponding approaches for a nonlinear characterization of paleoclimate records. 
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5.3. Perspectives and challenges 

Both classical as well as novel approaches to characterizing the dimensionality of 
paleoclimate records still face considerable methodological challenges. While established 
methods typically rely on the availability of long time series, this requirement can be relaxed 
when using correlation- or network-based approaches, which are in principle suited for 
studying nonlinear properties in a running windows framework and thus characterizing the 
time-varying complexity of environmental conditions encoded in the respective proxy 
variable under study. However, some methodological challenges persist, which have been 
widely neglected in the recent literature. 

Most prominently, the exact timing of observations is of paramount importance for 
essentially all methods of time series analysis. In the presence of time-scale uncertainty 
inherent to most paleoclimate records, this information is missing and can only be 
incorporated into the statistical analysis by explicitly accounting for the multiplicity of age-
depth relationships consistent with the set of available dating points. The latter can be 
achieved by performing the same analysis for a large set of perturbed age models generated 
by Monte Carlo-type algorithms, or by incorporating the associated time-scale uncertainty 
by means of Bayesian methods. However, an analytical theory based on the Bayesian 
framework can hardly be achieved for all possible methods of time series analysis, so that it 
is most likely that one has to rely on numerical approximations. 

Even when neglecting time-scale uncertainty, the non-uniformity of sampled data points in 
time typically persists. Among all methods discussed in this chapter, only the visibility 
graph approach is able by construction to directly work with arbitrarily sampled data. 
However, this method is faced with the conceptual problem of how to treat values between 
two successive observations that have not been observed for whatever reason. Donner and 
Donges [71] argued that simply neglecting such “missing values” may account for a 
considerable amount of error in all relevant network measures, so that the meaningful 
interpretability of the obtained results could become questionable. 

For the other mentioned approaches, time-delay embedding is a typical preparatory step for 
all analyses. Since interpolation can result in spurious correlations [86] or at least ambiguous 
results depending on the specific procedure, alternatives need to be considered for 
circumventing this problem. In the case of uni- and multivariate LVD dimension density, it 
is possible to directly utilize alternative estimators of the correlation function, e.g. based on 
suitable kernel estimates [86], for obtaining the correlation matrix of the record under study. 
For methods requiring attractor reconstruction (e.g. the Grassberger-Procaccia algorithm for 
the correlation dimension or recurrence network analysis), there are prospective approaches 
for alternative embedding techniques, e.g. based on Legendre coordinates [114], that shall be 
further investigated in future work. 

6. Conclusions 

Since the introduction of fractal theory to the study of nonlinear dynamical systems, this 
field has continuously increased its importance. Besides providing a unified view on scaling 
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properties of various statistical characteristics in space or time that can be found in many 
complex systems, fractal dimensions have demonstrated their great potential to 
quantitatively distinguish between time series obtained under different conditions or at 
different locations, thus contributing to a classification of behaviors based on nonlinear 
dynamical properties. However, as it has been demonstrated both empirically and 
numerically, established concepts of fractal dimensions reach their fundamental limits when 
being applied to relatively short and noisy geoscientific time series, e.g. climate records. As 
potential alternatives providing measures with comparable meaning, but different 
conceptual foundations, two promising approaches based on the evaluation of serial 
correlations and complex network theory have been discussed. Although both concepts still 
need to systematically prove their capabilities and require further methodological 
improvements as highlighted in this chapter, they constitute promising new research 
avenues for future problems in climate change research, other fields of geosciences, and 
even complex systems sciences in general. 
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