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Abstract. Statistical bias correction is commonly applied 1 Introduction
within climate impact modelling to correct climate model

data for systematic deviations of the simulated historical datgq ;..\ -+« simulations of historical periods often show system-
from observations. Methods are based on transfer functiong; ye\iations from the observed climate resulting, for exam-

generated to map the d'St”bUt,'on of the simulated historl- le, from imperfect model representations of the atmospheric
cal data to that of the observations. Those are subsequentg

lied he f L H hysics, incorrect initialisation of the model or errors in the
applie to corrept the future projections. Here, WE present, rameterisation chaicfiret et al.2012. These deviations
the bias correction method that was developed within ISI-

MIP. the first Inter-Sectoral | ¢ Model Int ) must be treated carefully in the context of climate impact
» the Tirst Inter-Sectoral mpact Model Intercomparison g, ations, because the predicted impacts depend on the

_Prolect. IS.I'MIP IS de5|gned_ to synthesise |mpa_ct projectionsyiasisical properties of the climate input. While considering
in the agriculture, water, biome, health, and infrastructure

. ! anomalies of impact projections with respect to a reference
sectors at different levels of global warming.

) . . eriod might provide a way out in case of a linear depen-
Bias-corrected climate data that are used as input for th gt p y P

. ) . i ence of impacts on climate input data, in many other cases
impact simulations could be only provided over land aréaSypis is not appropriate, e.g. when impacts are activated when

To ensure con_5|stency .W'th the glpbal (land + ocean) temloerE:ertain absolute climatic thresholds are exceeded. Moreover,
ature information the bias correction method has to preserv?mpact models (e.g. crop models, hydrological models, etc.)
the warmlnt(_;]] S|gEaI.IHterek\]/ve pres.ent thetﬁlpptlled met?od tha{) ten require driving climate data that is statistically similar

preserves the absolute changes in monthly temperature, ang,q opservational datasets with which they were calibrated.

relative changes in monthly values of precipitation and the Bias correction methods are desianed to bridae the gap be-
other variables needed for ISI-MIP. The proposed method-t g g gap

e ) ween the information that is provided by the climate mod-
ology repres_ent_s a modification of the transfer funcnon .ap'elling community and the climate data necessary for quanti-
proach applied in the_ Water Model Intercompanson ProJecttative climate impact projections. Basic bias correction meth-
(Water-MIP). Correction of the monthly mean is followed by ods include an adjustment of the mean value by adding a
correction of the daily variability about the monthly mean.

temporally constant offset, or by applying an associated cor-

Besides the general idea a_lnd technical dete_;uls of the _ISI'rection factor to the simulated data. This additive or multi-
MIP method, we show and discuss the potential and limita-

i f th lied bi " | doul hile th plicative constant quantifies the average deviation between
lons of the applied bias correction. In particuiar, While the y,o o jated and the observed time series over the histor-
trend and the long-term mean are well represented, limita

i ith ds 1o the adiust t of th Hbilit ) t"lcal period. Since the constant is time independent such a
lons with regards to the adjustment ot the variability persist oy preserves the trend (in absolute terms for an addi-
which may affect, e.g. small scale features or extremes.

tive approach and in relative terms for a multiplicative ap-
proach) whilst adjusting the mean value. However, it does
not necessarily correct the variability of the data. Hence, in
many cases differences in the variance or even higher mo-
ments of the simulated data are adjusted to the observations
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220 S. Hempel et al.: A trend-preserving bias correction — the I1SI-MIP approach

by parametric or non-parametric (empirical) quantile map- 2. Many bias correction techniques include an implicit
ping Boe et al, 2007 Piani et al, 2010 ThemelI et aJ. downscaling of the simulated data to the potentially
2011). Non-parametric methods have been shown to be very  higher resolution of the observational data. While a sim-
successful in mapping simulations to the present climate ow-  ple interpolation to the finer grid would not account for
ing to there flexibility Gudmundsson et ak012). However, the increase in variability expected for the higher res-
to correct values that fall outside the calibration range addi- olution data, an appropriate increase can be achieved
tional assumptions have to be made. While this is less critical by a bias correction method that adjusts the variance.
as long as the correction is applied to historical simulations In the general case, however, this adjustment will be
it might be an oversimplification when it comes to its appli- limited since the temporal structure is still determined
cation to future climate data, where a substantial portion of by the dynamics represented in the larger grid box and
the event distribution may be shifted outside the calibration do not describe local phenomenons, e.g. small scale
range. For this reason we prefer a parametric approach for  turbulence.

our application.

Bias correction, however, must not be confused with a spa-
tial downscaling. The correction of the misrepresented local
variability is limited, since a disaggregation of the simulation
data cannot be performed by a purely deterministic approach.
If the resolution of the simulations and observations are con-
siderably different high extremes are usually exaggerated o the other hand, there are several shortcomings of sta-
while Iow events are overcorrecte_Mi(iraun 2013. More- tistical bias correction:
over, whilst adequately representing the mean state of the
observed period and the variability at a particular time scale, 1. Stationarity in the bias in the historical data with respect
these bias correction methods may change the climate signal, to the future data is assumed when applying the bias
or trend, arising from the climate simulations. The impact of correction to future periods, which introduces additional
bias correction on the climate signal is only rarely explicitly uncertainty Raisanen and Rat2012 Maraun 2012.
quantified and whether or not adjustment of the climate sig-
nal is advisable remains a topic of discussi&iet et al.
2012. In any case bias correction is tantamount to introduc-
ing a new level of uncertainty comparable in magnitude to the

spregd of the climate projec.tions across the climate models 3 giatistical bias correction (e.g. by adding the mean de-
or with regards to the emission pathwayagemann et al. viation from the observed data to the simulated one)
2011). The choice of an appropriate methodology depends e destroys the physical consistency of the differ-
strongly on the context. A review of state-of-the-art bias cor- ent climate variables. For example, after the application

rection methods is given Hylaraun et al(2010. - of bias correction the temperature might be sub-zero,
Statistical bias correction of simulation data is broadly ap- whereas rainfall is not converted into snowfall.

plicable to the climate impacts researétopock et al.1993
Berg et al, 2003 Ines and Hanser2006 Hagemann et gl. While the second issue can be tackled to a certain extent
2012, Dosio and Paruold@011), since it offers crucial advan- by testing the sensitivity to different sources of observational
tages for impact modelling applications compared to usingdata, differentiation between statistical and phenomenolog-
raw climate model output: ical errors is not straightforward. With respect to the third
o ) ) N issue, bivariate parametric quantile mapping was recently in-
1. Stapsucal bias correction methods facmtate thg COM-roduced byPiani and Haertef2012) to provide consistency
parison of observed and simulated impacts during the,enveen temperature and precipitation corrections (not im-
historical reference period and a continuous trans't'onplemented in our present study). However, no multivariate

into the future. Without such an adjustment of the mean nrq4ch exists that preserves the consistency between more
behaviour in the historical period, future impacts that 41 two variables.

depend on the exceedance of critical absolute thresh- |, regional studies a way to overcome this third major
olds of, for example, temperaturBdtter et al, 2013, geficit is to use dynamical downscaling in addition to sta-
cannot be accurately described. Studying the change ifgtica| bias correction. In this approach, physical consis-
impacts starting from the reference level provided by gncy is ensured by bias-correcting low resolution model data
a climate model would in general result in @ mistim- o 4" seq surface temperatures) in order to provide correct
ing of the threshold exceedance under global warmingyqnqaries. Subsequently this data is used to drive a higher
scenarios. resolution regional climate model (RCM) or a global circu-

lation model (GCM) with locally enhanced resolutiodu

and Yang 2012 Holland et al, 201Q Patricola and Cogk

3. Bias correction also serves as a way to adjust the simu-
lated climate data to the more detailed altitude-stratified
information associated with observational data, so long
as changes in mean and variability are resolved in the
observational dataset.

2. The quality of the bias-corrected simulation data is lim-
ited by both the observational dataset and the represen-
tation of physical processes within the climate model.
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201Q Cook and Vizy 2008 Sato et al.2007 Wu and Lynch to positivity constraints for some variables, we preserve the
2000. This does not necessarily solve the problem since theelative rather than absolute trend in those cases. For the
RCM also has a bias, for example, caused by inconsistenciesame reason, other bias correction methods also applied mul-
between the physics of GCM and RCM, imperfect param-tiplicative correction factors instead of additive constants to
eterisation or incorrect energy balance closibrét et al. correct, for example, precipitation datm€¢s and Hansen
2012. However, the two-step procedure is expected to re-2006. A multiplicative correction of the monthly precipita-
duce the deviation between high-resolution simulations andion data ¢), and an additive correction of the temperature
observations while ensuring physical consistency of differentdata, conserve the hydrological sensitivity, i.e. the relative
climate variables as provided by the high resolution modelchange in precipitation [%] with respect to absolute temper-
(Ehret et al.2012. ature changes [K] at each grid point.

The Inter-Sectoral Impact Model Intercomparison Project In Sect.2 we describe the climate model and observa-
(ISI-MIP) is designed to provide a consistent setgtdbal tional datasets which are relevant for the ISI-MIP project.
impact simulations. Thus, within the ISI-MIP context a sim- The details of the ISI-MIP bias correction are outlined in
ilar regional approach is not feasible as the involved im- Sect.3. We explain our methodology and describe the prop-
pact models need climate input data that cover the entiresrties of the bias-corrected climate data exemplarily for the
global land area. The project relies on the relatively low- HadGEM2-ES GCM.
resolution GCM runs performed in the fifth phase of the Cou- In Sect.4 we demonstrate that the climate signal is pre-
pled Model Intercomparison Project (CMIPEaylor et al, served in comparison to the original method proposed by
2012Y). In that context, the described advantages of bias corPiani et al.(2010 and discuss how well the statistical mo-
rection are essential to the project, which is intended to syniments of the bias-corrected data match the observations dur-
thesise impact projections in multiple sectors at different lev-ing the reference period. In case of precipitation we compare
els of global warming. However, a complete bias correctionthe ISI-MIP dataset with an updated version (ISI-MIP ex-
directly from the simulations may not be advisable every-tended) where we improved the adjustment of the variability
where Eden et al.2012). There are regions where, e.g. the of daily data about the monthly mean and corrected a bug in
simulated precipitation is so wrong that a statistical bias cor-the code. This issue affects the variability of the daily data,
rection with a transfer function may result in an even worsebut not the correction of the monthly means (cf. SecR
dataset as some extremes are very much amplified in order tior the results of the extended algorithm compared to the
adjust the parameters of the distribution. Different thresholddSI-MIP precipitation).
are incorporated in our bias correction algorithm to restrict
the modifications in such cases. ) .

Moreover, the algorithm which we propose is designed to? Climate input data
preserve the long-term trend in the GCM data, and hencer
for example, its climate sensitivity. For some applications it
might be desirable to modify the trend of the GCM, however,
this introduces a new level of uncertainty that we would like gjmyations
to avoid within the ISI-MIP context. For temperaturg)(
conservation of the absolute trend is essential in ensuringye use data from five GCMs from the CMIP5

consistency between the projected global mean temperaturgchive as input: HadGEM2-ES, IPSL-CM5A-LR,
change (land + ocean), based on the non-bias-corrected datgROC-ESM-CHEM, GFDL-ESM2M, and NorESM1-M.
and the bias-corrected warming signal over land areas thathese five models were selected based on the availability
is used as input by the impact models, since no bias correcof daily data for the required variables covering the period
tion is performed over oceans. As ISI-MIP intends to quan-from 1 January 1950 to 31 December 2099 — historical and
tify the climate change impacts and the related uncertainty ag|| Representative Concentration Pathway (RCP) scenarios
different levels of global warming that aspect is particularly (Moss et al. 2010 — in the CMIP5 archive at the beginning
important in the project’s context and relevant for decision of the project.

makers wishing to better quantify possible consequences of The available climate model outputs are bi-linearly in-
specific temperature targets. In addition, modification of theterpolated in space to a 0.5 0.5 grid. The time series
(local and) global temperature trend would also modify theare linearly interpolated to the standard Gregorian calendar

climate sensitivity, which would not be well founded based (365 days per year p|u5 |eap dayg) wherever necessary.
on the available 40 yr observational dataset. More generally,

we choose to conserve the trend in other climate variables
in order to ensure a transparent method, with some control
over the GCM properties that are preserved. However, due 2syrface pressure is derived from sea-level pressure, tempera-

ture and height assuming adiabatic conditions, since no daily data
Lcf. http://cmip-pcmdi.linl.gov/cmip5/ was available for surface pressure in the CMIP5 archive.

he ISI-MIP dataset comprises bias-corrected daily data for
the variable$listed in Tablel.
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Table 1.Bias-corrected variables in the ISI-MIP dataset. simulated data about their monthly means to match the ob-
served daily variability. The monthly variability and mean

variable name abbreviation  symbol are corrected only using a constant offset or multiplicative
average temperature tas T correction f:_:lctor that corrects for long-term differences_ be-
minimum temperature tasmin T tween the simulated and observed monthly mean data in the
maximum temperatufe tasmax _ historical period. In this way the absolute or relative trend of
total precipitatioR pr P the simulation data is preserved.
snowfalP prsn S We present and discuss the properties of the bias-corrected
shortwave radiatich rsds _ temperature in the ISI-MIP dataset, and compare the results
longwave radiatiof rids — of two versions of the multiplicative algorithm exemplarily
near-surface wind speéd wind 1% for precipitation: a basic version that was used to produce the
near-surface eastward wind  uas K ISI-MIP climate input (hereafter denoted ISI) and a corrected
near-surface northward widd vas - and extended version (hereafter denoted ISle) that overcomes
surface pressu?e ps — several limitations in adjusting the daily variability. We fo-

ooy (mlioroatve. o (ot sccorde 10 e aoied b cus on the e>_<tendeq version, whilst noting (_:rucial departures
ctsrrecltilc\)ln)ép;(JrOL;cIE.ITh;:VIe?ét colugm Lefer)s to the lsygmbols usglsj Iin thelz from the basic version (Cf' Tabkfor comparison of the ex-
algorithmic description. tended algorithm with the I1SI-MIP dataset and the WATCH
approach — on which the ISI-MIP method is based).
The correction of the daily variability is described by
Observations calendar-month and grid-cell-specific transfer functions that
are applied to the daily simulated data. In what follows we
We use the WATCH Forcing Data (WFDVeedon et al.  select the April values for the grid cell corresponding to
2011 for the period from 1 January 1960 to 31 Decem- 55.7% N, 68.25 W (hereafter referred to as “example grid
ber 1999 (the reference period) as an observation-based regell”) for illustration of the method. Similar results can be
erence dataset. It is a combination of the ERA-40 daily datapbtained for other months and regions. We will not index
the 40yr reanalysis of the European Centre for Medium-the grid cell or the selected month for which the transfer
Range Weather Forecasts (ECMWF), and the Climate Refunction is created. Thus, let% denote the April value
search Unit TS2.1 dataset (CRU), that provides observedor yeari and day; at one particular grid cell of the sim-
time series of month-by-month variations in the climate overulated (data = GCM) or observational (data = WFD) time se-
the last century on a high resolution grid (9.5The ERA-40  ries, whereX =T for daily average temperature amdfor
dataset provides day-to-day variations but on a lower resoluprecipitation. In additionX?atadescribes the monthly mean
tion grid (2.5). Both datasets overlap for the 40 yr reference gt that grid cell. Residual data is denoted byf‘f‘@ while
period. '
The WFD are available on the 0.9rid over land area ) SGCM f s = GCM
points using the land-sea mask from the CRU, excludingd@t@ is denoted;7=™ (daily) or X;~™ (monthly).
Antarctica. It approximates the daily variability of different
climate variables. A correction for the elevation differences
between ERA-40 and CRU is included in the WFD. Addi- The first step, is to adjust for the long-term differences be-

tionally, the monthly mean for precipitation is corrected with yyeen the simulated and observed monthly mean data during
the Global Precipitation Climatology Centre full dataset ver- e historical period. The daily variability about the monthly
sion 4 (GPCC) to account for the systematic underestimation,aan remains unchanged at this stage.

of precipitation measurements in the WFD (efagemann

etal, 201). Thus, the WFD combines the daily statistics of 3.1.1 Temperature: additive correction

ERA-40 with the monthly mean characteristics of CRU and

GPCC datasets and represents a complete gridded observaer temperature we add to the entire time series a constant
tional dataset for bias correction of global climate data overoffset C that is equal to the average difference between the

(SX?J?“a refers to normalised data. Bias-corrected simulation

3.1 Correction of monthly mean data

land. observations and the simulations during the 40yr reference
period,
m=40 m=40
3 The trend-preserving bias correction method C = (Z TiW':D _ Z TiGCM> /401 1)
i=1 i=1

In the following we describe our bias correction method,
which preserves the long-term absolute (relative) trend o
the simulated temperature (precipitation, pressure, radiation,

wind) data. The method modifies the daily variability of the 7.3 = ¢ + 1.8, (2)

Tas is demonstrated in Fig. The corrected temperature is
th
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Table 2. Comparison of bias correction algorithm for precipitation (multiplicative approach), main algorithmic steps.

WATCH ISI-MIP FAST-TRACK ISI-MIP extended

define dry months WFD threshold WFD threshold WEFD threshold
GCM threshold GCM threshold

define dry days WFD threshold WFD threshold WFD threshold

GCM threshold GCM threshold GCM threshold
define outlier days WFD and GCM WFD and GCM none

outside 99 % (Gauss) outside 99 % (Gauss)
redistribute no no uniformly over
precipitation drizzle wet days (additive)
normalise daily values  no using mean of all days using mean of wet days

of the month

of the month

select values rank ordered

rank ordered

rank ordered

for fitting timeseries timeseries normalised
based on timeseries
criteria for predefined predefined convergence of
choice of parameter parameter nonlinear fit
fitting thresholds thresholds

algorithm or convergence or convergence

of nonlinear fit

of nonlinear fit

hierarchy of 1. linear fit

1. linear fit

1. exponential fit

possible 2. exponential fit 2. exponential fit initialized with identity line
transfer initialized with linear fit  initialized with linear fit 2. exponential fit
functions 3. exponential fit 3. exponential fit initialized with linear fit
g(x) initialized with linear fit initialized with linear fit 3. linear fit
fixed slope fixed slope
cf. Fig.6 4. only multiplicative 4. only multiplicative
red curve monthly mean correction  monthly mean correction
5. only additive 5. only additive
monthly mean correction  monthly mean correction
fit function no no yes
and application based
on the same set of data
preserve relative no yes yes
trend
adjust long-term with transfer with with
mean function mean ratio mean ratia
(mixture of time scales) (8c<10) (0.1<c<10)
adjust variability with transfer partially with transfer
function function
(mixture of time scales)
truncation at no yes yes

upper bound

which preserves the absolute change in temperature in th8.1.2 Precipitation: multiplicative correction

simulations, i.e.

Given the positivity constraints on precipitation data, a sim-

ilar additive approach is not appropriate. Instead we correct
the monthly mean precipitation values using a multiplicative

factor, which is defined:

Ti?CM _ TOGCM _ Ti]GCM _ Oocnv|7 3)
where 7EM and 7$M are the uncorrected and corrected
reference temperatures.

The method is the most basic temperature correction ,,_49
regularly applied in impact studies (e.g. called “unbiasing — Z p\WFP
method” inDeque 2007). It preserves the absolute trend, and i=1
the variability of the simulated data at all time scales.

m=40

> M. @
i=1

www.earth-syst-dynam.net/4/219/2013/ Earth Syst. Dynam., 4, 21236, 2013
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Fig. 2. April precipitation means for the example grid cell during the

Fig. 1. April temperature means for the example grid cell during :
the reference period. The offset between observational and Simur_eference period. WFD (red), uncorrected (black) and scaled GCM

lated dataC, in the reference period is illustrated, together with (green) data are shown. The horizontal lines refer to the associated

the shifted GCM data. The horizontal lines refer to the associateo'ong'term means.
long-term means.

3.2 Correction of daily variability

The precipitation time series is then i ) o .
The second step, is to correct the daily variability of the sim-

13i]G,CM =c- pi?CM, (5) ulated data to that of the observational dataset. This step
) is crucial for a proper representation of many impacts that
which maps the 40yr mean of the GCM data to the obsergepend on changes in both the mean and variability of the
vational one as demonstrated in Fg\We impose an upper  gata: in this way, extreme weather events are better repre-
bound of 10 orr, in order to avoid unrealistically high pre-  sented in the corrected data, although a careful analysis re-
cipitation values. This is justified by the fact that a very high quires better understanding this important topic. Adjustment
c indicates a large discrepancy between the model and the ol gajly variability also plays an important role when the cli-
servations. Possible reasons might be that the available timg,ate data are interpolated to a finer grid before use by the
series is t0o short to well approximate the statistical prop-impact model, which is often the case. Simple interpolation
erties or crucial physical processes are not included in the:annot account for the enhanced temporal variability that is
model. In those cases correcting the time series with the €Ssypected at smaller spatial scales. Bias-correcting the vari-
timated values might lead to nonphysical values which wegpyjjity of the interpolated data can alleviate this problem.

seek to avoid by truncation ef In addition, in the extended In the following section, we present a method to adjust the
version of the algorithne is also truncated at the lower end daily variability of the residual temperature

following the same line of reasoning. This allows for the pos-

sibility that the model output in very dry regions can still get A7CM — Ti?CM — TSM, (7
wetter in the future, sincecannot be zero over the reference
period anymore. and the normalised precipitation data
The proposed multiplicative approach, modifies the simu-
lated absolute precipitation change, but preserves the relativgzpl_?CM — picjfsCM / PiGCM ) ©)
change in precipitation,
pGCM _ pGCM  pGCM _ pGCM Note that this means that a specific correction value will re-
ij____0 _ i o (6) fer to an anomaly instead of an absolute value. Thus, the
pEM pgEM same correction value for temperature is applied to different

GOM < GoM absolute temperatures and consequently to different weather
where Py and Py~ are the uncorrected and corrected situations, which may exhibit systematic differences in vari-
reference precipitation values. ability. Generally the variations of the temperatures are not

Earth Syst. Dynam., 4, 219236, 2013 www.earth-syst-dynam.net/4/219/2013/
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expected to be very large as the correction is done on an Haerter et al(2011), except that they allow for an addi-
calendar-month specific basis. Nevertheless, any dependentienal offset, which we set here to zero, since the residual
of the daily variances on the monthly mean values evident invalues have zero mean by definition.
the model or observed data are not perpetuated by the bias
correction. In order to characterise this dependence, we havé.2.2 Precipitation: nonlinear regression
calculated the mean and the variance over each month in the
reference period and estimated the coefficient of determinaln the case of precipitation we consider normalised values
tion (R-squared) from the linear Pearson correlation betweericf. Eq. 8) to adjust the variability about the monthly mean,
mean and variance at each grid point. For temperature thwhere both datasets should be described by the same distri-
R-squared values are low for the entire global land area, inbution function. As in previous bias correction applications
dicating that the application of a common variance correc-(€.g. in Water-MIP), we assume that the observational and
tion factor is consistent with both the observational and GCMsimulated datasets are well approximated by a gamma distri-
data. For temperature, variance is based on the residual tenfution (excluding the days with zero precipitation). Follow-
perature, whilst for precipitation variances are calculated afing that assumption, we must correct the frequency and the
ter normalising the daily data with the monthly mean. In the intensity of precipitation separately, since the gamma distri-
Supplement we show that for temperature and precipitatiorpution is not defined at zero. We perform a parametric quan-
the R-squared values in this case are small at each grid poirite mapping with three parameters to adjust the intensity
for both an exemplary GCM run and the WFD (cf. Fig. S1). of precipitation, where a nonlinear fitting algorithm based
This indicates that the residual and relative variance respecon the gradient-expansion method adapted fMarquardt
tively over a month is almost independent from the related(1963 is used.
monthly mean. We therefore conclude that considering the In dry months (zero mean or very small, i.e. in the range
anomalies instead of absolute values should not greatly imof measurement noise) a normalisation by the monthly mean
pair the performance of the bias correction. is not possible. To solve this dry month problem we define
Moreover, in the case of precipitation, special care mustthreshold values for the monthly means,
be taken to account for low-precipitation (hereafter referred
to as “dry”) months. The correction of the daily variability ém
comprises two steps: (1) correction of the frequency of dry
days and (2) correction of the intensity of precipitation on
rainy days. The proposed correction of the variability in daily t0 classify the months into dry and wet, where the daily vari-
data extends the method describecPtigni et al (2010 and  ability is only adjusted for the wet ones. The variahR&™

= max|:PkG‘C’VI

(P,QNFD <001, PEM < o)], (10)

applied in Water-MIP lagemann et 312011). and PEM represent the rank ordered sets of monthly pre-
cipitation valuesPidata. A similar procedure was described
3.2.1 Temperature: linear regression by Piani et al.(2010 for dry days.

Months with mean precipitation below 0.01 mm dayin

In order to correct the variability of the daily average tem- e WFD (roughly 3.6 mmyr!, which approximates aver-
perature values to the observational data, we adjust the resi%ge precipitation in desert areas) are denoted as dry. Then
ual distribution of the GCM (cf. Eq7 for the definition of  \ye consider two cases: (i) if there are more dry months in
the residuals) to that of the WFD using a parametric quantnhe \WED than months with zero precipitation in the GCM,
tile mapping. In general temperature values are considered,gnths are excluded in order of increasing monthly mean
to follow a normal distribution. This means the distribution precipitation until the desired number (i.e. number of dry
is expected to be well described by only two moments (mearygnths in the WED) is met, starting from the driest GCM
and standard deviation). For that reason a linear fit is conyonth. (ii) If the number of months with zero precipitation in
sidered an appropriate approximation in most cases and hage GCM is larger than the number dry months in the WFD,
thus been chosen to map the simulated to the observation@my the months with zero precipitation in the GCM are clas-
temperature values. _ _ sified as dry in the GCM. By applying EdL@) we ensure that

Histograms of example time series from the WFD and the same number of months from the GCM and the WED set
GCM are shown in Fig3 for the April values at the example  gre omitted. In both cases, the mean precipitation of the last

grid cell. We derive a transfer function month to be excluded in the GCM defines the threshg|d
for the simulated monthly time series.
f (ATGCM> = B . AT®M ) All daily data associated with a dry month (i.e.

P,.(;’C'VH(Pl.Gc'\’I < em)) are excluded from the estimation of
where B is the slope of a linear regression on the rank or-the transfer function. The variability of the daily data be-
dered WFD ATWFD) and GCM data47CM) for a given  longing to these dry months is not modified. For the remain-
calendar-month over the 40 yr reference period (as plotted agg wet months the bias correction proceeds in two stages:
black points in Fig4). An analogous procedure is described (i) increasing the frequency of dry days where needed.
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Fig. 3. Observational and simulated daily April temperature values during the reference period (left) and associated residual values (right)

for example grid cell are shown as normalised cumulative sum. The vertical lines refer to related mean (solid) ahdtavedard deviation
(dashed). Horizontal bars are for comparison of the standard deviation.

used to generate the transfer function for the correction of

S =4 the intensity of precipitation.

0 In this way low-precipitation, or drizzle, in the GCM is
Oﬁ ° P truncated if the intensity of the precipitation is below a
L threshold
'a ! ?/:X

= oot € =05- PSM|(PEM > e, PEM < RO [Ny ])
w bias—corrected
| .
e +05- PEM (PEM > e, PEM > REM[Ngy]). (11)

-15 -10 -5 0 5 10
The variableP, represents the rank ordered simulated precip-
itation values in wet months, starting from the lower end.

Fig. 4. Rank ordered residual observational versus simulated tem- Since precipitation values smaller thenare set to zero,
perature values for all April days during the reference period for thethe frequency of dry days (i.e. those without measurable pre-
example grid cell. The uncorrected GCM data are shown in blackCipitation) can be increased in the model data. If there are
with the fitted regression curve overlaid (red). Statistically identical more days with zero precipitation in the GCM than in the
data would lie on the =x curve (grey). The bias-corrected GCM  observational dataséfyry is chosen equal to that number of
data are plotted in green. days in order to calculate the threshold (cf. Ed), i.e. no
additional dry days are introduced in this case. Additional
wet days are never introduced, since this could lead to cru-
(ii) Adjusting the precipitation intensity for wet days. We use ¢jg| physical inconsistencies (e.g. rain without clouds).
a similar approach as proposediani et al(2010. Exclusion of drizzle days can modify the monthly means,
which must be avoided if the long-term trend is to be pre-
served. An appropriate normalisation can ensure this. How-
ever, if identical normalisation for construction and applica-
. tion cannot be ensured in any case (as in the approach applied
wet months of the reference period. In many cases there arFor the ISI-MIP dataset) this limits the capacity to adjust the

artificially large amounts of drizzle in GCMs, i.e. days with . . . Do :
2 ) ) daily variability, since multiplying the data with any factor
low precipitation, while the observations suggest a larger

number of dry days (i.e. zero precipitation). In order to cor- different from one modifies the width of the probability dis-

rect for that discrepancy, we determine the number of OIO_tr|but|0n. Thus, in the extended approach, for each month we

e iy Sy, g e pr co. e S st st ey oy
ing the occurrence oPl.‘]’.VFD <1mmday! from the WFD 9 ys. y

datayyhich i initati
daily data associated with wet months. The threshold valu r;"“which s the total amount of precipitation from dry days

1 mm day was used already in earlier studies and is relate drizzle) divided by the number of wet days. It is calculated

to measurement noise. The same number of days (beginninfor each year and month separately. Redistribution of the pre-

with those having the lowest precipitation values) is set to(%pltatlon leads to new values
zero in the GCM daily data and excluded from the dataset

ATEM K]

Correction of the frequency of dry days

Correction of the frequency of dry days is derived from the
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Fig. 5. Normalised cumulative sums of daily observational and simulated April precipitation values during the reference period for the
example grid cell. Dry days and months are omitted. For all wet days of the reference period uncorrected values before and after the
redistribution of drizzle (left panel), and normalised values (right panel) are shown. The vertical lines refer to related mean (solid) and

mean + standard deviation (dashed). Horizontal bars are for comparison of the standard deviation.

data data;
Pg-ataZ{Pij + m{*2if wet (12)

if dry ~
The mean over all wet days in a particular morgf'™ and
PECM is used for normalisation (cf. Fig):
p data

pdata __ " ij
5ng = ——

S (13)

Correction of the precipitation intensity of wet days

with offseta and slope applied. For the ISI-MIP dataset we
used a different set of selection rules for the transfer function
(adopted from the Water-MIP procedure). However, for our
normalised values these selection rules omitted the nonlinear
fitin many cases. In addition, the frequency and variability of
the precipitation were at multiple grid points not adjusted at
all, because insufficient points were selected to be included in
the fit due to the bug in the code or the fitted parameters were
too extreme. Those issues have been solved in the extended
version of the algorithm in order to improve the correction of

Correction of the precipitation intensity of wet days by fitting daily variability. The resulting differences will be discussed
atransfer function is performed, if there are more than 80 weth Sect4.3.

days in the whole reference period (1960-1999) and the Inbothversions of the algorithm, where there are less than
monthly mean is above 0.01 mm ddy The cut-off value 80 80 wet days in the whole reference period (1960-1999), or

is motivated by sensitivity studies performed in WaterMIP.

In general a transfer functiog(s PSCM) is derived using
nonlinear regression on the rank ordered $4t¥' P and

the long-term monthly mean is below 0.01 mmdaythe
daily variability of the precipitation is not adjusted due to
a shortage of statistical information. In this case we consider

§ PSCM which are the sets of normalised wet days in wet @ linear transfer function with zero offset 0 and unit slope

months over the 40 yr reference period A(cf. Fy.The low-
est wet precipitation value in that perid®2 M, is a param-
eter of the transfer function

¢ (6P°M) = [a+ b [P0 _ 5pgeM]]

§PGCM _ 5 pGCM
X [l - exp{— min :

(14)
T

The offsetz and slopé& of the linear part of the function, as
well as the decay constantof the exponential part must be

fitted.

b=1(cf. Eq.15).

In the Supplements we provide month-specific maps
which show the areas where the daily variability is not ad-
justed, where a linear and where a nonlinear transfer function
is applied (cf. Fig. S2).

3.3 Application of the bias correction
In the following sections, we present how the values that

were derived during the reference period are applied to bias-
correct the simulation data in the past, present and future (ap-

In the extended algorithm this nonlinear regression is pref-plication period 1950 to 2099). To adjust both the monthly
erentially applied. Only if the nonlinear fitting procedure (it- Mean and the daily variability of the data, we combine the
eration according to gradient-expansion method) does notwo approaches described in Se@d and3.2

converge for two different sets of initial values, is a linear

transfer function,

2 (aﬁGCM) — [a b 513‘3CM], (15)

www.earth-syst-dynam.net/4/219/2013/

3.3.1 Temperature

We calculate the residual daily average temperature values
from the GCM for the whole application period in the same
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data. The monthly values @f are interpolated to daily ones,
C, using the same weighting approach as for the slBpe
(cf. Eq. 20), thus preventing jumps in the time series at the
transitions between months. F6r~ C the trend is, except
for very small deviations, preserved.

AWFD
oP

— i

— uncorrected
bias—corrected

° / In the case of precipitation, similar interpolation (cf. 2q)

of the monthly correction factog; (Eq. 4), to daily values

is less appropriate since the derived value can vary strongly
from month to month (because of the high variability at dif-

) ) . . ferent time scales). The same applies to the parameters of the
Fig. 6. Rank ordered normalised observational and simulated Pretransfer functiond, b andt in Eqs.14 and 15). However,

cipitation values of_ all wet April days durlng_the reference_ period the continuity at the crossover between two months is not
for the example grid cell (black). The associated regression curve

(red) and the bias-corrected normalised data (green) are present@d3 problematic as for temperature. Therefore, we retain the

in addition. The identity line = y is shown in grey. individual monthly values for, a, b andr. _
We use the thresholds, andeq (Egs.10and11) defined

previously for the reference period (cf. Se®f2) in order to
way as before for the reference period (cf. B).The lin-  distinguish dry days and months from wet ones in the appli-
ear transfer functiory (cf. Eg. 9) is then applied to adjust cation period.
the daily variability. In order to avoid discontinuities at the  For all days in dry months, we apply only the multiplica-
transition between months, weighting factors for the previoustive factor ¢ for the long-term mean correction (cf. Egs.
(indexm), present (index 0) and following month (indgX and5).
In wet months the frequency of dry days is adjusted by

3.3.2 Precipitation

AGCM
P

dp =05 (|d| = d), (16) setting all values below the dry day threshejdo zero

do=1-|d|, a7

d, =05 (d| + d) gy PSM=o, if (PSCM < Ed) and (Pl-GCM > em). (23)

are evaluated depending on the day of the mangpand the  Following the same line of reasoning as in S&:2, we

number of days in that montfyay, with redistribute the total precipitation from these dry days uni-
) 1 formly amongst the wet days of the month (cf. Bg). The

d=1®"> 45 (19) obtained precipitation values are normalised by the mean
Nday — 1 over the wet days (cf. EdL3), and the transfer functiop

(Egs.14 and15) is applied to these normalised values. For

application to the reference period (where the transfer func-
tion was derived) this procedure ensures that corrected pre-
cipitation values are not negative. However, this does not

Thus, for the first (second) half of the month the slope of the
linear transfer function of the previous (following) morih
(Bp) is taken into account. The weighted sum of the slopes

B =dy, B, +doB + d, B, (20) ngc_:es;arily holq for all time.periods, since the lowest pre-

cipitation value in the non-bias-corrected GCM data might

is then applied to the residual daily average temperature valbe belows PSEM (although those exceptions are rare). Thus,
ues, which leads to bias-corrected residual values negative values arising from the correction process are set to
_ . zero. However, such a truncation modifies the monthly mean.

ATSCM =B- AT,-?CM. (21) In order to avoid this change in monthly mean precipitation,

) ) . ) _acorrection factor is used to ensure that the mean of the cor-
Together with this equation the correction suggested inrected normalised wet days is unity in each month and year.
Eg. () can be extended to In this way conservation oPCM is ensured, i.e. the mean
~GCM GCM ~GCM over the wet days of the month after the redistribution of the
L =041, + AT (22) drizzle but before the normalisation. In addition, the variabil-
This successfully preserves the long-term absolute temperlly djustment is preserved. The correction factor can be ap-
ature change in the simulations, whilst adjusting the dailyPli€d since the new monthly mean is already close to unity
variability about the monthly mean (& = B). The constant by construction, and thus this multiplication does not signif-
C arises from the monthly mean correction of temperatureica”tly affect the width of the probability distribution. The
(Eq. 1) and assures the agreement between the Iong-terrh"‘tter could not be assumed for the redistribution of drizzle,
monthly means of the observed and the corrected simulatef’€refore an additive approach was used in that case.
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Finally, the correction in EqX5) can be extended to

GCM

s A = <GCM ij pGCM

PiEBjCM =c. PEM. 8Pi€3jCM. (24) S = PCCW P (27)
ij

With the addition of the dry day and dry month conditions,
redistribution of drizzle, and normalisation of corrected val- The same procedure applies to the wind components, i.e.
ues, Eq. 24) preserves the relative precipitation change in
the simulations. The correction facteris taken from the — _ .., KM _

. L KSCM . WE (28)
monthly mean correction of precipitation (cf. E4) and ij WGCM ij
maps the long-term monthly mean of the simulated data to Y

the observational one. Additionally, applying Eadfadjusts o WEM refers to the total wind speed (bias-corrected

the frequency of dry days and the variability about the mean. .o same way as precipitation according to 24 and

An upper boqnd for precipitation (400 mm dzy was n- CCM represents the eastward (northward) wind component.
troduced to avoid single extremes blown up to nonphyS|caIIy.|_ '

. L L : ; he wind components are scaled in the same way as the to-
high precipitation values. This final truncation may slightly X . .

. . tal wind speed to obtain the bias-corrected components. The

change the mean. However, this rare case is an accepted con- o .

sequence wind direction is preserved in that way.

3.4 Correction of other climate variables .
4 Evaluation of the methodology

Often there are also biases in other variables than temperell- hi . he bi d d
ture and precipitation, e.g. radiation or wind spesiddde- n this section we present the bias-corrected temperature an

land et al, 2012, most of which must not become negative. precipitation data of the HgdGEMZ-E_S April climate. )
Within ISI-MIP we use a similar multiplicative approach as . We demo_nstrate that b|a§ correcﬂop alters s_everal statis-
described for precipitation to adjust surface pressure, Iongp?al pro_perpe_s O.f the data in the desired fashion, but also
and shortwave radiation and wind speed (cf. TabhleMod- discuss its limitations.

ifications to the algorithm described earlier are made with4 1 Sensitivity study

regards to the selection of thresholds for pressure and radi-

ation (eq was set to 0). Moreover, the final truncation of the p e tg the limited availability of observational data a val-

bias-corrected values for pressure, radiation and wind speefaiion of the applicability of the statistical bias correction

plays no |mportanlt role, since the thresgold values were selqing which we applied earlier is in general not straightfor-

very high (75ms f20r wind, 1420 Wn1® for short wave 414 "However, strong evidence for applicability arises from

radiation, 1000 W m< for longwave radiation, and 1200 hPa 0 consideration of short sensitivity studiegRigni et al,

for pressure, cf. preuplt_atlon 400 mm day. 2010. Thus, in a first step, we study global maps of different
In addition, daily minimum (maximum) temperature Cor- gavistical quantities of uncorrected and bias-corrected GCM

rection is derived from the correction of daily average tem- yata for a period 1980 to 1999. In this setup the parameters

perature. We calculate the mean distance to the average teNie derived only from a 20 yr reference period 1960 to 1979
perature value over the reference period for both observationg, .qer to avoid an overlap of the “training” and the “valida-

and simulations: tion” dataset.

'"i“o (TWFD B TWFD) As described earlier, the first step of our bias correction

= \mi ij (cf. Sect3.1) adjusts the long-term monthly mean. Thus, this
K="—10 . (25)  average is the first statistical quantity to be considered. Fur-

3 (Tn?g"" - TZ?CM> thermore, the second step of the bias correction (cf. Sedt.

i=1 modifies the width and in case of a nonlinear fit also higher
whereTn, refers to the daily minimum (maximum) tempera- moments of the distribution. Those parameters of the proba-
ture. In the application of the correction bility distribution are, for example, represented by the lower
_ . (50-10 %) and upper (90-50 %) inter-percentile range. Devi-
T =« - (TnG]SM - Ti?CM> + TEM (26)  ations between GCM and WFD in the three mentioned sta-

tistical quantities, as well as the improvement by our trend-
S‘preserving bias correction, are shown in Figior (a) tem-
perature and (b) precipitation.

the original distance to the daily average temperature i
scaled with the factox and the result is added to the bias-

corrected daily average temperature. cM The bias correction based on the reference period 1960 to
For snowfall the portion of snowS(;’. ) from the total 1979 yields a significant improvement of the matching of the
precipitation @S“M) in the uncorrected model data is cal- |ong-term mean for the period 1980 to 1999 in most areas of
culated at each grld cell. Application to the bias-correctedthe g|obe (Cf F|g7 upper row)_ There are On|y a few areas
precipitation leads to bias-corrected snowfall data where the matching between the WFD and the bias-corrected
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a) Temperature b) Precipitation
GCM-WFD ISI-WFD GCM-WFD ISle-WFD
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Fig. 7. The anomalies (i.e. simulation — observation) of statistical properties in raw (GCM) and bias-corrected (ISI and ISle) model data are
shown. The trend-preserving I1SI-MIP methodology was applied to the period 1980 to 1999 for bias correction based on a 20 yr reference
period (1960 to 1979). In case of precipitation we present the results of the extended algorithm. The long-term mean, lower inter-percentile
range and upper inter-percentile range of the April délytemperature an¢b) precipitation from 1980 to 1999 are shown. The 50-10 %
percentile refers to the lower inter-percentile range, while 90-50 % percentile denotes the upper inter-percentile range. Colours refer to
(a) temperature values in K ar{t) precipitation values in mm dayt.

GCM data is slightly worse than for the uncorrected temper-observations over the whole reference period, since this is the
ature and precipitation data. Deviations occur particularly fortime span where they are intended to match by construction.
temperature, for example, in northern Scandinavia or south- While the mean climate signal (long-term trend) should be
ern US. They are, however, small compared to the maximunpreserved by the ISI-MIP bias correction algorithm, different
values of departure that occur around the globe when we corparameters of the probability distribution are modified. The
sider the uncorrected data, and could be related to variabilityatter was already illustrated in Fig8.and5 for an exam-
on a time scale that is not properly sampled within the 20-yrple grid cell. Although the mapping of the probability dis-
reference period. Moreover, we find a general improvementributions remains imperfect (see particularly left panels), it
of the matching of the inter-percentile ranges, although theis significantly improved with the applied bias correction. In
deviations that persist after bias correction are more extendedase of temperature (Fig) the mean values show very good
than in the case of the long-term mean. This affects mainlyagreement, while the standard deviation is slightly underesti-
North America and Asia for temperature and the equatorialmated in the bias-corrected data. For precipitation (B
region for precipitation. substantial harmonisation of the standard deviations and the
Note that the 20-yr reference period in the sensitivity studymean values was achieved.
is comparatively short, and thus the bias correction parame- In order to check if theses results are robust, next, we con-
ters estimated from this period are likely to be less robustsider global maps of the different statistical quantities of the
than in the actual application where we used the full 40 yrprobability distributions which we already described at the
reference period for training. Nevertheless, in most areas obeginning of this section (cf. Fig.). However, this time the
the globe the bias correction results in a significant improve-reference period for the bias correction and the time span to
ment of the matching between simulations and observationsonstruct the histogram are the same (1960 to 1999). Devi-
even with a 20 yr reference period. ations between GCM and WFD in the three mentioned sta-
Next we go back to our initial reference period which tistical quantities, as well as the improvement by our trend-
is 1960 to 1999 and was applied to obtain the ISI-MIP preserving bias correction, are shown in RBgor (a) tem-
dataset. It samples variability on decadal and multi-decadaperature and (b) precipitation.
time scales and should thus result in more robust parameter In case of the long-term temperature mean, shown in the
estimates. We consider the distributions of simulations andupper panels, we observe deviations of WFD and GCM data
between approximately15 and 15K (i.e. a span of 30K).
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a) Temperature b) Precipitation

GCM-WFD ISI-WFD GCM-WFD ISle-WFD

long-term mean

50%-10%
percentile

90%-50%
percentile

Fig. 8. The anomalies (simulation — observation) of statistical properties in raw (GCM) and bias-corrected (IS and 1Sle) model data are
shown. The trend-preserving ISI-MIP methodology was applied to the period 1960 to 1999 for bias correction based on a 40 yr reference
period (1960 to 1999). The illustration is analogous to FigColours refer tqa) temperature values in K ar{h) precipitation values in
mmday 1.

This is much narrower than the span of the long-term tem-(cf. Fig. 8b, right panels to left ones), although adjustment
perature mean values themselves which range from approxef the probability distributions is imperfect. In the bias-
imately 236 to 308K (i.e. a span of 72K). Thus, the devia- corrected dataset largest deviations from the WFD distribu-
tions are comparatively small. Discrepancies between WFDtion persist in North Brazil and Indonesia with regards to
and GCM are mainly related to the coarse resolution of thethe inter-percentile ranges (middle and lower right panel in
model affecting the altitude information in some regions. Fig. 8b). The largest differences between WFD and bias-
These anomalies are significantly reduced by our bias coreorrected GCM long-term mean precipitation occur in North
rection, as illustrated in the upper right panel of F8g. in Africa and China (Fig8b, upper right panel). While in North
comparison to the upper left one. Africa the values obtained with the uncorrected dataset were
Moreover, the width (and skewness) of the distribution already comparatively low, in China model and observations
of the daily averaged temperature values shows good agreare substantially harmonised by the bias correction.
ment between WFD and GCM data, as reflected in the inter- Moreover, the algorithm proposed here allows to signifi-
percentile ranges shown in the middle and lower panels ircantly improve the dry days statistics in most regions of the
Fig. 8a. Here the departure between WFD and GCM spanglobe (cf. maps of the number of dry days between 1980
20 K. Larger deviations in the inter-percentile ranges occurand 1999 in the Supplements Fig. S3). Nevertheless, the ad-
mainly in the Northern Hemisphere (particularly in Cental justment is imperfect particularly in eastern North America,
Asia and North America). With the two-parameter quantile northern Asia, central Australia and in the Sahara, and it does
mapping applied to residual time series these differences baaot yield any improvement in some mountain regions (e.g. on
tween observation and model dataset are significantly rethe western side of the Andes). The latter is most likely re-
duced (right panels compared to left ones). The patternslated to the limited downscaling ability of the method.
however, persist. A total matching cannot be achieved with We focus in our sensitivity study on the range between be-
the linear transfer function, since we do not adjust highertween the 10 % and the 90 % quantile. For this central range
moments of the distribution. In addition, interpolation of the bias correction methods are expected to perform well, while
slope of the transfer function from monthly to daily values the correction in the outer ranges of the distribution is typ-
also prevents total matching. ically worse, since there are less events (Maraun, 2013). In
In the case of precipitation (Fi@b) some regions in the general bias correction methods tend to exaggerate extreme
Southern Hemisphere show larger deviations between thevents, since the limited number of data points prohibits
long-term mean and the inter-percentile ranges of the WFDa robust analysis of the relationship between observations
and GCM data (particularly in Central Africa, South Amer- and simulations, potentially resulting in an overestimation of
ica, and Indonesia). In addition several regions in South-these events. In addition, the extreme events always cover
East Asia are affected. The extended trend-preserving biathe whole gridbox area, i.e. their spatial extent is typically
correction algorithm reduces theses departures significantlyoo large. However, since we introduced an upper bound for
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ISIMIP

Fig. 9. Absolute differences between the trends in the interpolated GCM April data before and after bias correction. The absolute trend
for temperature (in K) is estimated @&5g95_2099— T1960-1964 In the case of the relative precipitation trend, we consider the logarithm
l0g(P2g95-2099/ P1960-1964)- Similarly trends in the bias-corrected data are estimated ffoamd P. Values of the absolute differences
between the trends in bias-corrected and uncorrected data are truncated at the upper bound of the colourbar, i.e. yellow refers to the denoted
higher values. White areas belong to regions where no information about the trend is available. The results with the quantile mapping applied
on the time series themselves (WATCH method) and on the residuals or normalised values (ISIMIP method) are shown for temperature and
precipitation (cf. Tabl@ for main algorithmic differences). We consider the end of the 21st century (mean 2095-2099) in comparison to the
beginning of the reference period (mean 1960-1964) to define the trend.

the bias-corrected values in ISIMIP, the impact of this effect4.2 Trend: comparison with WATCH method

is not arbitrarily large. On the global scale the bias-corrected

variables show good agreement with the observational dat&Ve illustrate that in contrast to a quantile mapping of the time

even in the tails of the distribution (cf. Supplement Fig. S4). series itself (as used e.g. in Water-MIRagemann et al.
However, the influence of the overestimated spatial corre2011 or WATCH; Weedon et a).2011), our approach pre-

lation on the impact simulations clearly depends on the deserves the long-term trend with respect to the monthly mean

gree to which impacts at one grid cell are influenced by im-values either in absolute or relative terms (cf. Bip.

pacts or meteorological events in the neighbouring grid cells The proposed additive approach does not modify the ab-

that might be particularly relevant with regard to hydrologi- solute trend in the temperature data compared to the inter-

cal models. In Supplement Fig. S5, we provide maps of thepolated GCM output (except for small deviations related to

bias-corrected and observed variances over the reference ptie interpolation of the transfer function, cf. E2f)). As an

riod (April precipitation aggregated to the original resolution example, we consider monthly means over two 5 yr periods,

of the HadGEM2-ES GCM) for illustration. Moreover, the one at the beginning (1960-1964) and one at the end (2095—

ratio of both is given. 2099) of the application period. The difference between those
Furthermore, maps which evaluate the bias correction ofnonthly mean values,

the other ISI-MIP variables in terms of the long-term mean

and inter-percentile ranges are provided in the Supplementr,ogs 5099 — T1960-1964 = 72095-2009 — T1960-1964  (29)

Patterns of discrepancies between observational and bias-

corrected data can be identified in all statistical propertiesjs not affected if we apply the ISI-MIP algorithm for tem-

however, their spatial distribution is not consistent amongperature correction described in Setas shown in Fig9

all variables (cf. Fig. S6). Changes in the inter—percentile(upper panels). This is in contrast to what is observed when

ranges are small and rather localized for all four variables.appb,mgI the quantile mapping to the time series themselves

In any case, bias correction yields a significant improvememaeft panel, denoted as WATCH in Fig). In the left panel

inthe long-term mean, particularly of pressure and radiationgijgnjficant changes in the temperature trend occur partic-

as can be seen when comparing Figs. S6 and S7. Note th@farly in West Canada, Alaska, East Russia, North-West

the colour bar for the long-term mean of pressure, long- andching, and North Brazil. With our proposed algorithm (right

shortwave radiation differs between the two figures. panel, denoted as ISIMIP in Fig) a small region in North

Brazil is most affected by the change in temperature trend.
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Fig. 10.The lower (50—-10 %) and upper (90-50 %) inter-percentile range of the April daily precipitation from 1960 to 1999 are shown for
the ISI-MIP dataset (ISI) and with the extended version of the algorithm (ISle). In addition the differences of both version are shown. The
inter-percentile ranges are analogues to Bigolours refer to precipitation in mm da}. Difference values outside the range of the shown
colourbars are white in order to increase visibility of the map (over land this affects only few small areas).

However, that shift is small compared to the changes obwas bias-corrected with the ISI-MIP approach (denoted as
served with previous approaches. ISIMIP in Fig. 9) shows fewer and smaller changes in the

The lower panels of Fi@ illustrate that the multiplicative  trend. Modifications of the trend persist in North Africa,
approach preserves the relative trend of the precipitation inAustralia, North-West India, Namibia, Botswana, Mexico,
the same sense: Southern US and East Russia, which is most likely related
to numerical effects in arid regions.

Pro95-2099 P2095-2009 (30)
P1960-1964  P1960-1964 4.3 ISI-MIP algorithm and its extension

This is valid for the precipitation that is bias-corrected with
the extended version of the multiplicative algorithm (ISle) as
well as for the ISI-MIP climate input (ISI), since the modifi-

cations to the code affect only the variability of the the daily

The bias correction method for variables with positivity con-
straints that was applied to generate the I1SI-MIP dataset, due
to time constraints, suffers from some unresolved problems
. . and a bug in the programme code. As a result, while the long-
data, but not the correction of the monthly mean. White area3orm mean is adjusted in the desired fashion, the variability

in Fig. 9 occur if no conclusions about the relative trend can f1h iabl C donlvioal
be made. We show the absolute difference of the Iogarithmsp the variables (e.g. precipitation) is corrected only to a im-
ited extent. Hence, compared to the results shown and dis-
P2095-2099 P2095-2099 cussed in the previous paragraph (cf. BL), variability in
-1 (1) the ISI-MIP dataset is typically closer to that in the GCM.
This holds in particular for the upper inter-percentile range,
in Fig. 9 in order to weight departures in increasing and de-whilst the lower inter-percentile range is slightly enlarged by
creasing precipitation amounts the same. To increase visibilintroducing zero precipitation days.
ity a nonlinear colourscale which is truncated at 10 has been In order to characterise the problems in the ISI-MIP
chosen. However, there are regions (particularly in the leftdataset, in Figl0 we compare the inter-percentile ranges
panel of Fig.9) where the change in trend exceeds that valueover the reference period (1960-1999) in the ISI-MIP pre-
(e.g. in the West Sahara). cipitation dataset and the precipitation that is bias-corrected
We observe that significant changes in the relative trendwith the extended version of the algorithm. Since the same
in April precipitation occur mainly in regions which (in methodology is used for correction of the long-term mean
spring) are characterised by rather arid conditions. The quanin both datasets, the resulting long-term mean is the same
tile mapping applied to the time series themselves (denotedby definition (identical to what is shown in the upper row in
as WATCH in Fig.9) results in extended areas of large Fig.8b).
changes in the trend. As shown in the lower left panel of In case of the lower inter-percentile range basically the
Fig. 9, most affected regions are North Africa, Australia, In- northern part of South America, Congo, South-East China
dia, West China, Namibia, Botswana, and few small regionsand Indonesia show significant deviations between the two
in Chile, Argentina, Mexico, Southern US, Northern Canada,bias-corrected datasets (cf. Fif), lower left panel). In ad-
Greenland and East Russia. In contrast, the precipitation thalition, we observe that the lower inter-percentile range is in

log = )
P1960-1964 P1960-1964
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Fig. 11. The lower inter-percentile range (50—-10 %) and upper inter-percentile range (90-50 %) of the normalised April daily precipitation
from 2091 to 2099 are shown for the ISI-MIP dataset (I1SI) and with the extended version of the algorithm (ISle). In addition the differences
of both version are shown. The inter-percentile ranges are analogues & Fig.

general less affected than the upper one, both with regards tand time period, since deviations are expected to be most pro-
absolute values and to spatial extent (cf. Hi§.lower pan-  nounced here. Results are shown in Hity.
els). This indicates that in the ISI-MIP dataset extreme high The time series are divided by the monthly mean (in-
precipitation events in most areas are less likely than in thecluding all days of the month) in order to normalise them
precipitation dataset that is bias-corrected with the extendedtbefore the inter-percentile ranges are calculated. While the
algorithm. Particularly South-Eastern USA, Northern Brazil, same normalisation was applied in the algorithm used to pro-
South-Eastern China, and several countries in Central Africaluce the ISI-MIP dataset, in the extended algorithm a dif-
are affected by this deviation between the datasets. ferent normalisation is applied (cf. Se8t2.9. This means
Furthermore, the limited correction of the variability in for the extended algorithm the normalisation applied before
the ISI-MIP data set results in several places in a narroweplotting the results does not coincide with the normalisa-
distribution than the one obtained with the extended algo-tion used during the corresponding bias correction process.
rithm. This can be concluded from FigO if we sum up the  Thus, we cannot expect to find agreement of the distribu-
values shown in the two lower panels. Most affected areagions of the two precipitation datasets across all locations.
in that context are Eastern USA, Southern Greenland andHowever, while particularly the patterns in South America
South-Eastern China in the Northern Hemisphere, as well asand Central Africa reflect the results which we found for
South America, Central Africa and Indonesia in the Southernthe unnormalised datasets, those in Central Asia and western
Hemisphere. North America did not occur before. This means consider-
The level of agreement between the width of the WFD andation of the inter-percentile ranges of the normalised values
GCM probability distributions (including daily and monthly in Fig. 11 reveals patterns of changes in the distributions,
variability) during the reference period dictates also thewhich are masked on the larger scale (cf. maps for the unnor-
width of the distribution of bias-corrected values in the fu- malised values FidL0). A general statement on the deviation
ture. Thus, when performing the analysis shown in Bi@. of the width of distributions of normalised values, as done for
for a period at the end of the 21st century (RCP 8.5) we ob-the unnormalised values in Fig0, is however not straight-
tain basically the same patterns, although absolute values aferward. This is because in many cases the discrepancy for
in general larger. lower and upper inter-percentile range is of opposite sign.
Since in both datasets the monthly variability is modified
in the same way (by a constant multiplicative factor), the )
described differences must result from the correction of the® Conclusions and future work

daily variability. For a more detailed investigation and com- We presented a novel, trend-preserving statistical bias cor-

parison of variability only on this short time scale, we con- . : . )
. . . ; rection approach, which adjusts the monthly mean and daily
sider the inter-percentile ranges of the normalised values for ~~. "~ .. . . : .
. .variability of simulated climate data to observations, whilst
the end of the 21st century (RCP 8.5). We chose this scenarig . . .
preserving the climate signal (long-term trend) much bet-

ter than previous algorithms. The proposed bias correction
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method extends the approach Biani et al.(2010 to con-  variability of the monthly data about the annual mean, i.e. the
serve the trend. An additive approach preserving the absoseasonal cycle —is in principle possible with the method pro-
lute changes (for temperature) and a multiplicative one preposed by ISI-MIP, but has not been applied so far. Such an ex-
serving the relative changes (for precipitation) were devel-tension will be crucial for future impact studies, even though
oped and described in detail. Quantile mapping was appliedias correction can only be applied to processes that operate
only to residual or normalised data. We demonstrated thabn time scales that are considerably shorter than the reference
our approach is capable of adjusting the probability distri- period.

bution over the reference period, whilst widely preserving

the long-term trend in the data. We showed and discussed

that, although daily weighting of monthly correction factor Supplementary material related to this article is

(temperature algorithm) or truncation of extreme high val- available online at: http://www.earth-syst-dynam.net/4/

ues (precipitation algorithm) can affect the trend, even with219/2013/esd-4-219-2013-supplement.pdf

those limitations the methodology proposed by ISI-MIP per-

forms well in preserving the trend. This is essential for the

project and not necessarily ensured by other methods (aécknowledgementsThis work has been conducted under the
shown for the method used within Water-MIP). In addition, framework of ISI-MIP. The ISI-MIP Fast Track project is funded
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