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Abstract

Technological change in agriculture plays a decisive role for meeting future demands for agricul-
tural goods. However, up to now, agricultural sector modelsand models on land use change have
used technological change as an exogenous input due to various information and data deficien-
cies. This paper provides a first attempt towards an endogenous implementation based on a mea-
sure of agricultural land use intensity. We relate this measure to empirical data on investments
in technological change. Our estimated yield elasticity with respect to research investments is
0.29 and production costs per area increase linearly with anincreasing yield level. Implemented
in the global land use model MAgPIE (”Model of Agricultural Production and its Impact on the
Environment”) this approach provides estimates of future yield growth. Highest future yield in-
creases are required in Sub-Saharan Africa, the Middle Eastand South Asia. Our validation with
FAO data for the period 1995-2005 indicates that the model behavior is in line with observations.
By comparing two scenarios on forest conservation we show that protecting sensitive forest areas
in the future is possible but requires substantial investments into technological change.

Key words: technological change, land use, agricultural productivity, land use intensity,
research and development

1. Introduction

More than 200 years ago Thomas Malthus published his rather pessimistic population essay,
in which he stated that population growth would be restricted by a slow growth rate in food
production [1]. Now the world is inhabited by almost seven billion people, which marks an
increase by about600% since Malthus’ times. One of the main shortcomings of his essay was
the underestimation of technological change (TC) in agriculture [2].
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However, during Malthus’ times technological change was negligible and higher food pro-
duction was almost exclusively due to an increase in production factors [3]. Important innova-
tions in agriculture from the 19th century onwards changed this pathway [4]. Since then land-
saving technological change has been the main driver for growth in agricultural output [5, 6].
Figure 1 shows the strong correlation between agriculturaloutput and population during the last
200 years. Agricultural output has increased considerably, paving the way for strong popula-
tion growth. Most of such increases in agricultural output have been the result of technological
change induced by investments in Research & Development (R&D). One example is the so called
”Green Revolution” in Asia and Latin America, initiated by international agricultural research
institutes [7]3.
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Figure 1: Historic development of agricultural production and population [own illustration based on Federico [3] and
United Nations [8]]

The importance of TC for the agricultural sector is widely acknowledged in the scientific
literature. For instance, some recent studies document theneed of agricultural innovation and
progress for satisfying global food demand and keeping foodprices at tolerable levels [9, 10].
Thirtle et al. [11] point out that growth in the agriculturalsector has a much higher impact on
poverty reduction in Africa and Asia than growth in other sectors. Sub-Saharan Africa particu-
larly profits from R&D investments mostly in terms of increases in agricultural productivity and
poverty alleviation [12].

Notwithstanding, in agricultural sector models or models of land use change, TC is imple-
mented as an exogenous driver [13–17]. In these models, projections primarily depend on a
fixed technology path rather than on internal model dynamics. This may lead to serious biases in

3During the 1960s and 70s the International Maize and Wheat Improvement Center (CIMMYT) and the International
Rice Research Institute (IRRI) developed high-yielding wheat and rice seeds.
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model results due to an underestimation of the adaptabilityin the agricultural sector, especially
in the longer run.

The main reason for using an exogenous TC path in most models is that although the rela-
tionship between R&D investments in agriculture and technological change is well documented
[9, 11, 12, 18, 19], the exact influence of R&D on technological change is still unknown. Sev-
eral reasons exist for this knowledge gap. First, availabletime series of R&D investments are
still relatively short (less than 30 years) and often incomplete [20]. Second, as Evenson [21]
showed, spillover effects are of major importance in agricultural research and hamper the cor-
rect attribution of R&D investments to their impact. Third,success in R&D is hard to predict.
High investment may fade away without producing any output,whereas in other instances low
investment may create marvelous results. Finally, no clearboundary exists between R&D in-
vestments in different sectors. In many cases inventions inone sector are based on inventions
in other sectors. In a sectoral analysis of a specific R&D sector, e.g. agricultural R&D, these
cross-connections cannot be considered.

Due to improved data on agricultural R&D investment [22] anda measure for agricultural
land use intensity, we are able to present a new attempt of implementing endogenous techno-
logical change in a land use model, which uses a deterministic investment-improvement ratio
and ignores possible spillovers from other sectors. Withina sectoral model and with the current
data availability to analyse the relationship of R&D investments and agricultural productivity
this is the only option to endogenise technological change.With the new approach presented
here, the model can freely decide on the optimal rate of technological change, which is of central
importance for long-term projections over several decadesand dynamics under increasingly lim-
ited production resources. For this purpose, we relate investments in technological change and
corresponding yield growth to agricultural land use intensities. As a second step, we estimate em-
pirically how the level of agricultural production costs per area evolves with the yield level. The
methods are implemented in the global land use optimisationmodel MAgPIE (”Model of Agri-
cultural Production and its Impact on the Environment”) [23–25] and the resulting technological
change rates are validated with independent data. Finally,in order to illustrate the importance of
the dynamic behaviour of TC, we compare two extreme scenarios on forest conservation which
reflect the trade-off between agricultural land expansion and technological change.

2. Methodological framework

The endogenous implementation of agricultural TC is based on production costs and the
effectiveness of R&D investments on yield changes (investment-yield ratio, IY) (see Table 1 for
definitions). The IY ratio, describing TC investments required per unit of yield growth, evolves
with the agricultural land use intensity. Accordingly, production costs (i.e. for use of inputs) are
based on yield levels. For the purpose of measuring agricultural land use intensity we use the
τ -factor developed by Dietrich et al. [26]. Theτ factor is an output-related measure of land use
intensity and captures the full spectrum of yield increasing technology and management options.
It is the ratio of actual yields and reference yields under a spatially and temporally fixed land use
intensity.

2.1. Investment-Yield Ratio
Based on theτ factor it is possible to link investment costs for generating technological

change directly to the level of land use intensity. We differentiate between two types of invest-
ment costs which influence the rate of technological change:first, public and private investments
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concept description
agricultural land use intensity degree of yield amplification caused by human activities

[26]
τ -factor measure proportional to agricultural land use intensity

[26]
technological change (TC) more efficient usage of the input factors land, labour or

capital [27]
TC investments composite of annual investments in R&D and in-

frastructure (e.g. transport and telecommunication)
[US$/year]

investment-yield ratio (IY ratio) TC investments required per human-induced unit yield
growth and area [US$/ha]

Table 1: Concepts and terms used in this paper

in agricultural R&D, and second, investments in infrastructure (e.g. transport and telecommuni-
cation). Data for public and private R&D investments is taken from IFPRI for the year 1981 [22]
and data for infrastructure investments is from the GTAP database, version 7 [28] (discounted
from 2004 to 1995)4. Unfortunately, the GTAP database does not distinguish between one-time
investments in infrastructure and maintenance costs. To get an estimate for annual investments
in infrastructure the total GTAP infrastructure costs are corrected with a factor of 0.65, which is
the average fraction of one-time investments on total infrastructure costs based on OECD [29].
The remaining 35% of the total infrastructure costs are maintenance costs and are treated as
additional production costs.

Both investment costs, R&D investments and infrastructureinvestments, are divided by the
average yield growth rate observed in the years 1990-1999 taken from FAO [30] to achieve
investment costs per unit of yield growth. The reason for taking the R&D investment data of
the year 1981 is the typical time lag between investment in R&D and its impact. The literature
offers quite a wide range of various delays and lag-structures proposed for agriculture, ranging
from a few years to several decades [19, 31–33]. Chavas [34] summarizes results from empirical
studies suggesting a time lag of 8-15 years for private investments and 15-25 years for public
investments. Based on that, the chosen delay of 15 years matches the average delay used in
literature. Furthermore, according to Alston et al. [18, 35], it agrees with the time which is
needed to reach the maximum value of gross annual benefits.

The absolute amount of investment still depends on the size of a region: the bigger the region,
the higher the variation in physical conditions. As a consequence, more research is needed
to produce the same average growth rate compared to a smallerregion with less variation in
biophysical crop conditions. Consequently, we normalisedinvestment relative to the agricultural
area of a region. Specific R&D investment per unit of yield growth are computed as the ratio
of R&D expenditures per area and the yield growth 15 years later. The same concept is applied
for infrastructure investment, except that no time delay isassumed. Both components add up to
the investment-yield ratioIY describing the TC investment per area required per unit of yield
growth.

The relationship between IY ratio andτ is described by the elasticityǫIYτ , i.e. the propor-

4Infrastructure investments are composed of investments in transport, water and energy distribution, telecommunica-
tion and financial services, all related specifically to the agricultural sector according to GTAP 7.
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tional relationship between an increase inτ and an increase in the IY ratio.

dIY (τ)

IY (τ)
= ǫIYτ ·

dτ

τ
(1)

The elasticityǫIYτ is estimated via a regression analysis. Since agriculturalR&D data is
generally aggregated over all agricultural sectors and spillover effects are expected [21, 36], we
used an aggregated version ofτ covering all crops for the regression.

The results of the regression analysis is shown in equation 2. Figure 2 illustrates the relation-
ship in a graph for the 10 world regions of the MAgPIE model.

IY (τi) = (1.9± 0.4) · 103 · τ2.4±0.9
i (2)
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Figure 2: investment-yield ratio in relation toτ -factor

P-values of the t-tests for prefactora and exponent/elasticityǫ are pa = 0.002 (**) and
pǫ = 0.04 (*). The elasticity between IY ratio and theτ -factor ǫIYτ has a value of 2.4 with
a standard error of 0.9. As previously explained, changes inτ are proportional to changes in
yield, and therefore we can transform this elasticity into an elasticity of yield with respect to
accumulated TC investments (I), which is a more common representation (Equation 3). The
result is close to the value ofǫyldI = 0.296, as reported by [37].

ǫyldI =
1

ǫIYτ + 1
= 0.29± 0.08 (3)
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2.2. Correlation with Production Costs

With improving agricultural technology and rising crop yields, production costs per hectare
for fertilizer, machinery, and other input factors also rise. Since we endogenise the relationship
between TC investment and land use intensity (Eq. 1), we alsohave to describe the relationship
between yield levels and production costs. Data for production costs is taken from the GTAP 7
Data Base [28] and yield data is taken from FAOSTAT [30]. The data for small producing coun-
tries is expected to be insufficiently accurate [38]. Therefore, only the top producing countries
for each crop are taken into account, representing at least 90% of total crop production and at
minimum 1/3 of all available countries (31 countries) in theanalysis (an exception is oil palm,
which is only produced in 20 countries worldwide).

A standard linear regression analysis of this data shows that the residuals are not normally
distributed and would give biased results. Therefore, we have applied a correlation analysis be-
tween (a) yield and costs per area and (b) yield and costs per ton using the Pearson correlation
coefficient [39] as well as the Kendall rank correlation coefficient [40]. We use two different cor-
relation coefficients, in order to reveal potential measure-related biases in the analysis. Whereas
the Pearson correlation coefficient measures the magnitudeof the linear dependence between
two variables, the Kendall rank correlation coefficient measures just any correlation based on a
rank test [41]. Since residuals in our data set are non-normally distributed, the significance of the
Pearson test may be biased, if samples sizes are too small [42].

With regard to the relationship between production costs and yield level, Table 2 shows the
Pearson correlation coefficients and the Kendall rank correlation coefficients. All correlations are
positive and in most cases at least significant at the 95% level. In the Kendall rank correlation
test all crops except tropical cereals, oil palm and sugar cane show significant correlations at the
99.9% significance level. In the Pearson correlation tests the results are less significant, but still
10 out of 16 crops show significant correlations at the 95% level.

crop types Pearson Kendall
correlation p-value correlation p-value

cereals temperate 0.81 *** 0.000 0.63 *** 0.000
tropical 0.49 * 0.019 0.23 0.140
maize 0.70 *** 0.000 0.61 *** 0.000
rice 0.42 * 0.019 0.57 *** 0.000

oilcrops groundnut 0.17 0.410 0.47 *** 0.001
oil palm 0.07 0.803 0.23 0.228
rapeseed 0.56 ** 0.002 0.55 *** 0.000
soybean 0.08 0.689 0.47 *** 0.000
sunflower 0.68 *** 0.000 0.45 *** 0.000

sugar beet 0.65 ** 0.002 0.53 *** 0.001
cane 0.37 0.107 0.14 0.422

others cassava 0.35 0.084 0.47 *** 0.001
potato 0.37 * 0.046 0.58 *** 0.000
pulses 0.75 *** 0.000 0.52 *** 0.000
cotton 0.26 0.171 0.49 *** 0.000
others 0.62 *** 0.000 0.43 *** 0.001

Table 2: Correlation between yield and production costs perarea(* p≥95%, ** p≥99%, *** p≥99.9%)
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Table 3 shows the same information for the relationship between yields and production costs
per ton. However, almost none of the tested crop types shows asignificant correlation. Com-
paring the results in both tables suggests the existence of apositive correlation between yields
and area-related production costs, but no correlation between yields and output-related produc-
tion costs. A linear relation with a positive gradient between yields and area-related production
costs is the simplest solution which replicates this pattern. Since area-related production costs
can be also calculated as a product of yield and output-related production costs the linearity in
area-related costs leads to constant output-related costs. Based on this result production costs per
ton have been implemented as a constant input for the model. We derived these costs as mean of
measured costs per ton.

crop types Pearson Kendall
correlation p-value correlation p-value

cereals temperate -0.06 0.771 0.15 0.250
tropical 0.02 0.941 -0.07 0.676
maize 0.27 0.151 0.25 0.058
rice 0.28 0.126 0.29 * 0.022

oilcrops groundnut -0.10 0.628 0.23 0.118
oil palm -0.03 0.912 0.15 0.450
rapeseed 0.29 0.136 0.26 0.055
soybean -0.06 0.753 0.25 0.066
sunflower 0.12 0.531 0.22 0.103

sugar beet 0.42 0.068 0.30 0.074
cane -0.22 0.352 -0.13 0.461

others cassava 0.32 0.118 0.25 0.088
potato 0.22 0.246 0.33 ** 0.010
pulses 0.43 * 0.040 0.38 ** 0.010
cotton 0.00 1.000 0.28 * 0.029
others 0.42 * 0.025 0.24 0.072

Table 3: Correlation between yield and production costs perton(* p≥95%, ** p≥99%, *** p≥99.9%)

Table 4 shows the calculated costs per ton together with the number of countries included in
this calculation and the share of total production covered by these countries. These costs per ton
are used in MAgPIE for the calculation of production costs (see Appendix Appendix C).

2.3. Model Implementation
The global land use model MAgPIE (”Model of Agricultural Production and its Impact on

the Environment”) has been developed to generate future land use and agricultural production
patterns, addressing a wide range of scenarios on population and income growth throughout the
21st century. It is a recursive dynamic model working on a regular spatial grid with a cell size of
about0.5◦×0.5◦ (approximately50×50km2 at the equator). The model works on ten-year time
steps. On the biophysical side, it uses spatially explicit data on potential crop yields, land and
water availability taken from the dynamic global vegetation model LPJmL [43]. Economic data
is used at the aggregate level of 10 economic world regions5. For future demand trajectories

5AFR = Sub-Sahara Africa, CPA = Centrally Planned Asia (incl.China), EUR = Europe (incl. Turkey), FSU =
Former Soviet Union, LAM = Latin America, MEA = Middle East and North Africa, NAM = North America, PAO =
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crop types costs[US$/t] countries prod. share
cereals temperate 130 31 0.95

tropical 70 31 0.97
maize 90 31 0.96
rice 110 31 0.99

oilcrops groundnut 180 31 1.00
oil palm 30 20 1.00
rapeseed 210 31 0.99
soybean 150 31 1.00
sunflower 130 31 0.99

sugar beet 220 31 0.98
cane 50 31 0.99

others cassava 350 31 0.99
potato 1230 31 0.91
pulses 160 31 0.94
cotton 620 31 0.99
others 1130 31 0.92

Table 4: Crop-specific, average costs per ton, number of countries used for averaging and the total production share of
these countries

the model derives specific land use patterns and costs of agricultural production for each grid
cell. These patterns are initially based for the year 1995 onexternal data for population [44] and
gross domestic product (GDP) [45] (see Appendix A). Future projections are internally derived
based on future scenarios defined in the ADAM project6 and eplained in van Vuuren et al. [46].
The food energy demand for the year 1995 is taken from FAOSTAT[47]. The share of traded
goods is kept constant over time and is based on self-sufficiency ratios for the year 1995 [47].
More information on model structure and features can be found in detail in Lotze-Campen et al.
[23, 24], Popp et al. [25, 48]. A mathematical description ofthe model is presented in Appendix
C.

Figure 3 shows a schematic overview of the endogenous implementation of technological
change in MAgPIE. Investments in TC lead to increases in landuse intensity which let yields
increase as well. At the same time the higher land use intensity forces an increase in production
costs per area as well as a rise in the IY ratio which can also beinterpreted as an efficiency
drop for further TC investments: In order to achieve one unitof yield increase in a subsequent
time step, a larger amount of TC investments has to be mobilized than in the previous period. In
Appendix B we explain some further implementation issues dealing with the recursive dynamic
structure of MAgPIE.

2.4. Validation and Scenarios

For the validation we compare long-term trends of simulatedτ development from 1995 to
2060 with observed data from 1960 to 2005, with a special focus on the overlap in 1995-2005.

Pacific OECD (Australia, Japan and New Zealand), PAS = PacificAsia, SAS = South Asia (incl. India)
6Adaptation and Mitigation Project, URL: http://www.adamproject.eu/
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TC investments
land use intensity ( ) yield

production costsper areaefficiency (investment yield ratio) 1

Figure 3: Implementation of technological change in MAgPIE (schematic)

We use historical data from FAO on yield growth, which was neither part of the model parame-
terization nor calibration. Based on this data the changes in τ are calculated backwards starting
from 2005.

In order to show the interplay between rates of deforestation and endogenous technological
change in agriculture we have compared two scenarios: one scenario which is assuming full con-
servation of all intact and frontier forests (IFF) and a second scenario without any IFF conserva-
tion. IFF is defined as undisturbed natural forest (i.e. the Amazonian rainforest) which includes
intact forest landscapes and frontier forests [49]. IFF conservation in MAgPIE is modeled by
excluding the IFF areas from the land area available for agricultural land expansion. Expansion
involves additional costs for intraregional transport andphysical conversion. Intraregional trans-
port costs reflect the distance to the next market and accountfor the accessibility and quality of
the infrastructure. The costs are based on GTAP transport costs [28] and a 30 arc-second res-
olution data set on travel time [50]. The second cost type, land conversion costs, involves the
preparation of the land and basic infrastructure and is based on country-level marginal access
costs [51].

We have chosen these two extreme scenarios to represent the full spectrum of possible policy
decisions. On the one hand, forest protection is a clearly stated objective of many governments
and international organisations [52] but on the other hand,deforestation of IFF is happening
all over the world [53] and efficient protection mechanism are still lacking [54]. The scenarios
help to make the full trade-off between agricultural land expansion and technological change
transparent. Besides the differences in handling of the IFFareas, both scenarios apply the same
conditions as explained in section 2.3.

3. Simulation Results

Figure 4 shows the projectedτ development (2005-2060) for maize compared to past ob-
servations of the FAO (1960-2005) in the forest conservation scenario. Maize is chosen as an
example since this is one of the most important crops and is grown in all parts of the world.
Regions like Sub-Saharan Africa (AFR) and North America (NAM) show very strong increases
in τ . However, the strongest increase is projected for the Middle East and North Africa region
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(MEA). This enormous increase is in line with FAO data for this region for the period since the
1980s. Overall three groups can be distinguished: Regions with increasing growth rates (MEA,
AFR), constant rates (NAM, LAM, SAS and PAS) and decreasing rates (CPA, EUR, FSU, PAO).
PAO is a special case with small growth rates in the past but vanishing growth rates in the pro-
jections until 2040.
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Figure 4: Observed and simulatedτ -factor for maize in the ten world regions under a forest protection scenario

Figure 5 shows the model results of both scenarios (full forest conservation and no forest
10



conservation) compared with FAO observations in greater detail for the aggregate of all crops. It
is important to note that the FAO data used for validation wasnot taken as model input, neither
as direct source, nor for calibration purposes. For a directcomparison between observations and
model results, we focus on the overlap from 1995 to 2005. Moreover, the model results can be
validated against the general trend in the observed data.

For some regions the scenario projections deliver quite similar or even identical results while
the projections for other regions strongly depend on the chosen scenario. Especially, the three
regions with huge rainforest areas (LAM, AFR, and PAS) show large differences in projections.
Looking at these three regions also the agreement between observation and validation is quite
diverse: In AFR historic growth rates are significantly lower compared to the rates of both pro-
jections. However, at the 10 year overlap (1995-2005) the differences are smaller, especially in
the scenario without forest conservation. In contrast, LAMshows the exact opposite behavior.
In the scenario without forest conservation, growth rates are underestimated, while in the forest
conservation scenario projections are in good agreement with historic trends, although the model
still seems to underestimate the observed growth rates in the overlapping period. In PAS, his-
toric trends fit quite well to the forest conservation projection, whereas in the overlapping period
observational data shows some stagnation. The projection without forest conservation illustrates
the same effect, even though in a more extreme manner (20 years stagnation instead of only 5
years).

In the remaining regions the differences between both scenarios are small. For EUR, MEA,
and NAM the general trend as well as the overlap show a good agreement between observation
and simulation. In CPA the trend fits well, but in the observeddata from 1995 on appears a
stagnation (similar to the situation in PAS) which is not reproduced by the simulations. The
results for FSU are hard to judge, because the historic data is strongly affected by fluctuations due
to the political transformation after 1990. PAO shows weak growth rates in the historic trend, but
none in the simulations until 2040 and none in the observed data between 1995-2005. For SAS it
seems that both projections slightly overestimate the realtrend, even though the differences are
only marginal. Overall, we can state that none of the regionsshows huge discrepancies between
observation and simulation, but for some regions the forest-conservation scenario shows a better
agreement (LAM, PAS) while other regions agree more with theno-forest-conservation scenario
(AFR, CPA, SAS).

Differences in TC rates between scenarios also directly affect land use patterns. Figure 6
and 7 show the share of cropland in total land area in 2065 for the forest conservation scenario
(Figure 6) and the scenario without forest conservation (Figure 7). The largest differences are
obtained in the regions LAM, AFR and PAS, which are also most sensitive in theτ -factor com-
parison. In these three regions Brazil, the Democratic Republic of the Congo and Indonesia are
most strongly affected from deforestation. Smaller changes are simulated in Canada, Russia,
Mexico and Australia. Due to the absence of relevant IFF areas in the rest of the world, no other
significant changes do occur.

4. Discussion

Technological change is the crucial driver for increasing agricultural yields. However, in
land use models technological change is usually implemented in an exogenous way leading to
static pathways without any dynamic interaction (i.e. [16,17]). Reasons for this are manifold as
described in section 1. The endogenous implementation of TCas described here now allows for
better modeling of long-term land-use dynamics, even though some aspects, such as spillovers
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Figure 5: Comparison of MAgPIE model projections 1995-2060 ina forest protection scenario (red dotted line) and a
scenario without forest protection (black dotted line) with FAO observations 1960-2005 (blue dots) and its running mean
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Figure 6: Global total cropland shares in a intact and frontier forest protection scenario in 2065
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Figure 7: Global total cropland shares in absence of any intact and frontier forest protection in 2065

from R&D in other sectors, had to be taken as non-existent forlack of suitable data. The problems
of high uncertainty and unpredictable rates of return associated with investments and the problem
of spillovers are partially compensated for by using a high aggregation level of only ten world
regions. On the other hand, this means that our approximation is only valid at coarse scales and
becomes invalid when applied to finer scales. In addition, weaddress the problem of missing time
series data by using the land use intensity indicator as proxy and assuming the same development
path for all world regions. Our approach estimates the leveland evolution of the investment-yield
ratio relative to theτ factor, an output-related measure for agricultural land use intensity. The
main advantage in this context over other measures, like theyield gap analysis [55], is that any
yield increase due to improved technology will be reflected by an increase inτ , but may be
at least partially undetected by the yield gap, as the potential yield rises as well and the gap
remains constant. A more detailed comparison to other concepts which analyse agricultural
potentials is provided in Dietrich et al. [26]. In addition to that, theτ approach conceptually
does not contain any upper limit. What might be rather worrying from the perspective of current
technologies and knowledge is an essential feature of the presented implementation necessary for
long-term projections: While it is reasonable to assume upper yield limits in short- to medium-
term analyses with relatively stable price structures and technologies, such an assumption is less
appropriate for longer time scales or strong increases in market prices. Yield gap assessments
are typically based on the current perception of the agricultural sector and evaluate potentials
based on technologies which seem to be realistic assuming current market pressures. However,
for long-term projections, investments in new technologies that are capable of achieving yields
far beyond current levels should not be categorically ruledout - as they would if we define yield
plateaus based on current knowledge and technologies. Example of such technologies include
the transfer of C4 photosynthesis into C3 plants (e.g. [56])although some assess the potential
of such technologies to be small [57]. This could also be combined with fully artificial growing
conditions that are not even limited by incoming radiation [58]. Producing crops on more than
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one level (or layer) will - from a technological perspective- easily allow to double or triple
yield potentials per unit of land. Moreover, there are far more realistic technologies such as
greenhouses which have the ability to push yields above the level reported by yield potential
assessments. They are optimizing parameters such as temperature, solar radiation, water supply
or CO2 concentration which are often assumed non-manageable in analyses of potential yields
(following the yield potential definition from [59]). Therefore, the presented approach does only
limit the economic feasibility of TC, it does not introduce ageneral upper limit.

The regression analysis reveals that a higher level of agricultural land use intensity coincides
with a higher IY ratio. Furthermore, the estimated yield elasticity with respect to accumulated
TC investmentsǫyldI = 0.29 is in line with an expert assessment [37]. Correlation results suggest
that the yield level is correlated with production costs perarea whereas marginal production costs
are independent. That leads to an implementation in which every additional production unit faces
the same amount of additional costs. Consequently, farmersin this setting will adopt the new
technology since they expect higher yields at constant costs per ton.

Due to limited data availability the results of this analysis have to be treated with caution.
In the absence of time series data on R&D investments the study relies on a single time slice.
Therefore, the impact of time varying disturbances such as changing oil prices could neither be
incorporated nor are they detectable in the given framework. Furthermore, the limited quality
of data constrains the validity of the applied statistical evaluation. Better data availability in the
future can help to check and improve the robustness of the presented results and the shape of the
production cost-yield relationship. For the available data, this is best described by a linear form,
even though a non-linear form would also be possible from a theoretical point of view.

Our τ projections for maize provide rich insights with regard to future yield trends. The
strong increase in Africa indicates what kind of yield growth rates are required to meet the soaring
demand under a forest conservation scenario. North America, as the leading region for maize
production, continues with high yield growth rates. The Middle East and North Africa region
(MEA) require even higher growth rates. This region faces unfavorable cropping conditions
and at the same time a higher demand increase. Under these conditions, huge investments in
technological change are required. In contrast, Europe continues along its trend over the past
two decades when maize yields have not improved much. The Asian regions, starting from a
lower yield level and facing a higher demand pressure in the future, have higher growth rates
compared to Europe. Lastly, Latin America follows its strong yield growth path since the early
1990s, with high investments in the agricultural sector.

Judging the validation results it should be considered thatthe simulated data is not an inter-
polation of observed data. Both data sets are independent ofeach other. Notwithstanding, the
validation indicates that our model results are in line withhistorical data. The long-term trend is
reproduced well for most regions, while the observed data inthe overlapping period 1995-2005
often shows some unexpected changes in dynamics, such as stagnation in some cases. A hint
for an interpretation of these changes in dynamics can be found in the simulation results of the
scenario without forest conservation: The projections forLAM as well as for PAS show also a
temporary stagnation in growth rates similar to the observed stagnations in CPA and PAS. In the
model, additional production is achieved exclusively by land expansion into IFF. However, in
both regions the model switches again to yield increases dueto technological change.

AFR is represented best by the scenario without forest conservation, LAM by the forest con-
servation scenario, and PAS by a mixture of both. This is in line with the political situation in
these regions. While LAM is able to trigger investments in R&Don a level which is sufficient to
remove the land expansion pressure based on agricultural demands (there are still other reasons
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for deforestation), AFR fails to do so. PAS seems to have a mixed situation with partial success.
The results illustrate that, especially in AFR, R&D investments have to be increased tremen-
dously to meet the demand without cutting down the rainforest in Central Africa. A possible
reason for relatively weak validation results in a few regions is that demand and trade are rather
inflexible in the current version of the MAgPIE model. In regions, like LAM or CPA, this might
have strong impacts on future productivity levels.

5. Conclusion

During the lifetime of Thomas Malthus and before, growth in agricultural output was almost
exclusively a result of growth in the use of input factors. This changed by the end of the 19th
century and since then agricultural output has been mainly driven by increases in productivity.
However, agricultural sector and land use models do not cover technological change as an en-
dogenous driver. In order to fill this gap, we have presented amodel approach for an endogenous
implementation of technological change.

Our statistical analysis indicates that the investment-yield ratio increases in a disproportion-
ate way to land use intensity (measured by theτ -factor) and that production costs are linearly
correlated with yield levels. Our simulation model resultsshow that regions with high demand
projections, like Sub-Saharan Africa, or with low potentials for land expansion, like Middle East
and South Asia, have to make huge investments in future technological change. While the Mid-
dle East region and South Asia show this trend already in the observed data, Sub-Saharan Africa
shows this trend only since 1995. Hence, to meet the projected challenges in economic devel-
opment and growing agricultural demand, it seems indispensable for countries in Sub-Saharan
Africa to increase investments in R&D and infrastructure inorder to meet the demand. The
scenario on forest conservation exemplifies that investments in agricultural R&D have to be
increased considerable in order to be able to protect sensitive forest areas under otherwise un-
changed conditions.
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Appendix A. Population and GDP

year 1995 2005 2015 2025 2035 2045 2055 2065
AFR 553 743 926 1,125 1,313 1,481 1,629 1,753
CPA 1,281 1,480 1,582 1,651 1,673 1,677 1,659 1,632
EUR 554 589 586 575 559 532 505 480
FSU 276 293 295 295 285 275 262 246
LAM 452 550 623 687 739 780 810 830
MEA 278 357 423 486 541 590 633 671
NAM 292 332 355 375 391 400 404 403
PAO 134 145 148 147 146 144 140 132
PAS 383 462 517 565 614 652 674 684
SAS 1,270 1,572 1,797 1,998 2,149 2,265 2,347 2,398

Table A.5: Population in million from 1995 to 2065 aggregatedto ten world regions [44]

year 1995 2005 2015 2025 2035 2045 2055 2065
AFR 1,513 1,627 1,826 2,080 2,448 3,221 4,242 5,430
CPA 3,299 5,855 8,908 12,311 16,270 20,512 24,720 28,579
EUR 16,128 20,123 25,189 30,654 36,115 41,080 45,851 50,672
FSU 3,521 4,081 6,094 8,496 11,143 15,264 20,235 25,698
LAM 6,527 7,840 9,769 11,853 14,131 17,144 20,809 24,989
MEA 4,940 5,855 7,352 9,215 11,408 14,142 17,346 21,002
NAM 26,765 33,920 39,349 44,489 49,842 55,597 61,383 67,106
PAO 21,469 24,240 28,672 34,841 41,224 45,297 49,037 52,935
PAS 3,649 4,614 6,692 9,324 12,371 16,211 20,322 2,569
SAS 1,461 2,139 3,181 4,406 5,805 7,769 9,827 11,923

Table A.6: GDP per capita (US$ per number of people in purchasing power parities (PPP)) [45]

Appendix B. Specific implementation characteristics of MAgPIE

For the implementation of technological change in MAgPIE some characteristics of the
model and the agricultural sector have to be considered: Typically, for endogenous technol-
ogy implementations in economic models an intertemporal optimisation approach is used due to
the need of some kind of planning foresight [60]. In contrast, MAgPIE is a recursive dynamic
optimisation model which solves each time step separately.To be able to reproduce planning
foresight in MAgPIE we use the annuity approach to transfer lump-sum TC investment to pe-
riodic payments including interest [61]. Investment decisions are taken by the model under the
assumption of a 20-year lifetime of TC yield gains.

Another issue is the implementation of a 15-year lag betweenR&D investment and yield
impact. The model decides, based on the expectations for 15 years later, how much should
be invested. However, since there is no other cross-connection between these time steps, it is
possible to shift the investments to the time step when its impact takes place. This means: if the
model needs yield growth in the year 2025 due to higher demandexpectations, these 2025 model
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investments must have been made in 2010. However, the costs for R&D in 2010 in the model will
be compounded and paid in 2025. This implementation allows for endogenising technological
change in a land use model without using intertemporal optimisation.

A non-intertemporal implementation has the advantage of reproducing the observed effect
of continuous underinvestment in agricultural R&D [62, 63]. This market failure is caused by
the limited foresight of decision makers concerning investments in R&D [64]. An intertemporal
optimisation model, however, would anticipate all the future benefits of R&D investments, which
would lead to an optimal R&D investment path in R&D and an overestimation of yield increases,
compared with observed trends.

Appendix C. MAgPIE mathematical description (TC Branch Rev 2987)

MAgPIE (Model of Agricultural Production and its Impact on the Environment) is a nonlin-
ear recursive dynamic optimization model that links regional economic information with grid-
based biophysical constraints simulated by the dynamic vegetation model LPJmL. A simulation
run with the simulation periodT can be described as a set

X = {xt | t ∈ T} ⊆ Ω (C.1)

of solutions of a time depending minimization problem, i.e.for every timestept ∈ T the
following constraint is fulfilled

∀y ∈ Ω : gt(xt) ≤ gt(y), (C.2)

where the goal function fort ∈ T

gt(xt) = g(t, xt, x(t−1), ..., x1, Pt) (C.3)

depends on the solutions of the previous time stepsx(t−1), ..., x1 and a set of time depending
parametersPt. We may interprete a MAgPIE simulation runX = {xt | t ∈ T} ⊆ Ω as an
element of the vector spaceΩT = Ω× T .

Appendix C.1. Sets

The dimension of the domainΩ, on which for each timestep the minimization problem is
defined, and ofΩT depends on the following sets:

• T = {time stepst}: Simulation time steps, wheret denotes the current time step,t−1 the
previous time step and so on. The first simulated time step ist = 1.

• I = {world regionsi}: Economic world regions in MAgPIE.

• J = {spatial cellsj} : Highest disaggregation level in MAgPIE.

• K = {simulated productsk} : Union of vegetal productsV and livestock productsL
(K = V ∪ L).
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• L = {simulated livestock productsl}: Products simulated within the livestock sector of
MAgPIE.

• V = {vegetal productsv}: Products simulated within the crop sector of MAgPIE.

• W = {water supply typesw}: Currently two types are implemented: rainfed ’rf’ and
irrigation ’ir’

• C = {crop rotation groupsc}: Groups of crops, which produce similar effects in terms of
crop rotation.

To highlight the substance of our model equations with regard to the agricultural and eco-
nomic contents, we split our variablext into

xt =
(

xarea
t ∈ Ωarea, xprod

t ∈ Ωprod, xtc
t ∈ Ωtc

)

∈ Ω, (C.4)

where the respective domains can be identified as the following vector spaces

Ωarea = R
|J| × R

|V | × R
|W | (C.5)

Ωprod = R
|J| × R

|L| (C.6)

Ωtc = R
|I| (C.7)

As a result, we may specify the dimension of the solution space for each timestep asdimΩ =
|J | · |V | · |W | + |J | · |L| + |I| and the dimension ofΩT = Ω × T asdimΩT = |T | · dimΩ =
|T | · (|J | · |V | · |W |+ |J | · |L|+ |I|).

In the following, variables and parameters are provided with subscripts to indicate the di-
mension of the respective subdomains. Subscripts written in quotes are single elements of a set.
The order of subscripts in the variable, parameter and function definitions does not change. The
names of variables and parameters are written as superscript.

Appendix C.2. Variables

Since MAgPIE is a recursive dynamic optimization model, allvariables refer to a certain
time stept ∈ T . In each optimization step, only the variables belonging tothe current time step
are free variables. For all previous time steps, values werefixed in earlier optimization steps. As
we have seen above, we currently distinguish three variablesxarea

t ∈ Ωarea, xprod
t ∈ Ωprod and

xtc
t ∈ Ωtc that can be described as follows:

• xarea
t,j,v,w : The total area of each vegetal production activityv for each water supply type

w, each cellj and each time stept [ha]

• xprod
t,j,l : The total production of each livestock productl, for each cellj at each time stept

[ton dry matter]

• xtc
t,i: The amount of yield growth triggered by investments in R&D [-]
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Appendix C.3. Parameters

Besides variables, the model is fed with a set of parametersPt. These parameters are com-
puted exogenously and are in contrast to variables of previous time steps fully independent of
any simulation output. Although most parameters are time independent, there exist also some
parameters which are time dependent.

• pyieldt,j,v,w: Yield potentials for each time step, each cell, each crop and each water supply
type taking only natural variations into account and excluding changes due to technological
change [ton/ha]

• pdemt,i,k: Regional food and material demand in each time step for eachproduct [106 ton]

• pfshri,l,k : Feed share describing the share of each productk of total feed production for live-
stock productl and corresponding transformation from GJ feed in ton dry matter [ton/GJ]

• pfeedi,l : Feed requirements for each livestock productl in each regioni [GJ/ton]

• pbyprodi,k,l : Feed energy delivered by the byproducts ofk that are avaiable as feedstock for
the livestock productl [GJ/ton]

• pfrvi,v : Area related factor requirements for each crop and each region. The parameter is the
product of observed yields in 1995 [65] and the production costs shown in table 4 [US$/ha]

• pfrli,l : Production related factor requirements for livestock products for each livestock type
and each region [US$/ton]

• plcci : Area related land conversion costs for each region [US$/ha]

• ptcc: Technological change costs factor containing an interestcorrection, an expected life-
time factor and a general cost factor [US$/ha]

• pτ1i,v: τ -Factor representing the agricultural land use intensity in the first simulation time
step for each crop in each region [-]

• pcxp: Correlation Exponent betweenτ -Factor and technological change costs [-]

• pseedi,v : Share of production that is used as seed for the next period calculated for each crop
in each region [-]

• pxst,i,k: Regional excess supply for each product and each time step describing the amount
produced for export [106 ton]

• psfi,k: Regional self sufficiencies for each product [-]

• ptb: Trade balance reduction factor. This factor is always lessor equal 1 and is used to
relax the trade balance constraints depending on the particular trade scenario.

• plandj : Total amount of land available for crop production in each cell [106 ha]

• pir.landj : Total amount of land equipped for irrigation in each cell [106 ha]

• pwatreq
j,k : Cellular water requirements for each product [m3/ton/a]
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• pwater
j : Amount of water available for production in each cell [m3/a]

• prmax
c : Maximum share of crop groups in relation to total agricultural area [-]

• prmin
c : Minimum share of crop groups in relation to total agricultural area [-]

[all ton units in dry matter]

Appendix C.4. Sub-functions

To lighten the general model structure, some model components which appear more than
once in the model description and depend on the variables of the current time stept are arranged
as functions:

fgrowth
t,i (xt) =

t
∏

τ=1

(1 + xtc
τ,i) (C.8)

fprod
t,i,k (xt) =

∑

ji

{

xprod
t,j,k : k ∈ L
∑

w xarea
t,j,k,wp

yield
t,j,k,wf

growth
t,i (xt) : k ∈ V

(C.9)

fdem
t,i,k (xt) = pdemt,i,k +

∑

l

pfshri,l,k

(

pfeedi,l fprod
t,i,l (xt)−

∑

κ

pbyprodi,κ,l fprod
t,i,κ (xt)

)

. (C.10)

• fgrowth
t,i : Growth function describing the aggregated yield amplification due to technolog-

ical change compared to the level in the starting year for each yeart and regioni.

• fprod
t,i,k : Function representing the total regional production of a productk in region i at

timestept. In the case of vegetal products, it is derived by multiplying the current yield
level with the total area used to produce this product. In thecase of livestock products, it
is represented by the related production variable.

• fdem
t,i,k : Function defining the demand for productk in regioni at timestept. It consists of

an exogenous demand for food and materialspdemt,i,k and an endogenous demand for feed,
which is calculated as the feed demand generated by the livestock production minus the
feed supply gained through byproducts.

Appendix C.5. Goal function

gt(xt) = g(t, xt, x(t−1), ..., x1, Pt) (C.11)

The goal function describes the value that is minimized in our recursive dynamic optimization
model structure in each timestep. It is time dependent, i.e it differs for each time step, depending
on the solutions of the previous time steps. We define the goalfunction as follows (withΘ(x) as
Heaviside step function):
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gt(xt) =
∑

i,v



pfrvi,v fgrowth
t,i (xt)

∑

ji,w

xarea
t,j,v,w



 (C.12)

+
∑

i,l

(

pfrli,l f
prod
t,i,l (xt)

)

+
∑

i



plcci

∑

ji,v,w

(

xarea
t,j,v,w − xarea

t−1,j,v,w

)

Θ
(

xarea
t,j,v,w − xarea

t−1,j,v,w

)





+ptcc
∑

i



xtc
t,i

(

1

|V |

∑

v

pτ1i,vf
growth
t,i (xt)

)pcxp

∑

ji,v,w

xarea
t−1,j,v,w



 .

The function describes the total costs of agricultural production. The total costs can be split-
ted in four terms: 1. The area depending factor costs of vegetal production, which increase
with the yield gain due to technological development. 2. Thefactor costs of livestock pro-
duction depending on the production output. 3. The land conversion costs which arise, when
non-agricultural land is cleared and prepared for agricultural production. 4. The costs, which
arise by investing in technological development to increase yields by new inventions and im-
provements in management strategies. The technological change costs are proportional to the
total cropland area of a region and increase disproportionate with the yield growth bought in the
current timestep and the agricultural land-use intensity.

Appendix C.6. Constraints

Constraints are used to describe the boundary conditions, under which the goal function is
minimized.

Appendix C.6.1. Global demand constraints (for each activity k)

∑

i

fprod
t,i,k (xt)

1 + pseedi,k

≥
∑

i

fdem
t,i,k (xt) (C.13)

These constraints describe the global demand for agricultural commodities: The total pro-
duction of a commodityk adjusted by the seed share required for the next production iteration
has to meet the demand for this product.

Appendix C.6.2. Tradebalance (for each region i and product k)

fprod
t,i,k (xt)

1 + pseedi,k

≥ ptb

{

fdem
t,i,k (xt) + pxst,i,k : psfi,k ≥ 1

fdem
t,i,k (xt)p

sf
i,k : psfi,k < 1

(C.14)

The trade balance constraints are similar to the global demand constraints, except that it acts
on a regional level. In the case of an exporting region (self sufficiency for the productk is greater

21



than 1), the production has to meet the domestic demand supplemented by the demand caused
due to export. In the case of importing regions (self sufficiency less than 1), the domestic demand
is multiplied with the self sufficiency to describe the amount which has to be produced by the
region itself. In both cases the demand is multiplied with a so called ”trade balance reduction
factor”. This factor is always less or equal 1 and is used to relax the trade balance constraints
depending on the particular trade scenario, that is run.

Appendix C.6.3. Land constraint (for each cell j)

∑

v,w

xarea
t,j,v,w ≤ plandj (C.15)

∑

v

xarea
t,j,v,′ir′ ≤ pir.landj (C.16)

The land constraints guarantee, that no more land is used forproduction than available. The
first set of land constraints ensures the land availability for agricultural production in general.
The second one secures, that irrigated crop production is restricted to areas that are equipped for
irrigation.

Appendix C.6.4. Water constraints (for each cell j)

∑

v

xarea
t,j,v,′ir′p

yield
t,j,v,′ir′f

growth

t,i(j) (xt)p
watreq
j,v +

∑

l

xprod
t,j,l p

watreq
j,l ≤ pwater

j (C.17)

In MAgPIE, the production of animal commodities as well as vegetal goods produced with ir-
rigation requires water. The required amount of water is proportional to the production volumne.
The whole cellular water demand must be less or equal to the water available for production in
this cell.

Appendix C.6.5. Rotational constraints (for each crop rotation group c, cell j and irrigation type
w)

∑

vc

xarea
t,j,v,w ≤ prmax

c

∑

v

xarea
t,j,v,w (C.18)

∑

vc

xarea
t,j,v,w ≥ prmin

c

∑

v

xarea
t,j,v,w (C.19)

The rotational constraints are used to describe crop rotations, but also other aspects such as
cultural preferences or efforts of autonome food production systems. This is achieved by defining
for each vegetal product a maximum and minimum share relative to total area under production
in a cell. While crop rotation structures are exclusively described with the maximum share
constraints, cultural preferences and autonomy efforts are basically described with the minimum
constraints.
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