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Abstract

Global land-use models have to deal with processes on several spatial scales, ranging from the global scale
down to the farm level. The increasing complexity of modern land-use models combined with the problem
of limited computational resources represents a challenge to modelers. One solution of this problem is to
perform spatial aggregation based on a regular grid or administrative units such as countries. Unfortunately
this type of aggregation flattens many regional differences and produces a homogenized map of the world.
In this paper we present an alternative aggregation approach using clustering methods. Clustering reduces
the loss of information due to aggregation by choosing an appropriate aggregation pattern.

We investigate different clustering methods, examining their quality in terms of information conserva-
tion. Our results indicate that clustering is always a good choice and preferable compared to grid-based
aggregation. Although all the clustering methods we tested delivered a higher degree of information conser-
vation than grid-based aggregation, the choice of clustering method is not arbitrary. Comparing outputs of
a model fed with original data and a model fed with aggregated data, bottom-up clustering delivered the
best results for the whole range of numbers of clusters tested.

Keywords: aggregation, downscaling, clustering, information conservation, agricultural model, land use
model, scale

1. Introduction

An important step in the analysis of a process is to split it into sub-processes or sub-objects. One very
helpful approach is to classify processes or objects based on their scale. According to Turner et al. [30, p.
27] “scale refers to the spatial or temporal dimension of an object or process”. In the case of objects it is
related to their size or life-time, in the case of processes it is related to a characteristic time span or spatial
extent, for instance the duration or length of a periodic process.

To describe a range of several scales, for instance to characterize the range of scales covered by a model,
two further terms are used: grain and extent [9,130,/17]. Grain (often also called "resolution”) is the smallest
unit (temporal or spatial) of a data set, model, or an observation, for instance the grid size of a spatially
explicit data set. Extent describes the total spatial or temporal coverage and is the upper scale limit.

Effective resolution is the precision or level of detail of a measurement. Often grain is already a good
indicator for effective resolution. However, in some situations this relation does not hold. Examples are
disturbances in a measurement, so that differences between adjacent cells are masked by the noise. In that
case a further decrease in grain size does not deliver additional detail and does not lead to an increased
effective resolution. Grain size is always related to the physical characteristics of a data set (size of a single

*Corresponding author. Tel.: 449 331 288 2440, Email address: dietrich@pik-potsdam.de
Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany

Preprint submitted to Elsevier July 15, 2013



grid cell), whereas effective resolution refers to the quality of a data set (the precision or detail in which the
original system is reproduced by the data set).

The full separation within a model of processes at different scales is often not possible because of cross-
scale interactions connecting these processes. Cross-scale interactions play an important role in global change
research [35, 16, [11] for several reasons. First, the integration of models and data from different disciplines,
such as physics, biology, geography or economics, is typically connected to the issue of different spatial
and temporal scales [35]. Second, because of nonlinearities a proper treatment of cross-scale interactions is
often a requirement for accurate simulations [6, [11]. Third, the interactions itself are of great interest to
understand the dynamics and to be able to assess the impact of policies at different scales [6, [7].

For agricultural land-use models especially the first two issues are highly relevant: One characteristic
of land-use models is that they link elements from geography and economics. Since the general approaches
of both disciplines differ significantly several scale related problems arise. In geography spatial information
plays a major role; data is linked to a location and spatial explicitness is most important. In economics
markets and market equilibria are the dominant processes. Spatial patterns are typically neglected in a first
order approximation of a system. Instead the focus lies on complex market dynamics and flows of inputs
and outputs.

The challenge for agricultural land-use models is to take the dominant aspects of both domains into
account: global markets and their market equilibria and spatially varying environmental conditions and
production patterns. However, including high-resolution data into an equilibrium model leads to significant
computational problems. Increasing the number of simulated units typically leads to a disproportionate
increase in computation time and the required amount of working memory. For instance, the nonlinear land-
use model MAgPIE (“Model of Agricultural Production and its Impact on the Environment”) [19, 120, |21/
shows quadratic increases in computation time with increasing number of simulated cells. So halving the
grain side length, which means a quadruplication of 2D-cells, leads to a 16-times longer computation time.
Furthermore, the increase in working memory requirements limits the total number of cells to less than 5000.

In current agricultural research several approaches are used to deal with this problem. Models focused
on the economy often cover global agricultural markets, but only at a coarse spatial resolution of a few
world regions (e.g. AgLU [25], FASOM [2], IMPACT |[23]), whereas models focused on geographical or
ecological processes either only model certain regions of the world, with exogenous global markets (e.g.
CLUE (31,132, 134], SALU |29]), or apply a rule-based approach (e.g. LandSHIFT [26] - a general land use
model review was done by Heistermann et al. [13]). Hence, either the economic or the ecological part is
represented in a simplified manner concentrating the formulation of the model either on the global or local
scale. A promising but complex approach to overcome these limitations is to couple models that focus on
different scales and sectors (e.g. Verburg et al. [33]). Another possibility to cope with this issue is the use
of cluster algorithms to increase the effective spatial resolution under a constant number of simulation units
(see for example Letourneau et al. [18]). Here we present and compare a selection of clustering algorithms
and analyze the benefits of these clustering techniques in terms of information conservation.

The MAgPIE model is used for these comparisons. First, we have generalized the model structure to
be able to simulate in various spatial aggregations instead of being restricted to a single resolution of 3.0°
as it was in previous versions of the model. Second, we have implemented spatial aggregation methods
(grid-based and clustering-based) to merge input data to these aggregations (together this allows the model
to be run at various spatial aggregations). Third, we have implemented an interpolation methodology to
downscale clustered outputs back to the grain size of the input data. Last, we have used this implementation
to compare the standard aggregation method using a regular grid with hierarchical and non-hierarchical
clustering methods.



2. Methods

2.1. Model implementation

MAgPIE is a recursive cost-minimizing equilibrium model with three involved scales: a global scale
representing global markets, a regional scale of 10 world region representing specific economic development,
demands and technology levels, and a local scale representing farming decisions based on spatially varying
production parameters, as for instance potential yields and water availability (see the mathematical model
description in the supplementary online material for more details). The model is written in GAMS [5]
extended with scripts for file manipulations written in PHP [3] and scripts for calculations written in R
[22] and Python [24]. Since GAMS does not allow for calculating sets and therefore cannot handle inputs
with varying grain sizes, a PHP script is executed before GAMS is started. The PHP script organizes the
aggregation of the original input data set and rewrites the sets in the GAMS source code according to
the chosen grain size. The aggregation of input data itself is done in R, either by using a regular grid or
clustering aggregation. After execution of the GAMS model, the clustered data is downscaled to the grain
size of the original input data using another R and Python script.

The unprocessed input data has a grain size of 0.5° (i.e. 30 arcminutes of longitude and latitude). Each
cell contains information on the potential yields of 20 different crops (rainfed and i]rriga‘ced)ﬁ7 crop-specific
demands for irrigation water, the total amount of water available for irrigation (all calculated by the ”Lund-
Potsdam-Jena global vegetation model with managed land” (LPJmL) [4]), total cropland area and total
land available for additional cropland expansion [16].

2.2. Aggregation methods

For aggregation two approaches are implemented: (A) an aggregation based on regular grids and (B)
an aggregation using clustering methods. In any case only cells that belong to the same world region are
aggregated together.

In the case of regular grids a grain size is chosen (coarser than the original grain size of 0.5°) and input
data cells lying in the same coarser cell are either summed up or (weighted) averaged depending on the type
of data. Yields are averaged using the total crop share of a cell as weight; the amount of available water
per cell is summed up; the required amount of water for each crop is also crop-area weighted averaged; and
crop shares are cell-area weighted averaged.

For the clustering methods the target grid is chosen depending on the data to be aggregated. All
clustering methods have in common that clusters are built on some kind of multivariate distance measure
between data elements. Every cell is represented by its data and each data set is standardized over all grid
cells to get a balanced weighting across data sets. The distance between cells is based on the similarity of
data, for instance cells with similar yields are close to each other, whereas large differences in yields lead
to high distances between cells (not to be mistaken for physical distance). The distance is measured in
the n-dimensional space spanned by the n data sets which define the characteristics of each cell. Because
of regional separation, every cluster belongs to exactly one region. In contrast to grid-based aggregation,
clusters are not necessarily connected to a single, contiguous spatial location. It can happen that one cluster
is divided into two or more disjoint patches distributed over the region. Furthermore, clustering does not
increase the grain size, since the smallest unit which a clustered data set can contain is still one cell of the
original data set. Instead of increasing the grain size, cluster methods try to reduce the number of spatial
units by combining cells with similar characteristics.

Figure [l and Figure Rlillustrate the different aggregation approaches schematically. Using a regular grid
the procedure is quite simple (Figure[l]). In the example shown the initial data set has 81 cells with a grain
size of 1x1 and an extent of 9x9. The values of each cell are indicated with colors. Increasing the grain size

LAFR = Sub-Sahara Africa, CPA = Centrally Planned Asia (incl. China), EUR = Europe (incl. Turkey), FSU = Former
Soviet Union, LAM = Latin America, MEA = Middle East and North Africa, NAM = North America, PAO = Pacific OECD
(Australia, Japan and New Zealand), PAS = Pacific Asia, SAS = South Asia (incl. India)

2wheat, rice, maize, millet, pulses, cotton, potato, sugar beet, sugar cane, cassava, sunflower, soybean, groundnut, palm oil,
rapeseed, bioenergy grasses, bioenergy trees, fodder, pasture, others
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input data —— grid creation —— aggregated data

Figure 1: Regular grid aggregation

to 3x3 creates the regular grid, which is used for aggregation. The colors of the new data set are derived
by averaging the colors of all elements within a segment. Depending on the homogeneity of a segment the
resulting color is either similar to the colors of the input data set (lower-right segment) or quite different
(upper-left segment). In the given example the initial color distribution is hardly visible in the aggregated
diagram, which indicates a significant loss of effective resolution. Schmit et al. ﬂﬁ] give good examples of
the biases and problems this kind of information loss can lead to.

input data — > grid creation — > aggregated data
Figure 2: Cluster-based aggregation

Figure 2l schematically shows cluster-based aggregation starting with the same input data set as in Figure
[l Through clustering, the input data itself determines the merging of cells. In the grid creation step, cells
are merged on the basis of their similarity. In contrast to regular grid aggregation the cluster size is variable.
This allows clusters to be formed containing only one cell (e.g. the orange cell in the schematic diagram).
The grain size of the data set is not increased. Merged cells do not have to be neighbors. One cluster
may be distributed over the whole data set (e.g. the green or the yellow cluster). However, this makes it
impossible to reasonably link a cluster with a single, spatial coordinate. Therefore, data calculated on that
aggregation level (e.g. model outputs) have to be downscaled again before they can be used for spatially
explicit calculations. The deviation between the input and the aggregated data set shows that some data is
lost. However, the characteristics of the initial data set are still visible, indicating a relatively high level of
effective resolution conservation. In this context it is also interesting to note that the cluster example shown
here only used 7 clusters, while the regular grid aggregation was performed with 9 segmentation units.

Besides regular grid aggregation, three different clustering methods are applied in the following: k-means
clustering, top-down hierarchical clustering and bottom-up hierarchical clustering.



2.8. Clustering methods

2.8.1. k-means clustering
k-means is a method to partition n cells with data x1, ..., z, into k clusters S = {Sy, ..., S} with mean
values p1, ..., i, by minimizing the within-cluster sum of squares (WCSS) (Equation [) |12, [10].

k
. 2
argminy Y [l — pu (1)

i=1 xj €S;

The problem can be solved analytically, but because of its high computational intensity typically heuristic
algorithms are used. We use the heuristic implementation offered by the pycluster python module [14].
This approach is relatively fast and delivers accurate results but is not fully deterministic, which limits its
reproducibility. Another important characteristic of the k-means algorithm is its weight sensitivity [1]: the
cluster pattern is dependent on the weighting factors of each cell and changes if the weighting factors are
changed. In the given case this causes an unwanted distortion as the used algorithm only allows for equally
weighted cells, which does not properly reflect the unequally sized input cells. Applied to a global model
with distinct world regions such as MAgPIE one has to face the additional constraint that all cells within
one cluster have to belong to the same world region. For k-means clustering this is assured by initializing
separate clustering processes for each region. The number of clusters for each region is chosen in proportion
to the size of the region.

2.8.2. Hierarchical clustering

Hierarchical clustering methods can be classified in two types: top-down and bottom-up. Both create a
hierarchy based on the distances between data elements. Top-down methods start with one cluster which
is disaggregated step by step. Bottom-up methods start with cells which are aggregated stepwise. Here
the distances between clusters are measured with a euclidean metric and the complete-linkage method,
which measures the distance between clusters as the maximum distance between two cells of both clusters.
Complete linkage is weight robust and therefore free from the distortions described for the k-means method
[1]. Single linkage (minimum distance between cells of two clusters), average linkage (average distance
between cells of both clusters) and centroid linkage (distance between centroids of two clusters) were also
tested but excluded from this analysis, since they produced at best equivalent but in most cases significantly
inferior results in terms of our evaluation measures (Section [ZZ]). For bottom-up hierarchical clustering
the implementation of the pycluster module [14] is used. For top-down clustering we developed an own
implementation in which a cluster is split by first separating cells with the longest distances in between. All
remaining cells are then distributed accordingly.

In contrast to k-means clustering, hierarchical clustering is fully deterministic and results produced with
different numbers of clusters can be merged easily based on its hierarchy. However, the hierarchy also limits
the adaptivity of the clusters to the data, because of lock-in effects: Clustering decisions made earlier in
the hierarchy cannot be reversed. Separate clustering processes for each region were started and merged to
one hierarchy tree based on distance information (clusters with smallest distances are combined first). This
approach allows for distributing clusters in a globally optimal way, while preventing cross-regional clustering.

2.4. Downscaling

Two significant problems arise when dealing with clustered data. First, the clusters do not necessarily
have a spatial meaning, since clusters can be distributed over the whole map. Second, only outputs directly
derived from input data involved in the clustering procedure are meaningful. With respect to values that
were not part of the clustering, model outputs in each cluster are only the mean of a potentially strongly
heterogeneously distributed value and a significant amount of information is lost. Both problems can be
solved by downscaling. The problem of missing spatial information is solved by inversion of the aggregation
process, whereas the information loss in the second case is compensated by additional knowledge about the
distribution used within the downscaling process.



The downscaling can be divided into two steps. In step one, data are processed using trivial downscaling
rules. Trivial downscaling is either downscaling by giving each cell the value of its associated cluster or
downscaling by partitioning a summed-up value proportionately to data that are known already in the higher
resolution. In all other cases downscaling rules are non-trivial. Values which require non-trivial downscaling
are not processed directly. Instead, such a value is split into components with trivial downscaling rules,
which are then downscaled and recombined to the downscaled counterpart of the initial value. One example
is cellular, crop-specific data on cropland shares. First, these shares are split into a term containing crop-
specific total areas and a term containing the total cluster areas. Second, crop-specific total areas are
downscaled by partitioning the data proportionally to total cell area (total cell area is constant and known
at 0.5° grain size and, therefore, does not need to be downscaled). Third, the downscaled, crop-specific
areas are divided by the total area to reconstruct the original shares at 0.5° grain size.

2.5. Evaluation

clustered original regular

input
evaluation

@wnslcali@

output
evaluation

1
downscali@

Figure 3: experiment setup

To test the performance of the different aggregation methods we performed an experiment with an input
and an output evaluation phase (Figure B]): In the first phase we aggregate a reference data set to a given
grain size (using a regular grid method or clustering methods) and disaggregate it again by giving each cell
in the reference resolution the value of the corresponding cluster to which it was assigned. Subsequently the
loss of information is measured by comparing this newly derived data set (Figure B upper corners) with the
reference data set (Figure Bl upper mid place). This input evaluation tells us how much information is lost
due to the aggregation itself. In the second phase we use the same aggregation procedures, but this time
we use the reference data and the aggregated data as input for a model run with the MAgPIE model. Next
the outputs of the run with reference data and the run with aggregated data (based on a regular grid or
clustered data) are compared and the loss of information due to aggregation is measured by assessing the
model outputs. Non-cellular model outputs (global or regional) are compared directly, cellular outputs are
downscaled beforehand to the grain size of the reference data.
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For standard MAgPIE runs all cellular inputs are derived from 0.5° source data. However, for the
performance tests we also need the ability to run simulations with the reference data. This was not possible
with 0.5° data as it exceeded available computational resources. To circumvent this issue we created a new
reference data set with a grain size of 2.0° and 4669 cells, which can be used directly for simulations with
MAgPIE.

The choice of aggregation levels for testing is driven by two conditions. First, each aggregation should
have a regular grid counterpart, which means that 180°, the maximum extent in north-south direction, must
be a multiple of the chosen grain size. Second, the numbers of data elements should be equally spaced on
a logarithmic scale. This led to 17 aggregation levels with 14 to 3772 data elements (180° to 2.25° grid
size) using regular grids, k-means clustering, hierarchical bottom-up clustering and hierarchical top-down
clustering.

To measure the quality of the different aggregations ¢ = 1..n, two measures d; (i) and dz(¢) are applied.
Both measures can be written in general as the mean of normalized distances (Equation [2). The measures
are very unlike in their calculation which was intended to give a broader view of the topic by allowing
comparisons of results among measures.

(i) = 1 Z di (X s, Xo,s) @)

S
m = max}_; di(X; s, Xo,s)

The quality of the i-th aggregation is calculated by taking the mean of the distances di, between aggre-
gated data X; and reference data X, for all data sets s = 1..m used for comparison (e.g. rainfed yield of
maize is one data set, available discharge of each cell is another one), normalized by the maximum distance
observed for each data set. This approach delivers values between 0 and 1, with 0 in the case of a perfect
match between reference and aggregated data and 1 in the case of the maximum observed deviation between
the data sets. The measures can be interpreted as measures for the effective resolution of a data set, where
values close to 0 indicate an effective resolution similar to the original data set and values close to 1 indicate
high losses in effective resolution. For the calculation two distance measures dy and dy were applied:

1. The euclidean distance d; between two data sets Y and Z with [ data points:

This measures the similarity between original and aggregated data set: the more information is con-
served, the lower the final value will be.

2. The mutual information distance ds. For calculation of mutual information distances we use the R
package “bioDist” [§]. Mutual information m is a nonlinear measure for the mutual dependence of two
variables Y and Z (Equation H]).

m(Y,Z) =Y ply.z)log (W) Y

yeY zeZ

p(y, z) is the joint probability density function of ¥ and Z, p(y) and p(z) are the marginal proba-
bility density functions of Y and Z respectively. Mutual information is a measure for the amount of
information which is shared by both variables. So it should be high if the aggregation conserves much
information of the original dataset and should be low otherwise. The mutual information distance ds
is calculated by applying the transformation of equation [l to the mutual information m, which was
proposed by Joe [15].

(Y, Z) = 1 — /1 —exp(=2m(Y, Z)) (5)

Like dj, d» also measures the similarity between original and aggregated data set.



description n unit

crop-specific water demand for irrigation 20 mm/yr
water available for irrigation 1] 105m3/yr
crop-specific rainfed yields 20 | t/(ha-yr)

crop-specific yields under optimal irrigation | 20 | t/(ha - yr)

Table 1: List of cellular model inputs with corresponding number of values per cell (n)

description level n | unit

total costs of production global 1| 105US$/yr
total production value global 1| 105US$/yr
gross area of converted land global 1 | 105ha/yr
crop-specific area global 20 | 10%ha
average of technological change rates | global 1] 1/yr
crop-specific area regional | 20 | 10%ha
average technological change rates regional 1] 1/yr
supply-demand balance regional 1| —

Table 2: List of non-cellular model outputs with its spatial level and number of values per spatial unit (n)

description n unit
total cropland share of total area 1 —
pasture land share of total area 1 —
available land share of total area 1 —
crop-specific land use shares of total area | 20 —
shadow prices of land 1| USS$/ha
producer rent including land rent 1| 105US$/yr

Table 3: List of cellular model outputs with corresponding number of values per cell (n)



Measures are applied separately on cellular model inputs, which are also involved in the clustering
procedure (Table []), and a selection of default non-cellular (global or regional) and cellular model outputs
(Table 21 Table B]). Since the mutual information measure ds only works well for large data sets, it is only
applied on cellular data, whereas d; is also applied on non-cellular data.

To test the significance of measured differences in quality between aggregation types the Wilcoxon signed-
rank test is used [36]. Comparable to the paired Student’s t-test, the Wilcoxon test is used to check whether
two related samples are part of the same distribution or not. We use it instead of the t-test as it does not
require the assumption of normally distributed data.

3. Results
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Figure 4: Input evaluation with normalized euclidean distance di (left) and normalized mutual information distance da (right)

Applying the measures d; and ds and a Wilcoxon one-sided, signed-rank test, the clustering methods
show in the input evaluation significantly better results over the full tested range compared to the standard
aggregation using regular grids (Figure [ Table d]). However, when we compare the different clustering
methods the picture is more diverse and the results depend on level of aggregation. For further analysis, three
overlapping classes were extracted from the full tested range of 14 - 3772 data elements: coarse resolutions
ranging from 14 to 346 data elements, medium resolutions ranging from 54 to 1167 data elements and fine
resolutions ranging from 346 to 3772 data elements.

Overall, k-means shows the best results in the input evaluation for coarse resolutions, for which it
behaves significantly better than both hierarchical methods. For medium resolutions k-means still delivers
significantly better results compared to top-down hierarchical clustering, but non-significant advantages
compared to bottom-up clustering. In the case of fine resolutions bottom-up clustering shows the best
performance and is significantly better than top-down clustering in both quality measures and significantly
better than k-means clustering in measure dy (Table ). Seen over the full range of aggregated resolutions
we considered top-down clustering behaves slightly worse than bottom-up clustering, with nearly identical
behavior for coarse resolutions but significantly worse results for medium and fine resolutions.

In the output evaluation the picture changes (Figure [}l Table B]). All three clustering methods perform
significantly better than aggregation by regular grids over the full range of resolutions, but magnitudes of
differences and significance levels are lower. Whereas the quality ratings of input data varied over nearly
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full coarse medium fine
Hy range resolutions | resolutions | resolutions
SR
dl || 0.000 *** 0.004 ** 0.001 *** | 0.001 ***
kzr d2 || 0.000 *** 0.004 ** 0.001 *** | 0.001 ***
£ > dl || 0.000 *** 0.004 ** 0.001 *** | 0.001 ***
- d2 || 0.000 *** 0.004 ** 0.001  *** | 0.001 ***
r>h dl || 1.000 1.000 1.000 1.000
= d2 || 1.000 1.000 1.000 1.000
k>h d1l || 0.112 0.004 ** 0.138 0.993
= d2 || 0.044 * 0.004 ** 0.053 0.903
t>h d1l || 0.999 0.945 1.000 1.000
- d2 || 0.999 0.961 1.000 0.999
>k d1l || 1.000 1.000 1.000 1.000
= d2 || 1.000 1.000 1.000 1.000
h >k d1l || 0.897 1.000 0.884 0.010  **
= d2 || 0.960 1.000 0.958 0.116
£ >k d1l || 0.993 1.000 0.993 0.539
- d2 || 0.997 1.000 0.998 0.722
>t d1l || 1.000 1.000 1.000 1.000
= d2 || 1.000 1.000 1.000 1.000
h >t dl || 0.001 *** 0.074 0.001 *F* ] 0.001 F**
- d2 || 0.002 ** 0.055 0.001 *** | 0.002 **
k>t dl || 0.009 ** 0.004 ** 0.010 ** 0.500
- d2 || 0.004 ** 0.004 ** 0.003  ** 0.312

Table 4: Input evaluation of hierarchical bottom-up (h), hierarchical top-down (t), k-means (k) and regular grid (r) aggregation
for the full range of resolutions (14-3772 data elements), coarse resolutions (14-346 data elements), medium resolutions (54-
1167 data elements) and fine resolutions (346-3772 data elements) using p-values of a Wilcoxon signed-rank test applied to the
normalized euclidean distance d; and normalized mutual information distance d2 (significance levels * p>95%, ** p>99%, ***

p>99.9%).
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full coarse medium fine
Hy range resolutions | resolutions | resolutions
e [ o o am - Lo o o
K > d1l || 0.003 ** 0.039 * 0.002  ** 0.014 *
=Y a2 || 0.000 e 0.004  ** 0.001  *** 1 0.001 *F*
£ > d1l || 0.000 *** 0.039 0.024 * 0.003  **
- d2 || 0.000 H** 0.020 0.002  ** 0.001  ***
r>h d1l || 1.000 0.996 0.999 1.000
= d2 || 1.000 0.992 0.998 1.000
k>h d1l || 0.998 0.680 0.884 1.000
= d2 || 0.920 0.008  ** 0.688 0.997
t>h d1l || 1.000 0.926 0.997 1.000
= d2 || 0.998 0.680 0.993 1.000
>k d1l || 0.997 0.973 0.999 0.990
= d2 || 1.000 1.000 1.000 1.000
h >k d1l || 0.002 ** 0.371 0.138 0.001  ***
= d2 || 0.087 0.996 0.348 0.005  **
£ >k dl || 0.274 0.629 0.990 0.188
= d2 || 0.500 1.000 0.968 0.116
>t d1 || 1.000 0.973 0.981 0.998
- d2 || 1.000 0.988 0.999 1.000
h >t d1l || 0.001 *** 0.098 0.005 ** 0.001  ***
= d2 || 0.003 ** 0.371 0.010  ** 0.001  ***
dl || 0.741 0.422 0.014 0.839
k=2t 14| 0518 0.004 ** | 0.042 0.903

Table 5: Output evaluation of hierarchical bottom-up (h), hierarchical top-down (t), k-means (k) and regular grid (r) aggregation
for the full range of resolutions (14-3772 data elements), coarse resolutions (14-346 data elements), medium resolutions (54-
1167 data elements) and fine resolutions (346-3772 data elements) using p-values of a Wilcoxon signed-rank test applied to the
normalized euclidean distance d; and normalized mutual information distance d2 (significance levels * p>95%, ** p>99%, ***

p>99.9%).
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Figure 5: Output evaluation with normalized euclidean distance dy (left) and normalized mutual information distance d2 (right)

the whole range from 0 to 1, the ratings of output data only range from 0.3 for d; or 0.5 for ds to 0.9. This
reduced variance in quality measures reflects an increased variance in rankings of the different aggregation
experiments across different output data sets. That means the distance rankings of different aggregation
methods and number of clusters depend more on the chosen set of output data, whereas the rankings in
input data primarily depend on the number of clusters and aggregation method. Hence, some outputs might
get better with k-means clustering, other outputs with hierarchical clustering. It even happens that a less
aggressive aggregation increases the distance between the reference and the aggregated case (sections with
positive slopes in figure [H).

Comparing the results of input and output evaluation, we see that k-means shows noticeable changes
in overall performance: whereas in the input evaluation k-means shows a significantly better performance
than hierarchical clustering for coarse resolutions, this superiority mostly vanishes in the output evaluation.
Whereas ds still reports significantly better results for k-means at coarse resolutions, this effect cannot be
observed for d; anymore. In fact the k-means output evaluation shows in d; for coarse resolutions an even
worse behavior than regular grids. Comparing the hierarchical clustering methods, the results of input
evaluation are similar to those of the output evaluation: the two methods produce similar results with
slight, but significant advantages for the bottom-up approach (significant for medium and fine resolutions,
non-significant for coarse resolutions).

Analyzing non-cellular and cellular outputs separately one finds that in general, results for non-cellular
data are much fuzzier than those for cellular data (Figure[d Table [l). For hierarchical clustering methods
both output evaluations still show significant quality improvements compared to regular grids. However, for
k-means the results only remain significant for cellular data. For non-cellular data regular grids deliver even
better results than k-means in the case of fine resolutions.

4. Discussion

Agricultural land-use models combine processes across different scales. While some economic processes,
like commodity trade, occur at the global scale, ecological parameters and farming decisions come into play
at regional to local scales. Linking these scales is in land-use modeling - as in many other research areas
- one of the important issues that have to be faced [35, 16, [11]. In this paper we addressed the problem of
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Figure 6: Output evaluation with normalized euclidean distance d; for non-cellular outputs (left) and cellular outputs d2 (right)

information loss due to aggregation which often occurs in this context. Aggregation through clustering is
one option to tackle this issue and to enhance model precision.

In our experiment setup all presented clustering methods deliver at least equal but mostly better results
in terms of information conservation compared to standard aggregation based on regular grids. While
the application of clustering methods is superior to regular grid aggregation in all the situations tested,
the explicit choice of the clustering method depends on the application and number of clusters. In our
investigations, which compare original and aggregated data sets directly, two cases can be distinguished.
Working with a few clusters (less than 500 clusters in the case of 2.0° grain size), k-means clustering delivered
the lowest information losses due to aggregation and the highest effective resolution conservation. Moving up
to a higher number of clusters, hierarchical bottom-up clustering with complete linkage became the better
choice. Hierarchical top-down clustering behaved slightly worse over the whole range than hierarchical
bottom-up. It seems that the advantage of top-down clustering in not having a significant lock-in effect for
a few clusters is overshadowed by other effects. Since the complete linkage method only determines that
the two cells with the highest distance within a cluster have to be separated in an iteration step, but does
not make any decisions on the mapping of the remaining cells, several representations of complete-linkage
top-down clustering are possible. So the bad performance of top-down clustering may just be an effect of the
chosen algorithm and not of the method itself. A counterexample can be found for instance in Steinbach et al.
[28] which describes clustering with a mixture of hierarchical top-down and k-means algorithm (“bisecting
k-means”).

In the output evaluation the ranking between different clustering methods changes. The advantages of
k-means clustering for a few data elements compared to hierarchical bottom-up are no longer visible and
hierarchical bottom-up clustering now shows the best results over the whole range. A possible explanation
for this behavior is that k-means clustering is based on euclidean distances, whereas both hierarchical
clustering methods use a complete linkage approach which is a representation of the infinity norm. This
leads to significant differences in the handling of outliers. In the case of the infinity norm outliers are
preferably used as single clusters since only the maximum distance between two clusters is accounted for
and not the sum of all connections between them. In the case of a euclidean distance, outliers will more
often be embedded in an existing cluster since this method not only accounts for the maximum distance but
for all distances between cells of both clusters (see for more details). Looking at the aggregated
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full coarse medium fine

H, range resolutions | resolutions | resolutions
h>r non-cellular || 0.001 ** 0.020 * 0.042 * 0.014 *

- cellular 0.000 *** 0.039 * 0.002  ** 0.001  ***
K> non-cellular || 0.627 0.098 0.138 0.968

= cellular 0.000 *** 0.055 0.001  *** | 0.001 ***
£ > non-cellular || 0.032 * 0.020 * 0.188 0.312

= cellular 0.001  *** 0.191 0.007 ** 0.001  ***
r>h non-cellular || 0.999 0.988 0.968 0.990

- cellular 1.000 0.973 0.999 1.000
k>h non-cellular || 0.995 0.809 0.784 1.000

= cellular 0.994 0.371 0.812 1.000
t>h non-cellular || 0.985 0.809 0.968 0.993

= cellular 1.000 0.992 1.000 1.000
P>k non-cellular || 0.391 0.926 0.884 0.042 *

- cellular 1.000 0.961 1.000 1.000
h >k non-cellular || 0.005 ** 0.230 0.246 0.001  ***

= cellular 0.007 ** 0.680 0.216 0.001  ***
£ >k non-cellular || 0.122 0.629 0.920 0.042 *

= cellular 0.627 0.945 0.997 0.312
>t non-cellular || 0.972 0.988 0.839 0.722

= cellular 0.999 0.844 0.995 1.000
h>t non-cellular || 0.017 * 0.230 0.042 * 0.010 **

= cellular 0.000  *** 0.012 * 0.001 *** | 0.001 ***
k>t non-cellular || 0.888 0.422 0.097 0.968

= cellular 0.391 0.074 0.005  ** 0.722

Table 6: Output evaluation separated for cellular and non-cellular outputs of hierarchical bottom-up (h), hierarchical top-down
(t), k-means (k) and regular grid (r) aggregation for the full range of resolutions (14-3772 data elements), coarse resolutions
(14-346 data elements), medium resolutions (54-1167 data elements) and fine resolutions (346-3772 data elements) using p-
values of a Wilcoxon signed-rank test applied to the normalized euclidean distance dy (significance levels * p>95%, ** p>99%,
K 5>09.9%).

data itself it is preferable to use a well-balanced distance measure, such as the euclidean distance, since it
accounts for any distance of any cell. Looking specifically at outputs of optimization models, extreme values
as supplied by outliers are relevant for the optimization result. Hence, in order to reconstruct the result
produced with the reference data itself it is preferable to describe outliers as single clusters. This will reduce
the loss of information which is most relevant for the modeling output. Consequently, the complete linkage
method is the best choice for preserving information most relevant for the optimization. When working
with real data,the correctness of outliers in particular is often extremely doubtful. From that point of view
k-means clustering while reducing the similarity between outputs of reference data and aggregated data, is
probably reducing the biases caused by flawed outliers. Hence, the choice of clustering method is also a
question of the reliability of the input data.

The role of outliers can also explain the fact that our results for k-means clustering are even worse for
non-cellular outputs than for cellular outputs. Whereas in the case of cellular outputs each single cell still
plays an important role for the total result, non-cellular outputs can be much more influenced by outliers-
induced effects. But also for all other clustering methods, results are less significant for non-cellular data
than for cellular ones. This is also due to the fact that for non-cellular data, errors from aggregation more
frequently cancel each other out. This could explain the high randomness in the quality of results and also
why even the reduction of clusters can improve results.

14



5. Conclusion

In land use modeling, the combination of high-resolution data with high-complexity models remains a
challenge. One approach to deal with it is clustering. Our tests show that especially hierarchical bottom-
up clustering can lead to a significant reduction of information loss due to aggregation. Other clustering
methods (e.g. hierarchical top-down or k-means clustering) also increase the quality of aggregated data in
our experiments, but to a lesser extent.

All the results shown have to be treated with care as they were derived with a very specific experiment
setup so that generic validity for most outcomes is not given. Especially the comparison of different cluster
techniques is highly dependent on the specific case and the picture would probably be different for a different
experiment setup. However, our study produced some robust outcomes. Our results show that there is a
significant difference between the results of the input and output evaluation: aggregations which show a
high degree of information conservation in inputs can nevertheless cause huge differences in model outputs
compared to runs with the original data. This indicates that the information used for the inputs is not all
equally relevant for the model calculations. In our specific case it seems that especially the conservation
of extreme values is of major importance for producing results resembling those achieved with the original
data. However, what kind of data is most relevant for the model outputs again strongly depends on the kind
of model which is applied. For the MAgPIE model our finding is that hierarchical bottom-up clustering is
the most favorable method as it performed best in the output evaluation. Nevertheless, k-means clustering
is also useful in cases when it is important to have more equally sized clusters or when outliers in the cellular
input data are expected to be misleading. Therefore, both types of aggregation are currently in use in
MAgPIE.

Clustering does not solve the scale problem in land-use models, but - independent of the particular choice
of clustering method - it helps increase model accuracy and reduce information losses within the aggregation
process. Compared to spatial aggregation with regular grids, in our analysis clustering always showed results
closer to the results achieved with inputs and simulation on the smallest possible grain size. Thus it is the
better choice for aggregation.
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Appendix A. Spatial cluster distribution

To get an impression of how the different aggregation methods partition the world spatially we have
plotted the clusters for the case of 43 clusters (60°) derived from the original data set with grain size 0.5°
(Figure [A7] [A-8] [A9] and [AT0). This low resolution is chosen solely to improve visualization, as for higher
resolutions a clear distinction of clusters with colors would hardly be possible. Real model applications
typically deal with a much higher number of spatial units.

60° x 60° static grid — 43 cells

Figure A.7: Cluster distribution for regular grid aggregation

The map of data elements derived with the regular grid aggregation methods shows clearly its geometric
origin (Figure[AT). The borders between the 60° squares are easy to detect. However, at many locations the
geometric structure is disrupted by the country-specific world region allocation of the 10 MAgPIE regions
(see model description in supplementary online material for more details). This effect is caused by the
MAgPIE requirement that any cluster has to belong exactly to one world region. Therefore the 60° squares
are split at region boundaries. Combined with the spatial structure of continents this leads to significant
differences in cell sizes. Some data elements are huge (e.g. the green cluster in North America), other ones
are tiny (e.g. the pink cluster in southern Latin America). However, this is a special case of the presented,
coarse resolution. In the case of finer resolutions which are typically used for real model applications all
data elements are very homogeneous in their size and distribution.

In contrast to regular grid aggregation the clusters derived with the k-means method show its strong
dependence on spatial, biophysical conditions, which were used as input for the clustering (Figure [A.S]).
Even though the location was not an explicit clustering criterion, most clusters form a big, connected
cluster core with some smaller, spatially detached parts. At many locations the clusters resemble well-
known geographical structures such as deserts (Australia, North Africa), but also the dependence of many
biophysical characteristics on the latitude becomes visible (longish clusters parallel to the equator such as in
Canada, Russia or North Africa). Clusters are distributed relatively homogeneously over the whole world.

As observed for k-means clustering, hierarchical bottom-up clustering also uncovers regions with similar
biophysical conditions (Figure[A9]). Some clusters are nearly identical to the k-means results (especially for
Australia and Europe), others differ significantly (Russia). In contrast to k-means the clusters are distributed
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k-means clustering — 43 cluster

Figure A.8: Cluster distribution for k-means clustering

hierarchical bottom-up clustering — 43 cluster

Figure A.9: Cluster distribution for hierarchical bottom-up clustering
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less homogeneously over the world. Some regions, such as Pacific Asia, are clustered in more detail, other
ones, such as the Former Soviet Union or North America, are represented with less clusters.

hierarchical top-down clustering — 43 cluster

Figure A.10: Cluster distribution for hierarchical top-down clustering

The map derived with top-down hierarchical clustering (Figure [A-10)) shows many analogies to the result
derived with bottom-up hierarchical clustering. Many structures are nearly identical, such as the huge
cluster in Russia and Canada or the cluster covering Brazil. In most cases the boundaries between clusters
are only slightly shifted. A systematic difference in both cluster maps is not visible.

In summary, the map illuminates the disadvantages of regular grid aggregation: geographical charac-
teristics are not taken into account and region or continent borders lead to unwanted differences in cluster
sizes. However, the latter effect occurs for very coarse grain sizes and decreases with decreasing grain size. In
contrast to regular grid aggregation all the clustering methods show clear responses to the spatially explicit,
biophysical conditions. Several geographical structures can be found in a similar way in all cluster maps.
While both hierarchical methods deliver nearly identical results, there is a significant difference between
k-means and hierarchical clustering: whereas k-means delivers a relatively homogeneous spatial distribution
of clusters, hierarchical clustering shows strong differences in cluster sizes. This is most obvious for the
Former Soviet Union, which is represented with only one cluster in both hierarchical maps, but with several
clusters under k-means clustering. This behavior has primarily two reasons: First, the complete-linkage
method which was applied for hierarchical clustering favors the creating of very small clusters, while the
k-means procedure minimizing the within-sum of squares leads to more homogeneously distributed clusters.
Consequently, hierarchical clustering can only apply very few clusters to the remaining areas, which have
then to be combined to make very huge clusters. These huge clusters do not indicate a high homogeneity
in inputs, it just means that these areas have slightly less heterogeneity then the rest of the world. Second,
the number of clusters per region was predefined for k-means clustering (as the missing hierarchy does not
allow for a reasonable adaption method). In contrast, the number of clusters was chosen dynamically for
the hierarchical methods based on its hierarchy. K-means was forced to use more clusters for the Former
Soviet Union, while hierarchical clustering was able to shift these clusters to other regions.
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