
 
 

 

Originally published as:  

 
Müller, C., Robertson, R. D. (2014): Projecting future crop productivity for global 

economic modeling. - Agricultural Economics, 45, 1, 37-50  

 

DOI: 10.1111/agec.12088 

 

Available at http://onlinelibrary.wiley.com 

 

© John Wiley & Sons, Inc. 

 

http://dx.doi.org/10.1111/agec.12088
http://onlinelibrary.wiley.com/


Projecting future crop productivity for global economic 1 
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Abstract 4 

Assessments of climate change impacts on agricultural markets and land-use patterns rely on 5 

quantification of climate change impacts on land productivity and its spatial patterns. We here 6 

supply a set of climate impact scenarios on agricultural land productivity which is derived from 7 

two climate models and two biophysical crop growth models to account for some of the 8 

uncertainty inherent in climate and impact models. Aggregation in space and time leads to 9 

information losses that can determine climate change impacts on agricultural markets and land-10 

use patterns because often aggregation is across steep gradients from low to high impacts or 11 

from increases to decreases. The four climate change impact scenarios supplied here were 12 

designed to represent the upper end of impacts (high emission scenario only, assumed 13 

ineffectiveness of CO2 fertilization on agricultural yields, no adjustments in management) but 14 

consistent with the assumption that changes in agricultural practices are covered in the 15 

economic models. Globally, production of individual crops decrease by 10 to 38% under these 16 

climate change scenarios, with large uncertainties in spatial patterns that are determined by 17 

both the uncertainty in climate projections and the choice of impact model. This uncertainty in 18 

climate impact on crop productivity needs to be considered by economic assessments of climate 19 

change. 20 

21 



1 Introduction 22 

For the assessment of future climate change impacts on land-use patterns and agricultural 23 

markets, the AgMIP project (agmip.org) (Rosenzweig, et al., 2013b) together with the ISI-MIP 24 

project (isi-mip.org) has conducted multi-model simulations with harmonized data on future 25 

yield changes. These scenarios are designed to assess the upper end of climate change impacts, 26 

therefore addressing only a high-emission scenario, RCP8.5 (Moss, et al., 2010, Riahi, et al., 27 

2011) and without considering possible growth-enhancing effects of higher atmospheric carbon 28 

dioxide concentrations ([CO2]), which are subject to large uncertainties (Long, et al., 2006, 29 

Tubiello, et al., 2007) and require adjustments in management (Ainsworth and Long, 2005). The 30 

assessment of future climate change impacts on agricultural productivity is complex and the 31 

many interacting processes contribute to their large uncertainty (Müller, 2011, Müller, et al., 32 

2011, Rötter, et al., 2011, Roudier, et al., 2011, Knox, et al., 2012). To account for the degree of 33 

uncertainty in climate projections (Randall, et al., 2007, Hawkins and Sutton, 2009, Hawkins and 34 

Sutton, 2011) and in yield projections (Rötter, et al., 2011), we supply yield projections from 2 35 

global crop growth models, DSSAT (Jones, et al., 2003, Hoogenboom, et al., 2004) and LPJmL 36 

(Bondeau, et al., 2007, Fader, et al., 2010, Waha, et al., 2012, Schaphoff, et al., 2013) for 2 37 

implementations of the RCP8.5 emission scenario in general circulation models (GCMs), 38 

HadGEM2-ES (Jones, et al., 2011) and IPSL-CM5A-LR  (Dufresne, et al., 2013). These 2 crop 39 

models (DSSAT as a widely used field scale model and LPJmL as a widely used ecosystem based 40 

model) represent the two different groups of gridded global crop models. For more details on 41 

the differences between these model groups, see Rosenzweig et al. (2013a). 42 

For global economic models, these biophysical climate change impacts on yields need to be 43 

aggregated and assigned to appropriate spatial and thematic entities, taking into account the 44 



variability of data requirements across the global economic models. This paper describes the 45 

simulation of changes in crop productivity under climate change and the aggregation of these 46 

simulation results for use in the ten global economic models that participate within this AgMIP 47 

project (Nelson, et al., 2013, von Lampe, et al., 2013) but also beyond. 48 

2 Methods 49 

2.1 Climate data 50 

The high end emission scenario used here, the representative concentration pathway with a 51 

radiative forcing of 8.5 Wm-2 (RCP8.5) (Moss, et al., 2010) reaches atmospheric carbon dioxide 52 

concentrations ([CO2]) of 540 ppm in 2050 and of 935 ppm in 2100. These emission scenarios 53 

have been implemented by various climate models (general circulation models, GCM, and earth 54 

system models, ESM) and have been supplied by the C5MIP project at http://cmip-55 

pcmdi.llnl.gov/cmip5/ (Taylor, et al., 2012). Differences in the climate models lead to a spread in 56 

simulated temperature increase for a given greenhouse gas emission scenario (climate 57 

sensitivity) and in the variability (daily, monthly, seasonal) and spatial patterns of change in 58 

climate variables (Hawkins and Sutton, 2009, Hawkins and Sutton, 2011). Figures 1-4 show the 59 

change in temperature and precipitation patterns from the reference period (1980-2010) to the 60 

2050s (2035-2065) for the HadGEM-ES2 (Jones, et al., 2011) and IPSL-CM5A-LR (Dufresne, et al., 61 

2013) models as used here. These climate scenarios differ not only in the spatial patterns of 62 

climate change, but also in the seasonal distribution. At the level of food production units (FPU) 63 

(Cai and Rosegrant, 2002), seasonal temperatures can increase homogenously or 64 

heterogeneously, in which cases winter temperatures typically rise more strongly than summer 65 

temperatures. Differences in temperature increase by 2050 between seasons can be up to 5.4 °C 66 

and 2.6°C for HadGEM-ES2 and IPSL-CM5A-LR, respectively. Annual mean temperatures in the 67 

http://cmip-pcmdi.llnl.gov/cmip5/
http://cmip-pcmdi.llnl.gov/cmip5/


different FPUs are projected to increase by 1.45°C to 5.48°C (4.79°C) from 1990 (1981-2010) to 68 

2050 (2035-2064), while changes in annual precipitation can range between increases of 49% 69 

(106%) and decreases of 29% (50%) in the HadGEM-ES2 (IPSL-CM5A-LR) scenario. A table with 70 

projected annual and seasonal climate change per FPU is supplied in the supporting online 71 

material. 72 

<< Figure 1 about here >> 73 

Climate scenarios were selected based on availability of bias-corrected data sets from the ISI-74 

MIP project. Bias correction was conducted to correct for over- and underestimation of climate 75 

variables and their daily variability in each 0.5° * 0.5° pixel of the land surface (about 55.5km * 76 

55.5km at the equator). The bias correction method builds on Piani et al. (2010) but preserves 77 

absolute temperature and relative precipitation changes. The WATCH data set, which provides a 78 

good representation of real meteorological events and climate trends (Weedon, et al., 2011) 79 

served as reference climate here. Monthly mean values were corrected with absolute 80 

(temperature) and relative (precipitation, radiation) offsets that correct for each month’s 81 

difference between the 40-year mean of the GCM-simulated historic period (1960-1999) and 82 

that of the observation-based values of the WATCH data. For daily minimum and maximum 83 

temperatures, also the mean distance between these 2 values is preserved in the historic 84 

period. Daily variance within a month was corrected to match observations in the historic 85 

period. More details on the bias correction procedure and the selection of climate and reference 86 

data can be found in the work of Hempel, et al. (2013).  87 

Both crop growth models were driven by the climate data provided by ISI-MIP (daily data from 88 

1951 to 2099) and a standard set of management data, in order to simulate current 89 

management systems. 90 



LPJmL was driven with the daily ISI-MIP data on daily mean temperature (T), precipitation (PR), 91 

shortwave downward radiation (SWdown) and longwave net radiation (LWnet). As longwave net 92 

radiation was not supplied by ISI-MIP, we computed it from the supplied longwave downward 93 

radiation (LWdown) and computed longwave upward radiation (LWup) from surface temperatures, 94 

which we assumed to be equal to daily mean temperatures (T) following the Stefan-Boltzmann-95 

law (equation 1). 96 

downdownupnet LWTLWLWLW −=−= 4σ  (1) 97 

Where σ is the Stefan-Boltzmann constant of 5.670373×10−8 W m−2 K−4. 98 

Daily weather information for DSSAT (Tmax, Tmin, PR, SWdown) was obtained in an indirect 99 

manner using a random weather generator (SIMMETEO) (Geng, et al., 1986, Geng, et al., 1988). 100 

The weather generator uses monthly and annual averages for climate variables (maximum and 101 

minimum temperatures, solar radiation, rainfall, and rainy days per month) to generate 102 

plausible daily realizations. The averages for each of these variables were obtained by taking the 103 

bias-corrected daily weather data from the GCMs (i.e., the data used for LPJmL) and aggregating 104 

over the appropriate years around the time intervals to be investigated (1981-2010 and 2035-105 

2065). Random weather was generated for 80 growing seasons which resulted in 80 yields at 106 

each location modeled with the overall yield taken as the average over all 80 outcomes. 107 

2.2 Computing climate change impacts on yields 108 

For the simulations of climate change impacts in economic models, data on yield shifters is 109 

supplied for the entire global land surface (LPJmL) or current agricultural land (DSSAT) for all 110 

crops covered by the models for fully irrigated (i.e. no constraints on water supply) and rain-fed 111 

systems. To represent the assumed ineffectiveness of CO2 fertilization at field scale, we here 112 



keep the atmospheric CO2 concentrations constant at the baseline level which was separately 113 

set at 370ppm for LPJmL and 369ppm for DSSAT after the year 2000. 114 

2.2.1 DSSAT 115 

DSSAT is a framework for crop models that employs daily time-step weather information and 116 

keeps track of hydrology and nutrient cycles using a soil module which considers a variety of soil 117 

characteristics (Jones, et al., 2003, Hoogenboom, et al., 2004). We employed the CERES models 118 

for rice (Oryza sativa), wheat (Triticum spp.), and maize (Zea mays) and the CROPGRO models 119 

for soybeans (Glycine max) and groundnuts (Arachis hypogaea). 120 

Soil. DSSAT's soil module employs a soil profile definition that details the various soil layers and 121 

their properties. The most salient of these characteristics are the soil depth, water parameters 122 

(lower limit, drained upper limit, and saturation), root growth factor, bulk density, organic 123 

carbon content, and texture fractions. Our approach employs generic soil profiles with typical 124 

values chosen for these quantities. 125 

The twenty-seven generic profiles are a combination of three by three soil characteristics. The 126 

first defining characteristic is organic carbon content with high, medium, and low values. These 127 

are combined with deep, medium and shallow soil depth cases. Finally, there are three texture 128 

types: sandy, loamy, and clay-like. For each case, e.g., “high organic carbon deep loam” or “low 129 

carbon shallow sand”, a representative soil profile is available. Each location is assigned one of 130 

these representative soils based on thresholds and rules applied to the Harmonized World Soil 131 

Database (HWSD) (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). For more details on this 132 

parameterization of soil properties in DSSAT see (Koo and Dimes, 2010). 133 

Initialization. Soil moisture in each soil layer is set to 25% of its water holding capacity at the 134 

beginning of the simulations (supplementary Figure S5). Stable carbon pools are set based on 135 



texture and depth (Basso, et al., 2011) (supplementary Figure S6-S7). Geographically distinct 136 

assumptions are made regarding root mass (supplementary Figure S8) and residues remaining 137 

from previous cropping activities (supplementary Figure S9) as well as initial soil nitrogen 138 

(supplementary Figure S10). Of these, the most influential is the initial soil nitrogen. After 139 

initialization, a spin-up period is employed. The simulation is begun 90 days prior to the 140 

anticipated planting date. The soil, hydrologic, and weather processes begin to operate and thus 141 

decrease the importance of the initial conditions.  142 

Management. DSSAT yield simulations are not calibrated to yield statistics such as the FAO data 143 

base, but are determined by climate inputs and a set of management options, which is assumed 144 

to be static in time. The sowing dates are determined in four different ways, depending on the 145 

situation. We have developed rules which operate on monthly climate averages for 146 

temperatures and precipitation. These rules provide planting months for a generic rainfed crop 147 

(modeled on maize), a generic irrigated crop (modeled on rice; used when the rainfed rule fails), 148 

spring wheat, and winter wheat (Nelson, et al., 2010). This target planting month was 149 

determined using the climate averages from the 1981-2010 period and was used for both time 150 

periods. Adjusting planting dates was considered to be a form of adaptation that was to be 151 

captured in the economic models rather than at the biophysical stage. The actual planting date 152 

was determined by an automatic planting scheme in DSSAT. The planting window opens on the 153 

first day of the month determined by the rules. When the temperature and soil moisture fall 154 

within some predetermined bounds, the actual planting occurs, otherwise the repetition is 155 

excluded from the reported average over the 80 weather realizations. 156 

Three major management considerations remain: fertilizers, irrigation, and harvesting. Nitrogen 157 

fertilizer application rate assumptions were made by geographic region (supplementary Figure 158 

S11-S13). The timing of fertilizer application was determined by rules based on the overall 159 



amount to be applied and the time to flowering and maturity. Each crop had specific rules. 160 

Irrigated conditions were intended to represent a minimal water stress situation (water 161 

availability and its effects were relegated to the domain of the economic models). An automatic 162 

irrigation scheme in DSSAT was used such that when the soil moisture of the upper 0.2 m falls 163 

below 70% of the water holding capacity, sufficient water is supplied to increase soil moisture to 164 

100% of the water holding capacity. Harvest occurred at physiological maturity. 165 

The CERES and CROPGRO models have the ability to represent a wide diversity in cultivars and 166 

thus particular choices had to be made concerning which varieties to use. The process was 167 

different for each crop, but usually involved several varieties along with maps indicating which 168 

geographic areas they were appropriate for. For rice a generic Japonica variety was used along 169 

with an Indica variety (supplementary Figure S14); for wheat eleven unique variety definitions 170 

were used; for maize two generic varieties were used corresponding to characteristics typical of 171 

developed world applications and the developing world; for groundnuts four varieties were used 172 

for the developing world and a single variety for the developed world; and for soybeans thirteen 173 

generic varieties were used (differentiated by maturity length) at each location, the highest 174 

yielding variety was chosen. 175 

2.2.2 LPJmL 176 

LPJmL is a global dynamic vegetation, hydrology and crop growth model (Bondeau, et al., 2007, 177 

Fader, et al., 2010, Waha, et al., 2012). It simulates crop yields of 12 different crops (Table 1), 178 

that represent the most important crop types globally (temperate and tropical cereals, maize, 179 

rice, pulses, temperate and tropical roots and tubers, soybeans, oilcrops) (Bondeau, et al., 2007) 180 

and sugarcane (Saccharum spp.) (Lapola, et al., 2009). The version used here employs the latest 181 

model improvements as a more complex soil hydrology as needed for the permafrost 182 



implementation (Schaphoff, et al., 2013) and an implementation of a linear LAI-FPAR model for 183 

maize (Zhou, et al., 2002) and the minimum root-to-shoot ratios at maturity were set to 10% 184 

(based on insights from the AgMIP wheat (Asseng, et al., 2013) and maize pilots & (Prince, et al., 185 

2001)). 186 

Soil. The improved soil representation of the model (Schaphoff, et al., 2013) covers the upper 187 

3m of the soil in 5 layers. Rain, melt and irrigation water infiltrates at the surface and percolates 188 

to deeper layers if above field capacity. Soil temperatures are determined by a heat 189 

conductance energy model (Schaphoff, et al., 2013). Plants transpire water according to their 190 

root distribution over the soil layers (Jobbágy and Jackson, 2000), while soil water evaporates 191 

only from the upper 0.2m.  192 

Soil data are taken from Harmonized world soil database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012). 193 

The classification is based on the USDA soil texture classification (http://edis.ifas.ufl.edu/ss169), 194 

the hydraulic soil parameters (saturated hydraulic conductivity [mm/h], water content at wilting 195 

point/field capacity/saturation) are derived from Cosby et al. (1984) and the thermal 196 

parameters (thermal diffusivity (mm2/s) at wilting point, 15%, field capacity (100% whc), wilting 197 

point, saturation (all water), and saturation (all ice)) from Lawrence and Slater (2008), the 198 

suction head (mm) in Green-Ampt equation following Rawls, Brakensiek and Miller (1983). 199 

Initialization. Soil conditions are not initialized but are determined in a 200-year spin-up 200 

simulation, recycling the first 30-years of that time series for the spin-up simulation. Such long 201 

spin-up is needed to ensure that soil temperatures are in equilibrium with climate before 202 

simulations start(Schaphoff, et al., 2013). Baseline and future conditions are simulated in a 203 

single transient run from 1951 to 2099, so that soil conditions in the future period (2050s) were 204 

determined by the simulated previous years. 205 

http://edis.ifas.ufl.edu/ss169


Management. Apart from cultivar choices (Bondeau, et al., 2007), sowing dates (Waha, et al., 206 

2012) and irrigation, management options are not treated explicitly in LPJmL. For the 207 

representation of current management patterns, national cropping intensity has been calibrated 208 

to FAO statistics as described in Fader et al. (2010). For this, three parameters, maximum leaf 209 

area index (LAImax m2 of leaves per m2 of ground), a scaling factor for scaling leaf-level 210 

photosynthesis to stand level (alphaA, Haxeltine and Prentice, 1996) and the harvest index (HI) 211 

are scaled in combination. LAImax can range from 1 (lowest intensity) to 7 (highest intensity), 212 

alphaA from 0.4 to 1 and HI has a CFT specific range (Bondeau, et al., 2007), which can be 213 

reduced by up to 20%, assuming more robust but less productive varieties in production systems 214 

with low productivity (Gosme, et al., 2010). 215 

Accounting for the linear LAI-FPAR model for maize (Zhou, et al., 2002) and maximum intensity 216 

levels for maize now assume a maximum leaf area index of 5 instead of 7 as described by Fader 217 

et al. (2010). Nutrient dynamics are not explicitly represented in the model. Sowing dates have 218 

been computed as in Waha et al. (2012), but have been kept constant after 1951. The model 219 

decides internally whether to grow winter or spring wheat/rapeseed on wheat/rapeseed areas. 220 

It has a preference for winter varieties, but if winters are too long, it will grow spring varieties 221 

(Bondeau, et al., 2007). Algorithms to select varieties have been adjusted as described in Müller, 222 

et al. (2013). For irrigated crops, irrigation water is assumed to be available in unlimited supply. 223 

Irrigation is triggered if soil moisture falls below 90% of the water holding capacity. Harvest 224 

occurs at maturity. 225 

2.3 Aggregation and extrapolation for economic models 226 

Economic models that cover the agricultural sector work with very different resolutions of 227 

spatial, temporal and commodity resolutions, ranging from computable general equilibrium 228 

http://redmine.pik-potsdam.de/projects/lpjml/wiki/Cultivar_choices
http://redmine.pik-potsdam.de/projects/lpjml/wiki/Sowing_dates
http://redmine.pik-potsdam.de/projects/lpjml/wiki/Irrigation


models (CGE, such as AIM (Fujimori, et al., 2012), EPPA (Paltsev, et al., 2005)), partial 229 

equilibrium models (PE, such as GCAM (Thomson, et al., 2011, Wise and Calvin, 2011), IMPACT 230 

(Nelson, et al., 2010, Rosegrant and IMPACT Development Team, 2012)) to land use models that 231 

combine economic rationale with spatially explicit biophysical data on crop yields and water 232 

availability (LUM, such as MAgPIE (Lotze-Campen, et al., 2008, Schmitz, et al., 2012) and 233 

GLOBIOM (Havlík, et al., 2011, Havlík, et al., 2013)). The representation of dynamics in 234 

agricultural land productivity and the production functions affected by this consequently differs 235 

among models and is not directly compatible with the characteristics of gridded global crop 236 

models. Consequently, climate change impacts on agricultural crop yields as computed by the 237 

agricultural biophysical impact models DSSAT and LPJmL have been aggregated and also 238 

extrapolated to match information requirements in economic models, which is described in 239 

detail below. For a detailed description of the economic models that participated in this AgMIP 240 

intercomparison see Nelson, et al. (2013) and von Lampe, et al. (2013). 241 

2.3.1 Mapping of crops to commodities 242 

The biophysical impact models DSSAT and LPJmL explicitly simulate a variety of crops; however, 243 

they do not match up precisely with the agricultural commodities represented in agricultural 244 

economic models. Simulated dynamics in crop productivity were used to determine dynamics in 245 

land productivity of the economic models’ commodities, wherever possible. For those 246 

commodities which had no direct representation in the biophysical impact models, we used 247 

simulated climate change responses in similar crops to estimate their response to climate 248 

change. Similarity was based on the type of photosynthetic pathway (distinguishing C3 crops 249 

from C4 crops), their main climate zone (temperate vs. tropical) and their susceptibility to 250 

drought damage.  251 



Following the crop-to-commodity mapping in Table 1, we supplied information on climate 252 

impacts on agricultural land productivity for 23 commodities. DSSAT simulations provide data on 253 

5 different crops, wheat (whe), maize (mai), rice (ric), soybean (soy), and groundnut (grn). LPJmL 254 

simulations provide data for the 12 crops implemented in LPJmL, wheat, maize, rice, soybean, 255 

millet (Pennisetum glaucum, mill), rapeseed (Brassica napus, rap), sugar beet (Beta vulgaris, 256 

sugbe), sugar cane (sug), field peas (Pisum sativum, fpea), cassava (Manihot esculenta, cas), 257 

sunflower (Helianthus annuus, sunf), groundnuts, and managed grassland (gra). Both biophysical 258 

impact models supplied data separately for irrigated and rain-fed production.  259 

2.3.2 Spatial resolution 260 

While yield impacts have been computed on a regular geographic grid (30’ resolution), most 261 

economic models require information for administrative units. Consequently, yield data have 262 

been provided at their original resolution and in aggregated form for the IMPACT food 263 

production units (FPUs)(Cai and Rosegrant, 2002), which could then be further aggregated to 264 

the individual economic models’ needs. For the aggregation to FPUs, we used actual physical 265 

production areas for the individual crops from the SPAM data set, version 2 (You, et al., 2010). 266 

Combining the areas and yields allows us to calculate the regional area-weighted average yield 267 

for each case. Most crops simulated by LPJmL and DSSAT here could be aggregated using crop-268 

specific land-use patterns from SPAM, however, sunflower and rapeseed yields were aggregated 269 

with the areas of other oilcrops in SPAM as no crop-specific area data are available for these 270 

crops. 271 

Using production area information, rain-fed and irrigated crop production as simulated by the 272 

models could also be aggregated to overall crop productivity if the economic model does not 273 

distinguish rain-fed from irrigated production.  274 



2.3.3 Temporal resolution 275 

Due to the differences in handling the climate and weather data, the yields entering the climate 276 

change impact calculations are aggregated slightly differently for the two crop models. While 277 

LPJmL simulated agricultural productivity of crops in a transient run from 1951-2099, DSSAT 278 

simulated only the year 2000 and the year 2050, using 80 realizations of daily weather variations 279 

from its weather generator (Geng, et al., 1986, Geng, et al., 1988). We used the average of 2000 280 

to 2009 to represent the LPJmL crop productivity in 2000 and the average of 2050 to 2059 for 281 

2050.  282 

To fill the years between 2010 and 2050 for DSSAT simulations, the climate change induced 283 

changes in agricultural productivity were supplied as annual growth rates (g) from simulated 284 

reference (pref) and future production (pfut), following equation 2 so that climate change impacts 285 

can be computed for any year between 2010 and 2050 in the economic models.  286 

1)/( 40/1 −= reffut ppg  (2) 287 

For reasons of harmonization, data from LPJmL were also supplied in form of an annual growth 288 

rate. Additionally, due to the yearly yields available, annual and decadal effects were supplied. If 289 

an economic model is designed to take such information into account, this allows for addressing 290 

inter-annual/decadal variability of production,. 291 

At the FPU-level, aggregated yield shifters have been capped to avoid being overly sensitive to 292 

variations and model artifacts that may occur if the biophysical crop models simulate very low 293 

reference period productivities. The upper limit for positive climate impacts on yields was set to 294 

an annual growth rate of 0.53%/year (equivalent to 23.5% increase in 40 years), negative 295 

impacts were limited to 2%/year (equivalent to 63% decrease in 40 years). 296 



3 Results 297 

In all scenarios analyzed here, climate change leads to strong decreases in agricultural 298 

productivity in most of the agricultural area, but with some notable exceptions such as currently 299 

temperature limited mountainous or high-latitude areas. At the global scale, crop yields 300 

decrease by 9.9 to 37.6% by 2050 for the five crops simulated by both models (Table 2). While 301 

there is high agreement at the global scale on climate change impacts on rice and groundnut 302 

productivity across the two crop models and the two climate scenarios, DSSAT projects 303 

substantially more detrimental impacts on maize (-35.8% vs. -12.1% respectively) and wheat (-304 

19.4% vs. -12.2% respectively) than LPJmL. Generally, climate impacts on crop yields have similar 305 

distributions between the crop models and climate scenarios (Figure 2), but the spatial patterns 306 

of impact differ in some cases significantly (Figure 3-4 and supplementary Figures S15-S29). It is 307 

noteworthy that already moderate changes in crop productivity and crop production can have 308 

significant impacts on agricultural markets and prices. This was demonstrated in the recent 309 

drought in the USA in 2012, where maize yields and production decreased by 18% and 12% 310 

respectively, but US maize exports had almost dropped by 50% in October and November 2012 311 

compared to the already low export quantities in 2011 and to about a third of the peak export 312 

quantities in 2007 (Capehart, et al., 2012). 313 

<< Figure 2 about here >> 314 

Figures 3-4 display spatial patterns for the crops as simulated by DSSAT and LPJmL for the 2 315 

climate scenarios employed (also see supplementary figures for other crops). The spatial 316 

patterns of change cannot always be directly linked to the change patterns of climate variables 317 

and there are also differences between the 2 crop models’ projections. While the impact 318 

patterns show many similarities between the models/scenarios, there are important 319 



differences. Rainfed wheat, for example is projected to increase in East (HadGEM and IPSL) and 320 

central (HadGEM only) Europe by DSSAT, while LPJmL simulates yield reductions throughout 321 

Europe. The slightly lower increases in annual mean temperature in HadGEM than in IPSL 322 

(Figures 1-2) lead to yield increases in the Russian-Kazakh border region in the HadGEM scenario 323 

but to decreases in the IPSL scenario. The main difference is that spring precipitation (March, 324 

April, May) is projected to increase significantly by HadGEM2-ES but to decrease in summer 325 

(June, July, August) while ISPL-CM5A-LR projects smaller variability of the seasonal distribution 326 

but rather sees a drying in spring and wetter conditions in summer in this region. Both agree on 327 

increasing winter precipitation (see supplementary Figure S1). For irrigated wheat productivity, 328 

DSSAT simulations are more optimistic in Europe and more pessimistic for India, China and 329 

Mexico (see also supplementary Figure S15). 330 

<< Figure 3 about here >> 331 

For maize, the spatial patterns of yield changes agree well between the two crop models, but 332 

DSSAT projects significantly stronger yield changes almost everywhere, including the yield 333 

increase in the high latitudes in both rainfed (Figure 4) and irrigated cultivation (supplementary 334 

Figure S16). 335 

Groundnut simulations are similar between crop models but more severe for IPSL for rainfed 336 

and for DSSAT for irrigated cultivation (supplementary Figures S17-S18). 337 

For rice productivity, climate impacts do not differ much between the two climate models but 338 

DSSAT is more pessimistic for irrigated rice, while LPJmL is more pessimistic for rainfed rice 339 

cultivation under climate change (supplementary Figures S19-S20). 340 



For soy, there are significant regional differences between climate and crop model simulations 341 

for rainfed soy productivity, while DSSAT is often more optimistic for irrigated conditions 342 

(supplementary Figures S21-S22).   343 

<< Figure 4 about here >> 344 

Spatial variability of yields within food production units (FPUs) decreases more often than 345 

increases with climate change and more so in DSSAT simulations than in LPJmL (Fig 5) as does 346 

year-to-year variability both at the FPU (Fig 6) and grid cell level (supplementary figure S30) in 347 

LPJmL simulations. 348 

<< Figure 5 about here >> 349 

<< Figure 6 about here >> 350 

A table with the crop-specific climate change impacts on yields per FPU for the four scenarios is 351 

supplied in the supporting online material. 352 

4 Discussion 353 

We here supply four scenarios of climate change impacts on crop yields, in high spatial and 354 

temporal resolution as well as in aggregated form in order to supply biophysical climate change 355 

impacts on crop productivity to economic models. The detail of information supplied, also in 356 

aggregated form allows for simulating changes in land use patterns, e.g. through land expansion, 357 

reallocation of cropping systems and land abandonment. Depending on mechanisms 358 

implemented in the economic models, costs for such changes in land-use patterns will have to 359 

be parameterized with observations (Schmitz, et al., 2013).  360 

Given the low number of climate change impact scenarios (4), these can only partially cover the 361 

range of possible future climate change impacts. Even though these scenarios were designed to 362 



represent high-end climate change impact scenarios, not all assumptions and model 363 

implementations are on the pessimistic side. We use only scenarios of the highest emission 364 

scenario (RCP 8.5) of the most recent emission scenario set (Moss, et al., 2010), the crop models 365 

were set up to exclude any adaptation mechanism (such as the adjustment of sowing dates) and 366 

any possible positive effects of CO2 fertilization were excluded here. However, several aspects 367 

are excluded that have the potential to further decline yields. Ozone damage can substantially 368 

reduce crop yields (Bender and Weigel, 2011, Leisner and Ainsworth, 2012) and ozone 369 

concentrations are projected to increase especially in Asia but are projected to decline in North 370 

America and stabilize in Europe under the RCP8.5 scenario (Wild, et al., 2012). While the model 371 

setup of DSSAT with synthetic daily weather data prevents a direct accounting for changes in 372 

weather extremes, LPJmL is driven with daily (bias-corrected) data from the GCMs. The model, 373 

however, does not cover mechanisms that would allow for an assessment of extreme events 374 

under climate change (no increased heat sensitivity at anthesis, no crop damage under intense 375 

precipitation events such as hail storms). The scenarios are thus assuming no effects of 376 

increasing extremes on crop productivity here, even though these can have significant effects on 377 

crop yields (Asseng, et al., 2011, Hawkins, et al., 2013). Indirect effects of climate change on 378 

crop growth through weeds, pests and pathogens are not covered by the crop growth models 379 

here. 380 

The assumption of static management systems is not without caveats as there are also 381 

adaptation measures that potentially can be implemented with limited extra costs, such as the 382 

adjustment of sowing dates to climate change, which can strongly affect the strength of impacts 383 

(Laux, et al., 2010, Folberth, et al., 2012, Waha, et al., 2013). However this setting also helps to 384 

avoid overlapping assumptions in biophysical and economic models: All adaptation efforts to 385 

compensate negative climate change impacts are exclusively addressed in the economic models, 386 



while we here supply data on climate change impacts on agricultural productivity under static 387 

management assumptions only. Typically, adaptation in economic models is represented by a 388 

mixture of explicitly modeled mechanisms such as changes in resource allocation and/or in 389 

consumption patterns and aggregated response mechanisms, such as the investment in 390 

technological change, which does not distinguish individual measures such as breeding new 391 

varieties or better soil management (Dietrich, et al., 2012, Dietrich, et al., in press). For such 392 

aggregate adaptation mechanisms in economic models, adaptation options already included in 393 

the biophysical crop modeling cannot be excluded and the exclusion of adaptation measures in 394 

the crop models thus ensures consistency. This impedes a detailed analysis of adaptation 395 

options in agricultural production systems for which a stronger interaction between crop models 396 

and economic models would be necessary. The ability of the GLOBIOM model to select from 397 

different management systems per commodity (Havlík, et al., 2013) could facilitate an analysis 398 

of adaptation options in crop production management and via land-use change and price 399 

mechanism, but this detail in differences in sensitivity to climate change between crop 400 

management systems is not supplied here. 401 

The effectiveness of CO2 fertilization at field scale or even in national or global productivity and 402 

a crop model’s ability to project it is subject to considerable uncertainty and scientific debate 403 

(Long, et al., 2006, Tubiello, et al., 2007). While assuming no CO2 fertilization is clearly a 404 

pessimistic assumption here, it is consistent with the idea of leaving adjustments in 405 

management to the economic models: Any beneficial effect of CO2 fertilization on crop yields 406 

will require an adjustment in management to enable higher quantities. Otherwise nitrogen 407 

could become limiting and could result in reductions in quality (e.g. protein content) (Leakey, et 408 

al., 2009, Bloom, et al., 2010, Parry and Hawkesford, 2010). Changes in the chemical 409 

composition of plants under elevated atmospheric CO2 concentrations could also have 410 



detrimental effects on yields, as it was shown to impede the plants’ defense mechanisms 411 

against insect damage (Dermody, et al., 2008, Zavala, et al., 2008) and may interfere with the 412 

enzyme and hormone regulation in plants (Ribeiro, et al., 2012). As both crop and economic 413 

models at the global scale are not capable address these detailed feedbacks and the assumption 414 

to ignore CO2 fertilization effects is consistent with this. 415 

The selection of global circulation models (GCMs) is based on availability of climate scenarios 416 

and the modeling protocol of ISI-MIP and AgMIP only; it does not reflect the range of 417 

uncertainties from different climate models.  418 

The aggregation of spatially explicit simulations of crop yields under climate change to larger 419 

spatial units, as required for most economic models, is inconsistent with the simulated land-use 420 

change by these economic models. Only models that are able to process spatially explicit data 421 

are capable of responding to climate change impacts by reallocating production within spatial 422 

production units (FPUs, countries). This allows for more flexible response to climate change 423 

patterns, especially as the spatial variability of crop yields within FPUs (Fig 5) changes as well 424 

under climate change, which is independent of the direction of change. 425 

The variability in time is estimated for LPJmL only, since DSSAT is driven with 80 replica of the 426 

same year. Results show that temporal variability of FPU production (expressed as the 427 

coefficient of variation over a 30-year period around 2000 and 2050) increases about twice as 428 

much (64%) than it decreases (29%, see Fig. 6), a ratio that is also observed at the pixel level 429 

(supplementary Figure S30) as well as for irrigated and rainfed systems individually 430 

(supplementary Figures S31-S32). 431 

At the same time, models that use spatially explicit yield shifter data may also see different yield 432 

trends as their initial and changing land-use patterns will very likely lead to a different weighting 433 



scheme than used here based on the SPAM data. This means that climate change effects in 434 

economic assessments directly depend on the spatial aggregation method and can lead to 435 

different dynamics if aggregation weights (e.g. SPAM data vs. other land-use patterns) differ and 436 

if there are strong gradients in climate change within aggregation units. This is, e.g., the case in 437 

the USA (north-east for DSSAT, central for LPJmL) for wheat (Figure 3) or east China for maize 438 

(Figure 4). A direct comparison of economic models driven with spatially aggregated yield data 439 

and models driven with spatially explicit data is thus inhibited. 440 

Mapping of simulated climate change impacts on specific crops to other crops and commodities 441 

not covered by the biophysical crop models is a suitable way to generate comprehensive climate 442 

change impact scenarios for all commodities. It is, however, also an additional source of 443 

uncertainty, especially if the plants’ properties are not similar (e.g. fruits that are typically from 444 

dicotyledon and perennial plants vs. the average of rice, wheat (both monocotyledon), soybean 445 

and groundnut (both dicotyledon) which are annual plants, see Table 1). 446 

Practical matters constrained how many and which crops were chosen for modeling. Of course, 447 

there are more crops cultivated than there are reliable models of them. Still, there are plenty of 448 

models; within the DSSAT framework, there are representations of potatoes, cassava, 449 

sugarcane, sorghum, millet, cotton, chickpeas, and more. The lack of reliable input information 450 

for these, as well as the additional computational and organizational burden of handling the 451 

results led to the focus on the five major crops of rice, wheat, maize, soybeans, and groundnuts.  452 

The uncertainty associated with mapping simulated bio-physical climate change impacts on 453 

specific crops to economic commodities is illustrated well by the case of sugarcane. While we 454 

simulate sugarcane plants directly in LPJmL (Lapola, et al., 2009), we do not with DSSAT here, 455 

but assume that climate change impacts on sugarcane are identical to those on maize for 456 



DSSAT-based yield shifters (Table 1). While this is a reasonable choice, as both maize and 457 

sugarcane are C4 plants (while the other crops simulated with DSSAT are C3 plants), there are 458 

some important differences between the 2 crops that limit the comparability. Most importantly, 459 

the economically valuable part of maize is the fruit of the plant, while it’s the stalk in case of 460 

sugarcane. Climate change impacts are thus expected to be more severe in maize production, as 461 

the sensitive phenological stages of flowering and grain filling can be affected more strongly by 462 

climate change (Lobell, et al., 2011). Sugarcane productivity is also impacted by increasing 463 

temperatures, but radiation use efficiency (i.e. biomass accumulation per unit of light energy 464 

absorbed) only decrease at daily mean temperatures above 35°C (Singels, et al., 2005) and fruit 465 

development is unwanted, as flowering actually impinges on sugarcane yields (Berding and 466 

Hurney, 2005). 467 

The two biophysical crop models employed here reflect the uncertainties in global crop 468 

modeling (Rosenzweig, et al., 2013a) to some extent. They differ with respect to model 469 

characteristics (e.g. radiation use efficiency model vs. more complex photosynthesis model) and 470 

management assumptions (cropping periods, co-limitation by nutrients vs. no explicit treatment 471 

of nutrients). Consequently, projections of climate change impacts on crop yields differ both at 472 

global (Table 2) and regional scales (Figures 3 and 4). While DSSAT simulations typically project 473 

stronger global impacts for wheat and maize than LPJmL, its projections of impacts for rice, 474 

soybean and groundnut are typically less detrimental than those of LPJmL. Differences between 475 

the climate scenarios are typically smaller than those between crop models at the global scale, 476 

but can be substantial in specific regions (e.g. rainfed maize in Europe for DSSAT or China for 477 

LPJmL, Figure 4). 478 

Global-gridded approaches to crop modeling using climate change scenarios will help to 479 

illuminate these uncertainties in the economic realm leading to modeling improvements to 480 



reduce them as well as assessing and edifying the robustness of the biophysical models. Results 481 

from the global gridded crop model intercomparison of AgMIP and ISI-MIP as well as from the 482 

wheat and maize pilots of AgMIP suggest that the uncertainty from different impact models is 483 

typically larger than that from different climate scenarios (Asseng, et al., 2013, Rosenzweig, et 484 

al., 2013a). More work to analyze underlying reasons and to improve model projections is 485 

needed and will be coordinated by AgMIP. A harmonization of assumed management (growing 486 

periods, cultivars, fertilizers, pest control) will be central to understand differences in climate 487 

change impact assessments and will allow for separating impact uncertainty in uncertainty from 488 

management and uncertainty from climate impacts. 489 

490 
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Tables 737 

Table 1: Mapping of biophysical crop yield simulations to agricultural economic commodities. 738 

Agricultural 

economic 

commodity 

Mapping for DSSAT Mapping for LPJmL 

Cassava represented by the average climate 

effects on the 4 major C3 crops modeled 

(rice, wheat, soybeans, groundnuts) 

Cassava yield simulations directly 

applied 

Groundnuts Groundnut yield simulations directly 

applied 

Groundnut yield simulations directly 

applied 

Maize Maize yield simulations directly applied Maize yield simulations directly 

applied 

Millet represented by modified maize yield 

simulations, applying all the positive 

climate effects but only 50% of the 

negative effects due to better drought 

tolerance 

Millet yield simulations directly 

applied 

Rapeseed represented by the average climate 

effects on the 4 major C3 crops modeled 

(rice, wheat, soybeans, groundnuts) 

Rapeseed yield simulations directly 

applied 

Rice Rice yield simulations directly applied Rice yield simulations directly applied 

Soybeans Soybean yield simulations directly 

applied 

Soybean yield simulations directly 

applied 

Sugarcane Maize yield simulations represent 

climate impacts on sugarcane 

Sugarcane yield simulations directly 

applied 

Sugar beet represented by the average climate 

effects on the 4 major C3 crops modeled 

(rice, wheat, soybeans, groundnuts) 

Sugar beet yield simulations directly 

applied 

Wheat Wheat yield simulations directly applied Wheat yield simulations directly 



applied 

Sorghum represented by modified maize yield 

simulations, applying all the positive 

climate effects but only 50% of the 

negative effects due to better drought 

tolerance 

Millet yield simulations represent 

climate impacts on sorghum 

Oilseeds (sunflower, 

palm, total other 

oilseeds) 

represented by the average climate 

effects on the 4 major C3 crops modeled 

(rice, wheat, soybeans, groundnuts) 

Represented by sunflower yield 

simulations 

Other Grains represented by modified wheat yield 

simulations, applying all the positive 

climate effects but only 50% of the 

negative effects due to better drought 

tolerance 

represented by modified wheat yield 

simulations, applying all the positive 

climate effects but only 50% of the 

negative effects due to better drought 

tolerance 

Dryland Legumes 

(Chickpeas and 

Pigeon Peas) 

represented by modified groundnut yield 

simulations, applying all the positive 

climate effects but only 50% of the 

negative effects due to better drought 

tolerance 

represented by modified groundnut 

yield simulations, applying all the 

positive climate effects but only 50% 

of the negative effects due to better 

drought tolerance 

Other C3 crops 

(cotton, potatoes,  

sweet potatoes and 

yams, subtropical 

fruit, temperate 

fruits, and 

vegetables) 

represented by the average climate 

effects on the 4 major C3 crops modeled 

(rice, wheat, soybeans, groundnuts) 

represented by the average climate 

effects on the 4 major C3 crops 

modeled (rice, wheat, soybeans, 

groundnuts) 
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Table 2: projected changes in global productivity in percent for the five crops simulated by both models; 741 

wheat, maize, rice, soybean and groundnut 742 

 Hadley IPSL 
 DSSAT LPJmL DSSAT LPJmL 
wheat -17.7% -11.5% -21.0% -12.9% 
maize -37.6% -9.9% -33.9% -14.2% 
rice -15.7% -18.2% -16.4% -16.1% 
soybean -16.8% -20.% -13.0% -29.8% 
groundnut -20.9% -24.3% -18.4% -21.2% 
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Figures 745 

 746 

Figure 1: Absolute changes in annual mean temperature [°C] (top) and annual mean precipitation 747 

[mm/day] (bottom) from 1980-2010 to 2035-2065 for the HadGEM-ES2 (left) and IPSL-CM5A-LR (right) 748 

models. Temperature changes above 8°C have been cut to facilitate better visibility of differences at 749 

lower temperature changes, which is more important for cultivated areas. Grey areas in the bottom 750 

depict regions with precipitation changes of less than 50mm/year (0.137mm/day). Seasonal changes 751 

are depicted in the supplementary Figures S1-S4. 752 

753 
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754 
Figure 2: Fractional changes (Pfut/Pref)-1 in crop productivity comparing the 2 crop models (red x: DSSAT, 755 

blue +: LPJmL) and climate models HadGEM (x-axis) and IPSL (y-axis) for the 5 jointly simulated crops 756 

(maize, wheat, rice, soybean, groundnut) for all FPUs. 757 

758 



 759 

Figure 3: Relative changes in rainfed wheat productivity as projected by DSSAT (top) and LPJmL 760 

(bottom) for the HadGEM-ES2 (left) and IPSL-CM5A-LR (right) climate scenarios for the RCP8.5 emission 761 

scenario. Dark grey areas are currently not used for cultivation of rainfed wheat (Portmann, et al., 762 

2010). 763 

764 



 765 

Figure 4: Relative changes in rainfed maize productivity as projected by DSSAT (top) and LPJmL 766 

(bottom) for the HadGEM-ES2 (left) and IPSL-CM5A-LR (right) climate scenarios for the RCP8.5 emission 767 

scenario. Dark grey areas are currently not used for cultivation of rainfed maize (Portmann, et al., 768 

2010). 769 
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 771 

Figure 5: Yield diversity in food production units (FPU, i.e. across pixels within a FPU) decreases more 772 

often than increases under climate change. Blue symbols indicate yield diversity as simulated with 773 

LPJmL, red symbols indicate yield diversity as simulated by DSSAT. Crosses (×) indicate simulations for 774 

IPSL-CM5A-LR climate scenario, double-crosses (∗) indicate simulations for HadGEM2-ES. 775 

776 



 777 

Figure 6: Year-to-year variability increases more often than decreases. Colors depict point density in the 778 

scatter plot (log scale). The total number of FPUs (8309) is the sum of FPUs (max 281) for the 12 LPJmL 779 

crops simulated here summed for irrigated and rainfed management systems and for 2 climate 780 

scenarios. Black line is 1:1 line. 781 
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