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[1] Early warning indicators of the collapse of the Atlantic
Meridional Overturning Circulation (MOC) have up to now
mostly been based on temporal correlations in single time
series. Here, we propose new indicators based on spatial
correlations in the time series of the Atlantic temperature
field. To demonstrate the performance of these indicators,
we use a meridional-depth model of the MOC for which the
critical conditions for collapse can be explicitly computed.
An interaction network approach is used to monitor changes
in spatial correlations in the model temperature time series as
the critical transition is approached. The new early warning
indicators are based on changes in topological properties
of the network, in particular changes in the distribution
functions of the degree and the clustering coefficient.
Citation: van der Mheen, M., H. A. Dijkstra, A. Gozolchiani,
M. den Toom, Q. Feng, J. Kurths, and E. Hernandez-Garcia
(2013), Interaction network based early warning indicators for
the Atlantic MOC collapse, Geophys. Res. Lett., 40, 2714–2719,
doi:10.1002/grl.50515.

1. Introduction
[2] Since Stommel’s seminal paper [Stommel, 1961],

many model studies have shown that the Atlantic Merid-
ional Overturning Circulation (MOC) may be sensitive to
changes in the freshwater balance of the northern North
Atlantic [Bryan, 1986]. When an anomalous freshwater flux
is gradually applied over a broad swath in the subpolar North
Atlantic, the MOC collapses in many ocean-climate models
[Rahmstorf et al., 2005]. Freshening of the surface waters
in the Nordic and Labrador Seas inhibits the production of
North Atlantic Deep Water (NADW), which feeds the deep
southward branch of the MOC. The MOC collapse occurs
due to the existence of a tipping point associated with the
salt-advection feedback [Dijkstra and Ghil, 2005; Lenton,
2011].

[3] Over the last few years, there has been a growing
interest in developing early warning indicators for proximity
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of tipping points in systems for which the external condi-
tions change very slowly with time [Scheffer et al., 2009;
Kuehn, 2011; Scheffer et al., 2012; Barnosky et al., 2012].
For regime shifts in ecosystems, early warning indicators
have been based on either temporal or spatial correlations
[Donangelo et al., 2010].

[4] For the MOC collapse problem, the slow change is
caused by the gradually varying freshwater forcing in the
northern North Atlantic.

[5] Early warning indicators of the approach to the tip-
ping point for the MOC have so far been mostly based
on temporal characteristics of the single time series [Held
and Kleinen, 2004] or an ensemble of such time series
[Livina and Lenton, 2007]. The techniques currently used
(for an overview, see Lenton [2011]) are based on the con-
cepts of critical slowdown (degenerate fingerprinting [Held
and Kleinen, 2004], detrended fluctuation analysis [Livina
and Lenton, 2007]), and the existence of multiple equilibria
(potential analysis [Livina et al., 2010, 2011]).

[6] In this paper, we present new early warning indi-
cators for the collapse of the MOC which are based on
the spatial correlations of the Atlantic temperature field.
Such changes in spatial correlations can be effectively
detected by an interaction network approach [Tsonis and
Roebber, 2004; Donges et al., 2009; Bialonski et al., 2011;
Gozolchiani et al., 2011; Tsonis and Swanson, 2012]. A link
between different locations in such a network is established
when a correlation measure of their covarying time series
exceeds a certain threshold. To demonstrate the application
potential of the new indicators, we apply the interaction
network methodology to temperature time series from a
meridional-depth model of the Atlantic MOC.

2. Model, Simulations, and Network Construction
[7] To be able to test the quality of an early warning

indicator for approaching a tipping point of the MOC, it
is beneficial to have a model where such tipping points
can be explicitly computed. In den Toom et al. [2011], this
is accomplished for a two-dimensional (meridional-depth)
model of the Atlantic MOC. The formulation of this model
is for convenience presented in part 1 of the supporting
information (SI).

[8] The surface temperature restoring forcing is taken
similar to the one in den Toom et al. [2011]; see equation (3a)
in the SI. The surface freshwater forcing FS, which is applied
as a virtual salt flux (equation (3b) in the SI), is chosen as

FS(�) =
(� + �)
cos�

cos�
�

�N
+ ˇFp(�) – Q (1)
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Figure 1. (a) Bifurcation diagram in which the sum of the maximum (‰+) meridional overturning stream function (see
part 1 of the SI) and minimum (‰–) meridional overturning stream function values is plotted versus the anomalous freshwater
flux amplitude ˇ. Solid (dashed) branches indicate stable (unstable) steady states. (b) Pattern of the meridional overturning
stream function (‰) at the upper stable branch in Figure 1a for ˇ = 0. (c) Pattern of the meridional overturning stream
function at the lower stable branch in Figure 1a for ˇ = 0.

where � indicates latitude, �N is the northern boundary
of the equatorially symmetric domain, � (in m/yr) is the
strength of the background freshwater forcing, and � is a
white noise term, with < �(t)�(t0) >= �0ı(t – t0). Further-
more, ˇ is the strength of an anomalous freshwater flux
which is only applied over the area [40ıN, 60ıN] (where
Fp = 1; it is 0 elsewhere). With the area given over which
the freshwater is applied, the total freshwater flux in m3/yr
is easily converted to Sv. The constant Q appears due to the
requirement that the surface-integrated salt flux is 0 for all
parameter values.

[9] The model equations were discretized on a 32 �
16 meridional-depth spatial grid, and standard parameters
used are provided in Table S1 of the SI. For �0 = 0 and
� = 0.3 m/yr, the so-called bifurcation diagram [Dijkstra
and Ghil, 2005] in ˇ is shown in Figure 1a. In this diagram,
a measure of the steady solutions of the model is plotted
versus the forcing parameter ˇ. The diagram contains two
so-called saddle-node bifurcations (indicated by L1 and L2)
connected by a branch of unstable steady states. The MOC
patterns of the stable steady states for ˇ = 0 are shown in
Figures 1b and 1c. We will focus on the upper tipping point
indicated in Figure 1a as the saddle-node bifurcation L1.

[10] The next four values of ˇ are chosen close to L1, as
indicated by the labels (A, B, C, and D) in Figure 1a. Starting
from the steady state solution, transient computations over

500 years were performed for these values of ˇ with a noise
amplitude �0 = 0.1. In these simulations, the MOC fluctuates
with a typical peak-to-peak amplitude of about 5 Sv. In the
following, we analyze the spatial correlations of the annual
mean temperature field of these transient simulations.

[11] An (undirected and unweighted) interaction network
is reconstructed from each temperature field time series
using a threshold value � of the Pearson correlation coeffi-
cient between each pair of the 32 � 16 grid points. If this
correlation exceeds � , two locations (nodes) are assumed
“connected” [Tsonis and Roebber, 2004; Donges et al.,
2009]. In the results below, we will analyze the topologi-
cal properties of these networks using � = 0.7 (details are
provided in part 2 of the SI).

3. Results
[12] An overview of local and global measures to analyze

the topology of a network is for example given in Donges
et al. [2009]. We will here mainly focus on the degree dis-
tribution of the network and provide also results for the
distribution of the clustering coefficient (see part 3 of the SI).
The degree d of a node is the number of connections from
that node to other nodes, and the local clustering coefficient
of a node provides information on the connections between
neighbors of that node.
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Figure 2. Degree fields (left panel) and degree distributions (right panel) of the undirected, unweighted network (with a
threshold � = 0.7) for the temperature field time series obtained at different locations A, B, C, and D as indicated in Figure 1a
under transient noise (� = 0.1) forcing and � = 0.3. (a) Point A: ˇ = 0.05 m/yr; (b) Point B: ˇ = 0.139 m/yr; (c) Point C:
ˇ = 0.154 m/yr; (d) Point D: ˇ = 0.166 m/yr.

3.1. Equilibrium Flows
[13] The degree fields of the networks constructed at the

different values of ˇ (locations A, B, C, and D in Figure 1a)
are shown in Figure 2 (left panels). Note that the maximum
degree of a node (connections to other nodes) is dmax = 32�
16 – 1 = 511. Relatively far from L1, all temperature grid
points have a relatively small degree. When ˇ is increased,
high degree first appears at nodes in the deep ocean. Close to
L1, there is a large area (below �1000 m) where the degree
values are very large and a relatively low degree only occurs
for nodes located in the upper ocean, north of 30ıN.

[14] The histograms of the degree fields (the degree dis-
tributions) for different ˇ are also plotted in Figure 2 (right
panels). For relatively small ˇ, the degree distribution is uni-
modal, and the mean is located near d = 100. A second
peak for d = 200 appears in Figure 2b, where the degree
distribution becomes bimodal, and the maximum degree of
the first peak shifts to slightly smaller values of d. This ten-
dency strengthens in Figure 2c, where the maximum of the
second peak shifts to an even higher degree. For location D,
near L1, about 10% of the grid points have a high degree of
d = 370 (Figure 2d). Also, the clustering coefficient fields
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and the clustering coefficient distribution show the same pat-
tern changes and peak shift with ˇ (see part 2 of the SI and
Figure S1).

[15] The results in Figure 2 can be explained by looking
at the changes in the first few Empirical Orthogonal Func-
tions (EOFs) of the temperature field versus ˇ. The patterns
of the first three EOFs at locations A to D are shown in
Figure S2 (with variances provided in Table S2). Tempera-
ture anomalies are most pronounced in the northern part of
the domain and at the surface. When the variance would be
completely dominated by only one EOF, it is easy to show
that the network is fully connected (see part 3 of the SI), and
hence the degree of each node is maximal. The deviation
maximal degree at each node is hence related to the relative
variance explained by each of the EOFs at this node. When
L1 is approached, the amount of variance explained becomes
dominated by EOF1 (in particular in the deeper ocean), and
hence many nodes in the network will get a high degree and
also a high clustering coefficient.

[16] The results in Figure 2 strongly motivate to use prop-
erties of the degree distribution as early warning indicators
of the approach to the tipping point. Although there are val-
ues of ˇ where the degree distribution is clearly bimodal,
near the tipping point this distribution is changing sub-
stantially and again becomes more unimodal. Hence, the
expectation value Ed of the normalized degree distribution
d/dmax is expected to show a strong shift toward larger values
as L1 is approached. A similar measure Ec is computed from
the distribution of the clustering coefficients, and both will
be used as new indicators of early warning.

[17] In Figure 3, the indicator Ed shows a strong increase
with ˇ when the tipping point is approached (solid black
curve). The same holds for the indicator Ec plotted as the
dashed black curve in Figure 3. As soon as ˇ > 0.14 myr–1, a
new regime in spatial correlations appears where the degree
and clustering distributions become dominated by high val-
ues in the deeper ocean. We also computed both indicators
when only a part of the grid points are used to compute the
degree distribution. The blue (red) curves in Figure 3 arise
when only the northern and southern (top and bottom) grid
points are taken into account to reconstruct the network. The
indicator Ed constructed from the north-south grid points
also smoothly increases with ˇ (and has much better behav-
ior than that for the top-bottom grid) as it captures the high
spatial correlations in the deep ocean.

3.2. Slowly Forced Flows
[18] We next investigated the performance of both indi-

cators Ec and Ed in a transient simulation. Over a period
of 35,000 years, ˇ was linearly increased from 0.05 to
0.17 myr–1 (Figure 4a), and again noise (�0 = 0.1) was
applied to the freshwater flux. When the zonal dimension
of the basin is assumed to be 64ı, this amounts to about
10–3 Sv/1000 yr, which is comparable to other model stud-
ies [Rahmstorf et al., 2005]. A time series of the maximum
value of the MOC (Figure 4a) indicates that the MOC starts
collapsing after about 27,000 years (indicated by the vertical
dashed line in Figure 4) when ˇ approaches L1. At this time,
the actual value of ˇ = 0.142 yr–1, which is slightly larger
than the value of point B in Figure 1a. Note that because
point B is in the multiple equilibrium regime, the MOC can
already decrease substantially under the presence of noise
even before reaching L1.
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Figure 3. Results from the equilibrium flow simulations.
The expectation value Ed (solid) of the normalized degree
distribution (d/dmax) and the expectation value Ec (dashed)
of the distribution of the clustering coefficient versus ˇ. The
black curves are for all grid points. The red (blue) curve
for the degree shows the indicators for a temperature net-
work where only the bottom and top (northern and southern)
boundary grid points of the domain are considered.

[19] Previously suggested early warning indicators of
the transition in this MOC time series are plotted in
Figures 4c–4f. Below we present only the results for a slid-
ing window of 5000 years, but the robustness of the results
with respect to the sliding window (5000–15,000) years was
tested by using the Mann-Kendall trend test [Hamed and
Rao, 1998; Lenton et al., 2012].

[20] In Figure 4c, the (rescaled ) lag – 1 autocorrelation of
the projection of the time series onto the first EOF (degener-
ate fingerprinting) is plotted. Here, we used an aggregation
window of 50 years. The first EOF is generated from results
of the first 5000 years of the simulation, and the lagged auto-
correlation is calculated in a time window of 5000 years. The
coefficient reaches zero indeed near the transition showing
a critical slowdown of the MOC. However, the indicator is
not monotonic and also increases when the MOC is still far
from the transition.

[21] Figure 4d shows the power of the fluctuation func-
tion, as determined by the DFA procedure, using linear and
quadratic detrending. The largest window taken in fitting the
fluctuation function to a power law is 100 years. In most of
the cases, the fitting quality coefficient is close to 1 (perfect
fit), and the typical error in the coefficient is 0.5%. The qual-
ity of the sampling is assessed with respect to fluctuations of
the measure during time. We have checked different orders
of polynomial detrending in the DFA procedure, between 1
(linear) and 4 (quartic); the qualitative behavior is similar.
The average power coefficient is 1.82, 1.85, 1.71, and 1.62,
with respect to the four detrending orders 1–4, and there is
no warning of a transition.

[22] Figure 4e gives the standard deviation of the MOC
record. Each point is calculated using a sliding window of
5000 years with a shift of 200 years; it indeed shows a
steady increase toward the transition, but it is difficult to
set a threshold for an alarm. In Figure 4f, the fraction of
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Figure 4. Results from the slowly forced flow simulations. (a) Time series of the maximum value of the MOC. (b) Transient
change of ˇ versus time from 0.05 to 0.17 myr–1 in 35,000 years. (c) The (rescaled) lag – 1 autocorrelation of the projection
of the time series onto the first EOF. (d) Power of the fluctuation function, as determined by the DFA procedure, using linear
(up marker) and quadratic (down marker) detrending. (e) Standard deviation of the MOC time series shown in Figure 4a.
(f) Fraction of the time spent below the 0.5 percentile of the MOC amplitude. (g) Results from the network-based indicators
Ed (circles) and Ec (squares) for the full network as in Figure 3. (h) Same as Figure 4g but now the kurtosis (Kd (circles) and
Kc (squares)) is plotted. The vertical dashed line indicates the value of ˇ at the tipping point.

the time spent below the 0.5 percentile (estimated based
on the first 5000 years) of the MOC strength is plotted
using the same sliding window as in Figure 4e. This indi-
cator displays a much sharper increase, but it is a rather
ad hoc measure which also depends on a calibration in the
far past.

[23] Finally, the network indicators Ec and Ed are plotted
in Figure 4g and the kurtosis of the degree and clustering
coefficient distributions in Figure 4h. Both are determined
by networks constructed from the full spatial temperature
field using a sliding window of 5000 years with a shift
of 1000 years. Both indicators Ec and Ed exhibit similar
behavior with an increase before the collapse. The kurto-
sis distributions (Figure 4h) are even more clearly showing
a strong increase before collapse. By considering recon-
structed networks for different sliding window lengths, it
was found that the time at which the peak occurs in the
indicators is not sensitive to a sliding window length in
the range 5000–15,000 years. Similar peaks are found in
the standard deviation and skewness of both distributions. Of
all the indicators considered, the interaction network based
kurtosis indicators are least susceptible to cause false alarms
of the MOC collapse.

4. Summary and Discussion
[24] The strength of the Atlantic MOC is currently

actively monitored [Cunningham et al., 2007] with the
motivation that the MOC may rapidly (within a few
decades) change in strength. However, the time series
of the MOC strength such as derived from the RAPID-
MOCHA (Meridional Overturning and Heat Flux Array)

program are certainly too short to be able to apply early
warning indicators based on the slowdown and increased
variance of the MOC [Thompson and Sieber, 2011; Lenton,
2011].

[25] Using an interaction network approach, we have
developed here new indicators which are based on spatial
correlations of the temperature variations in the Atlantic
Ocean. We studied the performance of these indicators by
looking at solutions of a meridional-depth model of the
MOC for which the critical conditions for collapse could be
computed in detail. We showed that the expectation value
of the normalized degree distribution Ed increases steeply
and smoothly when the tipping point L1 is approached. The
explanation for this increase is based on the increased dom-
inance of the first EOF in the variance of the solution in a
large part of the domain. The disadvantage is that the indica-
tor needs data fields as input (instead of single time series),
although a partial set of measurements (for example only
at the northern and southern boundaries) may also result in
adequate early warning indicators.

[26] The results of the paper are applicable to out-
put from general circulation models, where time series of
fields are available. They furthermore show that to apply
them to observations, a good spatial resolution in mea-
surements is desirable. In a potential application to deter-
mine whether transitions in the MOC have been involved
in the Dansgaard-Oeschger oscillations, well-synchronized
records of ocean bottom temperatures are needed. Also, for
the present-day MOC, the results in this paper strongly moti-
vate to monitor the strength of the MOC at a more southerly
location (such as the South Atlantic Meridional Overturning
Circulation (SAMOC) project planned at 30ıS).
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