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Abstract

Integrated Assessment Models of global climate change (IAMs) are an estab-
lished tool to study interlinkages between the human and the natural system.
Insights from these complex models are widely used to advise policy-makers
and to inform the general public. But up to now there has been little under-
standing of how these models can be evaluated and community-wide stan-
dards are missing. To answer this urgent question is a challenge because the
systems are open and their future behavior is fundamentally unknown. In
this paper, we discuss ways to overcome these problems. Reflecting on experi-
ence from other modelling communities, we develop an evaluation framework
for IAM of global climate change. It builds on a systematic and transparent
step-by-step demonstration of a model’s usefulness testing the plausibility
of its behavior. Steps in the evaluation hierarchy are: setting up an evalu-
ation framework, evaluation of the conceptual model, code verification and
documentation, model evaluation, uncertainty and sensitivity analysis, doc-
umentation of the evaluation process, and communication with stakeholders.
An important element in evaluating IAM of global climate change is the
use of stylized behavior patterns derived from historical observation. The
discussion of two examples is offered in this paper.
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1. Introduction

Integrated assessment models (short: IAMs) of global climate change
are an important tool to study human feedbacks and influences on climate
change and mitigation of greenhouse gases. The advantage of these complex
models is that they provide an integrated system perspective. For this pur-
pose, different models are coupled with each other, e.g. a climate model, a
land-use model, an energy model, and a model describing economic growth.
The results of IAMs are being used for advising policy-makers and informing
the global public. Recent examples of publications with contributions from
IAMs are the Special Report on Renewable Energies (IPCC, 2011) or the
World Energy Outlook 2011 (International Energy Agency, 2011). Based on
the results of IAMs, long-term policy plans such as the EU Energy Roadmap
2050 (EC COM, 2011) are formulated; IAMs also provide background in-
formation for international climate policy negotiations. It is therefore very
legitimate to ask how much one can trust these ’big’ models to deliver reli-
able answers and to demand an appropriate communication of assumptions,
references, errors, and uncertainty ranges. This is and has been very much
the concern of the IAM community itself and an ultimate answer has not yet
been found. Up to now there has not been a community-wide understanding
of what validation of IAMs could mean nor are there standards or protocols
on how to evaluate them (Risbey et al., 1996; Parker et al., 2002). The aim
of this paper is to contribute to the emerging discussion in the community by
proposing a definition of evaluation of IAMs as well as a framework for per-
forming evaluation exercises. Such frameworks have been set-up in scientific
engineering (e.g. Sargent (2003, 2010); Oberkampf and Roy (2010)) as well
as in the broader environmental IAM community (e.g. Konikow and Brede-
hoeft (1992); Rykiel (1996); Schneider (1997); Jakeman et al. (2006)). Even
the involvement of non-specialists has been advanced (Voinov and Bousquet,
2010; Krueger et al., 2012).

One could object to such additional efforts by pointing towards common
quality standards in scientific publishing. Beck et al. (1997), however, state
that neither common scientific peer-review processes nor history matching
exercises can sufficiently solve the problem if models are continually growing
in complexity, see also Konikow and Bredehoeft (1992). It becomes more and
more difficult for third parties outside of the modelling teams to scrutinize
their publications with reasonable effort. Given this problem on the one
hand and the relevance of IAMs for the policy-making process on the other
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hand, the central questions are the following: can IAMs be validated? How
is it possible to build trust in their output and structure? How should IAM
results be interpreted? What is a transparent and comprehensible way of
communicating assumptions and uncertainties of these complex models?

Model validation is and has been a controversial issue because it entails
consequences: what if a model’s performance is poor? What are the (op-
portunity) costs of developing evaluation routines and adopting performance
standards? This is a very relevant problem given that the development of
IAMs is strongly driven by policy demand and third-party funded community
projects. However, the strong ties between funding possibilities and applied
research questions that satisfy the demand of a rapidly changing society leave
too little room for work-intensive, formal model validation. Hence, it does
not come as a surprise that validation is not a top priority even though the
demand for it is high.

Up to now, we have implied that an agreement on how to validate IAMs
can be reached and standards can be developed and adopted. This is a brave
assumption as the discussion already gets vivid when it comes to the wording:
is the validation of earth system models impossible from a strict philosoph-
ical viewpoint (Oreskes et al., 1994)? Or is it ”corroboration” (Oderwald
and Hans, 1993) or ”confirmation” (Oreskes et al., 1994; Carolan, 2008)? Is
”evaluation” the better choice, as it is preferred in the climate modelling
community? Barlas and Carpenter (1990) point out that validation of sys-
tem dynamic models ”is inherently a social, judgmental qualitative process”.
Can the evaluation process be named ”validation” because it is ”validation”
that the third parties are expecting? (It would be necessary of course to
explain at the same time what can be expected from a validated IAM.) Such
an approach would be very much in the spirit of Celia et al. (1992) who note
that the ”perception of validation” matters and not the ”semantics”. Oth-
ers, however, would strictly reject this, see Konikow and Bredehoeft (1992).
The authors state that ”emphasizing validation deceives society with the im-
pression that, by expending sufficient effort, uncertainty can be eliminated
and absolute knowledge be attained.” It is, however, not the intention of this
paper to solve the semantic puzzle. We stay with the more neutral term
’evaluation’ throughout this paper.

This paper states that evaluation of IAMs of global climate change should
be understood as a continuous effort of testing whether the model can fulfill
its purpose. Documentation of the model, including transparency about its
shortcomings and area of applicability, are integral to the evaluation process.
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Given the fundamental problem for IAMs which is the lack of real-system
data, evaluation exercises should comprise a variety of tests. Moreover, the
focus should be to assess the plausibility of a model’s explanatory power as
its forecasting power cannot be validated.

The paper is organized as follows: the next section starts with a brief re-
view of challenges for evaluating IAMs, most of which are connected with the
properties of open systems whose future behavior is fundamentally unknown.
This a-priori lack of experimental data adds a further challenge to their eval-
uation in comparison to IAMs in the non-climate context. For these models,
data for comparison sometimes exist or can at least be generated. The discus-
sion is followed in Section 3 with an overview on how validation/evaluation is
defined in different modelling communities and how different aspects relate
to IAMs. The aim is to provide a theoretical background for the discus-
sion of how the evaluation process could be practically organized (Section
4.). In this section different steps of the proposed evaluation hierarchy are
illustrated along with examples. The final section summarizes the paper by
framing action items to the IAM community of global climate change.

2. Challenges in evaluating IAMs of global climate change

2.1. General challenges of dynamic large scale models

In their reviews, Barlas and Carpenter (1990); Barlas (1996) argue that
the paradigm of system dynamic modelling matches the ”relativist/functi-
onal/holistic” philosophy of science as it is impossible to establish formal
objectivity. The authors emphasize that, first, models are being constructed
for specific purposes and any validation method has to be designed around
the model purpose. Second, apart from their predictive capabilities, the
explanatory power of system dynamic models is important. It is not only of
interest whether the model output is right (i.e. matching with observations
from the modelled system), but also that one sees the right results for the
right reasons. The latter is referred to as ”structure validity” in Barlas (1996),
which precedes tests of the output behavior (”behavior validity”).

However, conceptual models in system dynamics modelling are biased by
disciplines as the agreement about the appropriate level of detail is not neces-
sarily given. Economists might prefer a more detailed description of economic
development, while energy engineers might emphasize a higher resolution of
technological processes. This is important because objective criteria on what
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is the correct model view cannot be defined. Third, model results are of-
ten not suitable for statistical testing as output variables are auto-correlated
and cross-correlated. The absence of a single important output variable also
raises the problem of multi-hypothesis testing. Finally, the authors raise the
point that it is impossible to establish an objective significance level.

Beven (2002) starts from the recognition of a common ”pragmatic real-
ism” with the aim to model a system as realistic as possible without too
much worries about a philosophical grounding. The author suggests instead
to acknowledge that environmental models are never true. This leads to a
pragmatic notion of a relativist understanding of the nature of knowledge, see
also discussions following the paper (Beven, 2004). An important principle
is that system events are neither unique nor knowable. Therefore, differ-
ent ”behavioral” representations of the system are possible (equifinality of
models).

In a widely recognized paper, Jakeman et al. (2006) propose steps for de-
veloping and evaluating a larger class of environmental models. The authors
point out that formal falsification and statistical hypothesis testing ”is rarely
possible (or perhaps even appropriate) for large, integrated models”.

Regarding the evaluation of IAMs of global climate change, there are
two more fundamental challenges: they describe systems which are open and
whose future behavior is fundamentally unknown.

2.2. IAMs of global climate change are open systems

In a seminal paper on issues of verification and validation of earth system
models, Oreskes et al. (1994) underline the philosophical argument that the
truth of a proposition can only be proven (i.e. validated) if the system is
closed1. There are several reasons why models can be incomplete (see also
Risbey et al. (1996)). In the following, we discuss this issue in the specific
context of IAMs.

The first reason is already obvious from a practical point of view: due
to its mere complexity, it is impossible to perfectly mimic the universe and
it becomes a matter of delimitation of the system. As Risbey et al. (1996)
argue, this leads to a bias as one has to prioritize what should be integrated
into the model and what should be omitted. Most often the decision is

1An open (i.e. not closed) system is a system where interactions between internal
elements of the system and the system’s environment may happen.
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simply guided by practicability: one implements what is relatively easy to
implement.

Second, fundamental laws and processes of the system are incompletely
known. It must be remembered that IAMs are an attempt to integrate
the ecosphere and the anthroposphere. In particular, the laws governing
human behavior and decision making are largely Terra Incognita and related
parameters are the subject of vivid debates, e.g. see the discussion following
the Stern review (Stern, 2007; Nordhaus, 2007; Tol, 2006; Weitzman, 2007).
The problem of incomplete knowledge is amplified by the fact that IAMs are
exploring the space of possible futures. If we already do not fully understand
historical laws and processes related to human behavior and preferences,
how can we be confident about their future values - let alone their dynamic
patterns? As matter-of-fact, preference parameters in IAMs of global climate
change are often set as constant for a period of 100 years, e.g. discount rates
do not change over time. Given fundamental system changes that occur
at these time scales, this is a very unrealistic assumption. Another Terra
Incognita is the creation and diffusion of knowledge. We simply do not
know how the future will unfold. For example, can it be expected to have a
back-stop technology available in due time for solving the climate problem?
Therefore, IAM modellers seldom have no better choice but to use subjective
rules of thumb and rough approximations. Apart from incomplete knowledge
about fundamental laws of the system, model parameters are also incomplete
as the uncertainty inherent in available data is high, accounting methods
differ, and data series are incomplete for several reasons (see Macknick (2011)
who discuss uncertainty in emission and energy data across various data
sources).

Complexity of the system and incomplete knowledge about its fundamen-
tal laws give rise to variables and models that are laden with interferences
and assumptions. This leads to the introduction of a bias (Risbey et al.,
1996; Carolan, 2008; Rosenberg, 1994). A prominent example can be found
in Risbey et al. (1996) summarizing approaches across disciplines on how
to value human life. A modelling team’s subjective opinion also enters an
IAM when a choice has to be made on how to take the future development
into account; modelling approaches range from inherently myopic to perfect
foresight models.

Furthermore, many non-additive properties are being scaled-up in IAMs.
This concerns fundamental, open questions on the invariance of scales. To
give economic examples: what is the micro foundation of macro-economic
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development? How are the non-homogeneous decisions of households, busi-
ness enterprises, and governments best represented in a model with a global
perspective? What technological detail is needed to capture relevant pro-
cesses? To answer such questions, IAM modellers use different approaches.
For example, there are bottom-up, top-down, and hybrid formulations of
energy-economy models (see e.g. Hourcade et al. (2006) for a review). Fur-
thermore, IAMs of global climate change divide the world into several macro
regions whose input parameters are derived from sub-national or national
data.

Finally, scales can differ across IAM components (Parker et al., 2002).
For example, while important processes in the climate system are very slow,
taking centuries or millennia, important processes in the economy or energy
system are closer to the planning horizon of human beings. In addition,
processes at lower scales are often being omitted, since the typical resolution
of time in IAMs amounts to 1-5 years. Thus, processes that occur on a daily
or monthly basis are ignored despite the fact that the systems are highly non-
linear. The unspoken assumption is that the overall system environment is
a smooth one and equalizing mechanisms prevail that allow the impact of
smaller scales to be neglected.

Example: What is the appropriate level of regional aggregation?

We want to illustrate the scaling problem for the choice of macro regions
in a model. For most IAMs, the choice of aggregation is a mixture of geo-
graphical proximity (e.g. continent based) and similarity in energy and/or
economic conditions (e.g. portfolio of resources or economic power). How-
ever, as Gruebler (2004) points out, taking the world average for analyzing
the development of final energy is misleading, since drivers are substantially
different for developing countries (where final energy demand is governed
by growth in population) and OECD countries (where it is decoupled from
population growth).

The conclusion by Gruebler (2004) can be generalized by asking the fol-
lowing question: what is a useful aggregation of nations to a macro region
given the purpose of an IAM to study climate change impacts and the pos-
sibilities of mitigating greenhouse gas emissions? For most IAMs, Kaya’s
decomposition of carbon dioxide emissions into four main sources (Kaya,
1990) is a central output variable for exploring drivers of greenhouse gas
emissions. An aggregation would then be useful, if important processes are
not neglected. This implies that a regional choice is adequate if the regional
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Figure 1: Western Europe as defined in GEA (2012): GDP per capita (1970-2010) is plot-
ted against population growth. Nations are given by ISO 3166-1 alpha-3. Comparing value
levels and patterns, the region is relatively homogeneous. Thus, the regional aggregate
(bold-faced) is a good approximation. Source of data: ENERDATA.
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Figure 2: Pacific Asia as defined in GEA (2012): carbon intensities of final energy (1990-
2010) are plotted against final energy. Nations are given by ISO 3166-1 alpha-3. The huge
spread of values and patterns across nations is evident. Thus, the regional aggregate has
relatively low explanatory power. Source of data: ENERDATA.

aggregate is a good approximation for nations that contribute most to a
macro region. This refers to level values as well as dynamic patterns. For
illustration, we choose two macro regions as defined in the recent Global
Energy Assessment (GEA, 2012). We select Western Europe and Pacific
Asia. Let us discuss exemplarily two Kaya-factors: GDP per capita for the
period 1970-2010 as a function of growth in population, and carbon inten-
sities of final energy (1990-2010) plotted against final energy development
in that period. By doing so, we test the dependence of the Kaya-factor on
its denominator. For GDP per capita, Fig. (1) shows an example of a quite
homogeneous region; only Turkey stands out among the main contributors.
Looking at the carbon intensities of final energy, Fig. (2) shows on the con-
trary that nations belonging to one macro region can be very heterogeneous
- the variety of dynamic patterns and values across nations is huge. The
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more heterogeneous regions are with respect to an output variable, the more
likely it is that important processes are omitted. In other words, the more
open a system, the lower the explanatory power of a model. Note, that an
appropriate regional aggregation might also shift in time, in particular, when
one of the members dominate a region.

2.3. Future behavior is fundamentally unknown

Another fundamental issue of IAMs of global climate change is the fol-
lowing: we are simply not able to anticipate how the future will unfold. If we
knew how the future would develop, we would adapt our expectations and
subsequently our activities. This would in turn change what was beforehand
considered to be the future. Therefore, empirical data of the system will only
be available in the future and no experiment can be set up to generate them
in advance. If the reference value is not available today, the confrontation
of IAM results with empirical data from the real system is only possible in
retrospect. This however is a dilemma (for all time evolving systems), as
already today we need to assess how much model results can be trusted. In
addition, integrated assessment modellers have to deal with potential changes
in qualitative system dynamics, e.g. by the appearance of new sub-systems
or processes that are currently not existing or are completely unknown.

Fig. (3) underlines the difficulty of projecting what is fundamentally un-
known (see e.g. Smil (2000) among others for a retrospect evaluation of
U.S.A. energy demand forecasts). The figure shows how various projections
of world electricity demand are complying with actual data and, further-
more, how projections have been adjusted with time. Historical data for
electricity demand are coming from ENERDATA and denoted by crosses.
Projections are taken from the World Energy Outlook (WEO), Exxon Mobil
(2012), and Institute of Electrical Engineers Japan (2011). Baseline projec-
tions of the IAMs MESSAGE and IMAGE as used in GEA (2012) are also
included. There are two main observations: first, there was a systematic over-
estimation of world electricity demand by WEO projections (1994-1996) and
an upward correction for 2020- and 2030-projections. Second, the spread
across projections increases with each decade looking further ahead. For
most recent projections, the spread sums up to roughly one fifth of the total
demand by 2040 - which is only three decades from now.

Given the fact that the time perspective of many IAMs is not a few
decades but as much as 100 years into the future, it is obviously useful to
increase efforts on model evaluation and to think about the purpose of IAMs.
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Figure 3: Projections of world electricity demand by WEO (1994-2010), Exxon Mobil
(2012), Institute of Electrical Engineers Japan (2011), and GEA (2012). Historical data
are from ENERDATA. Projections show an over-estimation of electricity demand in the
90s. The spread across projections increases the further the models look into the future.

As the retrospect analysis revealed, anticipation of system shifts has failed
(Smil, 2000) - forecasts simply did not work. As a consequence, integrated
assessment modelling in climate change concentrates on scenario exploration
(if-then-analysis) where relative changes in view of the integrated system are
studied instead of numbers. In other words, the research focus is on the
explanatory power of a model instead of aiming for quantitative forecasts.

3. Aspects of model evaluation

3.1. Evaluation as a continuous effort

If confidence in knowledge about the complex system is only revealed in
a semi-formal process, the evaluation of IAMs becomes a matter of step-by-
step confidence building. This could also be understood as paying tribute to
the ”prolonged nature of model validation” (Barlas, 1996). Such an approach
has the advantage that views of different groups can - indeed have to - be
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integrated. These include, apart from opinions in the scientific community,
the perspectives of stakeholders and external experts as secondary users of
model results. This inclusion means that stakeholder needs can be better
reflected on the one hand and the trust of third parties in the model can be
increased on the other. It underlines that ”usefulness” is an integral part
of evaluating large and complex models - an opinion that is shared among
different modelling communities, e.g. Landry and Oral (1993) for Operations
Research, Sargent (2003); Jakeman et al. (2006) for the broad class of simu-
lation models, Oreskes et al. (1994) for earth system models, and Cash et al.
(2003) for knowledge systems in general. Important dimensions of usefulness
of an IAM are the usefulness of the purpose itself, the manageability of the
model, as well as the usability of given answers.

A second consequence of a scientific discourse characterized by loops and
feedback is that evaluation routines also need to address the process of model
development, see Jakeman et al. (2006). For this purpose, coding etiquette
and guidelines for good modelling practice are constructive. Such formal
parts of model validation, including the exclusion of coding errors and mis-
takes in implementing the conceptual model, are strongly emphasized in
Fisher (2007) and Oberkampf and Roy (2010).

Finally, the evolutionary character of the evaluation process calls for ap-
plying a variety of tests to learn about the model questioning its behavior.
This pluralism of evaluation methods seems the only way to balance the fun-
damental problem that experimental data of the real system do not exist and
that just confirming the historical data by turning the IAM clock back does
not help either. Developing and adopting community standards and, possi-
bly, performance indicators is valuable as a means to increase transparency
and consensus among all stakeholders in this context.

3.2. Connection to a model’s purpose

Linking model evaluation and usefulness, a model’s fitness for purpose
becomes an important element (see Barlas, 1996; Risbey et al., 1996; Beck
et al., 1997; Jakeman et al., 2006; Weyant, 2009, and citations therein).
This requires that the purpose of the model is clearly specified, including
its intended use and group of users. Burton (2003) classify model objectives
by the type of research questions that are asked. ’What is’-questions are
answered by analytical, descriptive models. In consequence, the degree of
realism becomes a focus in evaluation exercises of these models. A second
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class tackles ’What might be’-questions. Here, the objective is not to repro-
duce a real-world-situation but to explore a range of possible, i.e. imaginable,
realizations of the dynamic system. Hence, evaluation becomes a matter of
judging how reasonable different model answers are. A normative element is
added if ’What-should-be’-questions are investigated. As preference choices
are involved, the inclusion of all groups of users (e.g. policy-makers) adds to
the credibility of evaluation exercises. Admittedly, IAMs of global climate
change share characteristics of all three classes, suggesting that an evaluation
framework should be build upon various tests and exercises.

The main evaluation question that needs to be asked is: can we confi-
dently apply the model to deliver a well-grounded answer to the group of
users? For an answer to be well-grounded, three aspects are necessary but
not sufficient. One is that the omission of important processes and phenom-
ena with respect to the intended research questions is kept to a minimum
and the rational for prioritizing is defensible. On the other hand, ”complex-
ity is a threat to construct validity” (Burton, 2003). Therefore, Saysel and
Barlas (2006) suggest a framework to iteratively simplify models as part of
the evaluation procedure. The second aspect concerns the extent to which
this wish-list of important processes and phenomena is actually implemented
in the model.2 Again, the rationale for choosing the level of detail needs to
be scrutinized. These issues are best addressed in a series of workshops in-
volving different groups, including those who are intended to use a model’s
output. The aim of these workshops is to shape a common understanding on
what is captured in the model - or what not. Whereas the focus of the first
two purpose dimensions is on a model’s scientific legitimacy, the third aspect
underlines prominently the intended use of the scientific knowledge. Cash
et al. (2003) emphasize the role of ”credibility” (from a science perspective),
”salience” (fitting the need of users), and ”legitimacy” (integrating different
views).

3.3. Testing the model’s structure and behavior

As the integrated system perspective distinguishes IAMs from stylized
theoretical or empirical models, it is not only of interest what comes out of
the model but also why; in other words, IAMs of global climate change are

2Risbey et al. (1996) summarize three assumptions that IAMs are based on: all relevant
phenomena can appropriately be modelled, a modelling paradigm such as system dynamics
is suitable, and results are policy-relevant.
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in the group of cause-descriptive (white-box) models. This cause-descriptive
claim shifts the focus from only output or behavior evaluation (are the quan-
tities right and accurate?) to testing the plausibility of the model’s internal
structure (is the model’s story right?). However, confidence in the structure
does not guarantee correct results. Hence, structure evaluation tests have
to be followed and complemented by behavior tests. This view is shared by
other communities, e.g. Barlas (1996) suggests having ”technical tests gath-
ered around the theory base of system dynamics”; see furthermore Konikow
and Bredehoeft (1992) as well as Huntington et al. (1982) and Schneider
(1997) stressing the value of ”insights”. In addition, the fundamental prob-
lems of IAMs discussed in the previous section leave no choice but to scruti-
nize the plausibility of the model behavior and their structure for evaluating
them. A change in the focus of evaluation towards plausibility and insights
has strong implications. First, evaluation routines can only assess the ex-
planatory power of an IAM, not its forecasting power. The focus is on tests
that evaluate model structures. Examples are model walkthroughs, behavior
sensitivity analysis, or an analysis of the relationship between variables (see
also Barlas (1996) for a comprehensive list). Second, it is scales, patterns,
and processes that matter, not singular events or a statistical matching with
time series. Third, as research restricts itself to an if-then-analysis, applying
model results without relating them to a reference case is impossible.

Given the complexity of the system, it is useful to build an evaluation hie-
rarchy comprising the complete system, sub-systems, as well as benchmark
cases. This is similar to what Risbey et al. (1996) call ”discipline based”,
”process based”, and ”end-purpose based” assessments. Various diagnostic
tests can be designed to evaluate the structure of the model, its parts, and
their inter-linkages (see Section 4 for examples). Putting these tests in the
context of other IAMs’ behavior enriches the exercise. Useful insights can
furthermore be gained by confronting the causal chain of the model out-
put with historical data or stylized behavior patterns generated from robust
observations. Instead of judging the model on the basis of compliance or
non-compliance, the idea is to explain and defend in a scientific discourse
whether the differences are reasonable or not. Such tests gain momentum
if done systematically, e.g. building on a collection of widely-acknowledged
stylized behavior patterns relevant to the system an IAM aims to describe.
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3.4. Evaluation does not work without documentation and communication

Transparent documentation and targeted communication are crucial to-
wards building trust in the model and its results. The question is therefore:
what kind of information is essential and how can it best be passed on?

The package of essential information should include at least the descrip-
tion of the model (specification of its purpose, the conceptual/mathematical
model, assumptions and sources of data) and a documentation for developers
about implementing and operating the model as well as a documentation for
users of model results (analyst and stakeholders). Blueprints for documenting
a model are an advantage as these make it easier for third parties to filter for
relevant information; supportive are also examples of how model results can
be interpreted or misinterpreted. Furthermore, it needs to be documented
why it is legitimate to use the model results. This can be demonstrated by
documenting the evaluation process (for each research question the model ad-
dresses) and publishing conclusions from performance tests whose credibility
can be increased if they adhere to community-wide standards. For example,
it could become common practice to document reference scenarios (business
as usual, policy baseline, 450 ppm and 550 ppm climate stabilization targets)
in a shared database. A useful format to document the model and the results
of the evaluation process are, e.g., evaluation tables as suggested by Sargent
(2003, 2010) or phenomena identification and ranking tables (Oberkampf and
Roy, 2010), see also Section 4 for an illustration.

R.G. Sargent - a pioneer of model development and validation - also sug-
gests the use of a confidence measure in the evaluation tables. While he
”does not believe in the use of scoring models” (Sargent, 2010), he proposes
ordinal scales to record the confidence in results. Renn and Levine (1991)
see trust as being established if the message is being transmitted ”accurate”,
”objective”, and ”complete” - evaluation in the end also means being ac-
countable for the public (Jasanoff, 2010). The author describes this as a
”three-body-problem” involving ”scientists, scientific knowledge, and com-
mittees translating science into policy relevant forms”. Approaches on how
to organize the involvement of different groups are discussed in the literature,
see e.g. Voinov and Bousquet (2010); Krueger et al. (2012) for reviews. They
range from indirect forms such as the publication of quality criteria (Beck
et al., 1997) or suggestions on how to improve communication of uncertainties
(Budescu et al., 2009) to direct forms such as the use of iterative dialogues
(Parker et al., 2002) and participatory approaches or the inclusion of expert
opinions (van der Sluijs, 2002; van der Sluijs et al., 2005; White et al., 2010).
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In addition to purely informing third parties and considering their views and
opinions, communication in the context of evaluation also serves the purpose
of mitigating misinterpretations or errors by users of model results (Beck
et al., 1997; Brewer and Ley, 2013).

Recently, the stronger involvement of stakeholders in the IAM develop-
ment process is a hot topic in the larger IAM community. A comprehensive
review of the literature is Krueger et al. (2012). They argue that even ”the
technical process of modelling itself can be subject to stakeholder scrutiny
and input of stakeholder expertise, and can lead to the generation of new
knowledge.” At the same time, they acknowledge that ”areas such as climate
modelling are so removed from non-specialist experience that they do not
lend themselves to inputs from non-specialist experts.”

4. A proposal for an evaluation framework

We summarize the discussion above by proposing an evaluation frame-
work for IAMs of global climate change. A main point is that continued
efforts are necessary in order to test a model’s performance. No model can
be once and for all certified as ’valid to use’ since model development is con-
tinuing and step-by-step more knowledge about the system and its behavior
is revealed. While focusing on the explanatory power, the model needs to
be assessed in parts (i.e. its purpose, its input and output, modules and
components) and as a whole. To cope with the fundamental problems in
validating IAMs (repeating: the openness of their systems and the lack of
real system data), the semi-formal evaluation process should build on a plu-
ralism of methods comprising as many different tests as possible (comparison
to historical data and dynamics, inter-model comparison, confrontation with
expert opinions etc.) and involving different parties (incl. non-expert end-
users). IAMs of global climate change passing all steps in such an evaluation
hierarchy are more trustworthy addressing a range of research questions in
compliance with the model’s purpose than those not. The formal result is a
statement of confidence in a model’s usability. Documentation (incl. limita-
tions and gaps) and communication are integral parts of evaluating a model.

We suggest that the evaluation hierarchy for IAMs should comprise of
loops that differ in intensity of transversing them. The full cycle includes
setting up an evaluation framework, scrutiny of the conceptual model, code
verification and model documentation, model performance tests, uncertainty
and sensitivity analysis, documentation of the evaluation process, as well as
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Figure 4: The hierarchy of evaluation exercises comprises of loops that differ in intensity
of transversing them (compare color code of arrows).
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communication to stakeholders (compare Fig. 4). For existing models, the
full cycle may only be performed at larger intervals, whereas the loop from
code verification to evaluation, uncertainty and sensitivity analysis as well as
its documentation should be repeated more often depending on the pace of
model development. It should be pointed out that the proposed hierarchy has
some steps in common with the ten steps of building a model in Jakeman
et al. (2006). The hierarchy in our paper, however, focuses on a specific
class of models, those addressing global climate change. Furthermore, these
models need not to be built up, but are already established. Therefore, some
of the 10 steps are less relevant for our purpose. Additionally, the last step
in Jakeman et al. (2006) ”Model evaluation or testing” needs to be adopted
and extended for the class of models we are looking at. In the following, the
content of the single steps in our evaluation hierarchy are discussed.

Setting up an evaluation framework

A formal agreement should be reached within a team and among the
modelling teams on how to evaluate models and which evaluation exercises
to undertake at what level of frequency. It is important to establish a formal
scoring system ranking the different evaluation steps and exercises in view
of the model’s purpose. The state of art in the community can provide use-
ful guidance on how to design an evaluation hierarchy and a scoring system
for an individual model. The establishment of a scientific working group
for such purposes in the IAMC3 is a promising starting point for developing
community guidance. Useful approaches can also be found in documents
developed within other communities, see e.g. model quality checklists, Ris-
bey et al. (2001), and good practice guidelines, Ravetz (1997). Regarding
concepts and methods in scientific computing in general see Oberkampf and
Roy (2010) among others.

Establishing an evaluation framework requests substantial efforts and re-
sources. First lessons learned from starting this process with the model
REMIND4 are:

• How to finance? Third-party funding can provide resources. It is of mu-
tual interest to stress evaluation as an indispensable part in project pro-

3IAM Consortium, <www.globalchange.umd.edu/iamc>.
4See <www.pik-potsdam.de/research/sustainable-solutions/models/remind>.
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posals. For example, the AMPERE inter-model comparison project5

includes a work package dedicated to advancing methods of model di-
agnostics and validation. The project is furthermore well linked to the
community of IAMs.

• How to get started? Using institutional retreats to brainstorm and
discuss about model evaluation in a group larger than the modelling
team. This allows to include scientific expertise from other modellers
and to link model evaluation to related topics, e.g. model realism,
interplay between research and policy advice, and up-coming research
priorities.

• How to maintain activities? Establishing joint and regular (e.g. quar-
terly) ’model service days’. By dedicating a whole day to tasks such
as code cleaning, model documentation, and/or model evaluation, etc.,
joint responsibilities and group ownership can be re-enforced and col-
lective learning is fostered.

Another idea helpful for getting started to set up an evaluation frame-
work is to document the tacit knowledge of model developers and model
applicants. The aim is to record knowledge that is often lost, e.g. because
people move on to other research topics or institutions. In the REMIND
team, interviews have been conducted asking each team member about her
or his insights on working with the model. Results were fed into a wiki-based
model documentation system. The questions ranged from running the model
to checking and interpreting model results. Another purpose of this exercise
was to make explicit and document parameters and bounds that are based
on rules of thumb of a modeller. Interviewees could also add to a list of tests
that could/should be undertaken if time allowed. They were also asked to
point towards gaps and shortcomings of the model from their perspective.

Evaluating the conceptual model

The evaluation of the conceptual model ideally starts with taking a step
back from actual model implementations. What is needed is a reflection
about a model’s purpose and related overall research questions: Is the model
purpose specified and documented? Is there a joint understanding in the

5AMPERE, <www.ampere-project.eu>.
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Model objective: Qualitative assessment of mitigation options for global climate change

System process Sub-processes Representation in model X

Social & cultural change
Individual behavior not considered, aggregation to macro regions
Social choice representative agents and rationality paradigm,

assuming an exogenous global discount rate

Institutional change
Rules, regulations, law assuming perfect markets and free trade
Policies, government intertemporal welfare optimization,

explicit technology and climate policies

Sudden events
Luck

not accounted for, normal system environment
Catastrophes

Geographic change
Resources, reserves exogenous, coverage of fossils (coal, gas, oil),

solar and wind with regional potentials
Land-use patterns using an emulator (land-use model Y)

Climate change
Global patterns endogenous global mean temperature
Regional patterns e.g. sea level rise not covered

Economic development

Economic growth tuning to exogenous GDP scenarios, calibration
of labor efficiency, endogenous investments

Demographic change tuning to exogenous population scenarios
Structural change specification of urban/rural population, resolving

5 end-use sectors (shares are endogenous)

Energy transition
Change in quantities tuning to exogenous energy demand scenarios
Change in qualities endogenous, 50 transformation technologies incl.
Change in structure endogenous, calibration of base year costs

Technological change
Creation of knowledge single generic, speculative back-stop technology
Diffusion of knowledge learning by doing, no explicit knowledge stock,

technology diffusion driven by relative costs

Table 1: Example of a PIRT documenting relevant system processes and their coverage
by an IAM of global climate change. See also extensions of the sketch for documenting
the evaluation process (Tab. 2).
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modelling team? Has the research focus broadened or shifted? What fol-
lows is an assessment on how well the conceptual model is in line with the
model’s purpose, allowing to address the intended research questions. A sys-
tematic and formalized review is crucial. Useful methods for doing this are
brainstorming exercises and other methods supporting the identification of
gaps and shortcomings of the conceptual model, see e.g. Oberkampf and Roy
(2010, chapter 14), van der Sluijs et al. (2005).

A possibility for a systematic assessment is the use of phenomena iden-
tification and ranking tables (PIRT), see Oberkampf and Roy (2010). The
basic principles can be adopted to suit IAMs. Tab. 1 sketches this idea: Start-
ing with a model’s objective and overarching research questions, a modelling
team (possibly extended by experts and stakeholders) pins down relevant sys-
tem processes. This includes the specification of sub-processes, time scales,
and measurable quantities. A ranking of processes in line with their rele-
vance for the model’s purpose is important. What follows is an assessment
on how these processes are represented in the model, e.g. are they exoge-
nous assumptions, endogenous model results, or processes not covered, etc.?
This allows to identify shortcomings in the conceptual as well as procedu-
ral model and its structure. The table can furthermore be linked to results
obtained from other steps in evaluating the model (see Subsection ’Testing
model structure and behavior’ and the example provided therein).

Code verification and documentation of model

The model code needs to be verified in comparison to the conceptual
model; the numerical solution algorithm needs to be reviewed and tested.
Helpful tools for these purposes are checklists, e.g. Risbey et al. (2001),
and formal coding etiquettes (handling of naming and unit conventions and
commenting, application of four-eyes principle, version control system, online
discussion platforms, etc.).

The model needs to be transparently documented for an internal and
external audience (for the latter see also following sections). The documen-
tation comprises commenting in the code, model description including speci-
fication of its purpose, data, and assumptions, instructions for operating the
model, and archiving data. The IAM community can provide support to
modelling teams by developing coding etiquettes, good-practice guides, as
well as blueprints for model description.

It is a characteristic of IAMs that the model is never finalized; constant
extensions and refinements are implemented to address real world processes.
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System process Stylized behavior pattern Model evaluation & conclusion

Social & cultural change
Empirical findings on extend model for social choice features,
herding behavior e.g. based on contagion models

Institutional change
Role of informal economy, explore market failures, asymmetric
e.g. as share of income knowledge, or myopic behavior

Sudden events Frequency of oil shocks
develop shock experiments,
design of hind casting experiment

Geographic change
Empirical findings on speed test revealed: speed was overestimated,
of land conversion revision of module necessary

Climate change Observation of global warming test alternative climate models

Economic development Speed of urbanization
violated by choice of spatial aggregation,
low confidence in regional results

Energy transition
Distribution patterns coherence with alternative long-term
of energy efficiency projections found

Technological change Speed of technology diffusion
spread across regions unrealistic for
offshore wind, outlier in community

Table 2: Framework to evaluate IAMs of global climate change (expansion of Tab. 1).

A well documented model assists the learning process of modelling by also
showing how a model’s story develops across revisions.

Testing model structure and behavior

The evaluation exercises should target input, output, structure, and be-
havior of the model as a whole and its components. The menu of useful
tests includes information flow analysis, inter-model comparisons, diagnostic
tests, decomposition-analysis of output aggregates, blind-testing with exter-
nal experts (Turing tests), checks against historical patterns and trends, as
well as hind casting exercises. Complementing the tests of the internal model
structure, model results need to be confronted with other sources of experi-
mental data and/or knowledge, preferably with data not used for calibrating
the model. A comprehensive overview on tests of formal model evaluation
is e.g. given in Fig. 1 in Barlas (1996) who starts the evaluation procedure
with testing direct structure and structure-oriented behavior tests followed
by behavior pattern tests. In the following, we briefly discuss selected tests
that seem particularly useful for IAMs.

Model inter-comparison exercises are an important tool to assess model
structure. The Energy Modeling Forum6 initiated a long tradition of such ex-
ercises in the IAM community (Sweeney, 1983). In recent years, community
projects gained popularity fostering in turn the establishment of necessary
infrastructure to carry out such extensive tasks. While most of the studies

6EMF, <http://emf.stanford.edu/>.

22



are science and policy driven, they also serve as a mean to compare and
understand model differences. Model inter-comparison exercises specifically
targeting diagnostics and evaluation are, however, still in its infancy. In these
diagnostic tests, a set of carbon dioxide price trajectories is defined and used
as prescriptions to the models. This practice can be extended by shock or
extreme condition experiments to explore model boundaries and scan the
solution space. Results are particular insightful if model input is harmonized
between participating models. Again, standard diagnostic experiments and
indicators should be agreed on in the community.

Given the lack of future data to compare model results with, patterns and
trends observed in history (stylized behavior patterns) can be used to reveal
implausible behavior in future projections. Two examples are discussed in
the section below, see also Wilson et al. (2012) for a further example. The
value of such confrontations with stylized behavior patterns increases if done
systematically. For this purpose, the PIRT can be extended (see Tab. 2):
System processes and sub-processes are complemented by empirical knowl-
edge about the system. The link to the representation of processes in a model
is thereby established. This offers the possibility to design tests for evaluat-
ing the model. The aim is to assess on the one hand, whether the transition
from history to future projections is smooth. In this way, problems in cal-
ibrating a model’s base year and in tuning a model to exogenous scenarios
can be identified. On the other hand, a quantitative and qualitative judg-
ment about realistic or unrealistic system behavior of the modelled future
is possible. The results and conclusions from the comparison with stylized
behavior patterns can also be included in Tab. 2. Finally, coming up with a
list of stylized behavior patterns and agreeing on it in the community would
increase comparability across the models.

Hind casting is another mean to learn about the plausibility of a model.
In these tests, the clock of a model is turned back (say to 1945) and it is
tested whether the model can reproduce developments in history (say global
energy trends in the last decades of the 20th century). However, being in
line with historical developments does not provide confidence that the model
can also describe the future well. Furthermore, IAMs are designed to carry
out if-then-analysis. The analysis’ set-up includes a baseline scenario (i.e.
the continuation of current trends) and alternative scenarios (i.e. exploring
trajectories of change). Note that there is no assignment of likelihoods to
the scenarios, in other words: the models are not designed for forecasting.

Uncertainty analysis and sensitivity analysis are important tools to access
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the robustness of a model in view of its input data, parameters, resolution
level, and model structure. While uncertainty analysis tries to quantify the
uncertainties in these elements and their propagation by the model, sensi-
tivity analysis aims to attribute the uncertainty in the output to the uncer-
tainties in the input (Saltelli et al., 2008). Sensitivity analysis might help
to encounter unexpected relationships between inputs and outputs, lead to
model simplification, or reveal simple relationships in the story told by the
model and thus supports communication of model results.

Advanced forms of sensitivity analysis are variance-based approaches and
mainly due to Sobol’. Here, one decomposes the output variance with respect
to the input variances (Sobol’, 1993). It is often combined with Monte Carlo
sampling (Sobol’, 2001) of the multi-dimensional input space. Note however,
that the study in the annex of the Stern report, Stern (2007), has been
criticized by Saltelli and D‘Hombres (2010) for its limited parameter space.
This is typically the biggest challenge in performing a sensitivity analysis:
large number of parameters and long run-times severely limit the exploration
of the entire input space. To a very reduced scale, diagnostic runs can operate
as a simplified sensitivity analysis. It should be mentioned that sensitivity
analysis as well as uncertainty analysis of the model structure are seldom
performed. Only few general concepts are available to carry out such a task.
To some extent the different set-ups of the IAMs already give an indication
of uncertainties in the model structure once key inputs and parameters are
harmonized. Results of the analysis of sensitivities and uncertainties can also
be documented by adding a further column to the PIRT, compare Tab. 2.

Example: Evaluation with stylized behavior patterns

We want to illustrate how to evaluate integrated assessment models of
global climate change using stylized behavior patterns in combination with
the framework sketched in Tab. 1 and Tab. 2. We first describe the stylized
behavior patterns as it is observed in historical data. Next, we discuss how
system processes (linked to the stylized behavior pattern) are represented
in the models (input to Tab. 1). This is followed by a confrontation of the
historic plot with the plot obtained from model results. Finally, we draw a
conclusion from the comparison (input to Tab. 2). We choose two stylized
behavior patterns, showing examples for the system processes ”Economic
development” and ”Energy transition” (refer to Tab. 1). As in Section 2, we
use results from GEA (2012).

The idea of using stylized behavior patterns has been developed by Kaldor
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(1961). He refers to ”stylized facts” in the context of building useful eco-
nomic growth models. Kaldor suggested that these models should be able
to reproduce six stylized facts, known as Kaldor’s facts. He defined them as
”broad tendencies, ignoring individual detail” and ”characteristic features of
the economic process as recorded by experience”. On the occasion of their
50th anniversary, Kaldor’s facts have been revisited and updated by Jones
and Romer (2010) (New Kaldor facts). Recently, the concept has been trans-
ferred to complex social systems in general by stating that stylized facts are
”mathematical patterns suggesting some deep order within some of our most
chaotic social systems” (Buchanan, 2012).

The first stylized behavior pattern we discuss is the New Kaldor fact No. 3
(Jones and Romer, 2010). It states that ”The variation in the rate of growth
of per capita GDP increases with the distance from the technology frontier.”
This can be inferred from the smaller inlay in Fig. 5, where average growth
rates (observed across different countries within four decades) are plotted
against the logarithm of GDP per capita in the base year 1960 (refer to
the growth triangle and note the normalization to the technology frontier).
How are the sub-processes ”economic growth” and ”demographic change”
represented in IAMs of global climate change (refer to Tab.1)? In most
IAMs, both are exogenous input. This is also the case for the models used in
GEA (2012), which are tuned to fit exogenous GDP and population scenarios
described as ”median economic development paths ... consistent with global
aspirations toward a sustainable future” (GEA, 2012, chapter 17, p. 1221).
We show in the main plot of Fig. 5 how New Kaldor Fact No. 3 unfolds in the
period 2010-2050 driven by the scenario assumptions. We observe that the
fact is not reproduced as countries show no spread for large distances from
the technology frontier, i.e. at small GDP per capita. As we do not know
how the future unfolds we can not say that this strong convergence bias is
right or wrong. However, in view of historic developments it seems rather
optimistic (e.g. COD moving from a de-growth path to an annual average
growth path of 7 %). We conclude that it would be necessary to develop
alternative GDP scenarios testing the robustness of main findings and the
impact on economic development at the level of regional aggregation.

The second stylized behavior pattern we want to briefly discuss is one of
the most relevant facts of the energy system: economic and energy growth
show an ”overall positive correlation, that is, however, variable over time”
(GEA, 2012, Chapter 1, p. 115). Fig. 6 illustrates this stylized behavior
pattern at the level of primary energy per capita plotted against GDP per
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Figure 5: New Kaldor fact No. 3 states an increased variation in growth with growing
distance from the technology frontier (normalized to USA). Annual average growth rates
of GDP per capita for four decades are plotted against the logarithm of GDP per capita
in the base year. The small inlay shows the stylized historic growth triangle. The main
plot shows projected model results. Source of historical data: Heston et al. (2006). Source
of model data: GEA (2012).
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capita. Historical data are shown at the country level for USA, Japan, and
India (solid lines) and for the aggregation to GEA regions North America -
NAM, Pacific OECD - PAO, and South Asia - SAS (dotted lines). As the
differences between country level data and regional aggregation are similar
in historic data, we conclude that the choice of aggregation is useful in view
of the variables. Contrary to the example discussed above, primary energy
is an endogenous result of models used in GEA (2012). Confronting historic
patterns with projected model results, we observe that the overall positive
correlation is pertained for the regions SAS, NAM, and the world aggre-
gate. However, for the case of PAO primary energy consumption per capita
is rather independent from GDP per capita for a longer period (2020-2050),
whereas there is a strong increase for later decades. We conclude that it is
necessary to have a closer look into this region. The purpose of the exer-
cises would be to reveal the plausibility of the observed deviation from the
stylized behavior pattern and the later sudden change in behavior, e.g. by
supplementing the evaluation with the use of other related stylized behavior
patterns.

Documentation of the evaluation process

Essential is a summary of the blocks that have been carved to build trust
in the model. The summary should include a formal statement on what can
be delivered by the IAM tested and at which level of detail (applicability
domain); gaps are explicitly named. An example for such a framework is the
NUSAP-system (Funtowicz and Ravetz, 1990; van der Sluijs et al., 2005).
We have furthermore discussed the PIRT which can also be used for this
purpose. The structure makes it easier to compare documentation across
models. Also, it is easy to grasp by non-specialists and the folder-like format
of the table is accessible to web-based content-management systems.

It is useful to include some kind of a community-wide accepted perfor-
mance indicator and/or ’objective’ measure. This can lead to a strength-
weakness analysis. The results can be summarized with visualization tech-
niques, e.g. spider-diagrams, kite-diagrams, tables, etc. The ranking (scor-
ing) of different methods is up the prior agreement of a modelling team or
the community.

In this course, models can be categorized in accordance to the outcome
in evaluation exercises. Models taking higher ranks can claim a higher con-
fidence level w.r.t. model evaluation and model transparency. The perfor-
mance of models could become a valuable consideration in the peer-review
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process. For example, it could become a standard in publications to also
provide diagnostic and evaluation indicators that put a single model in rela-
tion to other IAMs. The modelling team (or the community) should agree on
thresholds for models performing poor and models that are below the thresh-
old would be rejected. For example, models with insufficient documentation
should be rejected on this basis. However, in defining the threshold one
should have in mind the statement of Beven ”that it might be dangerous
to exclude models that are consistent with observational data but lead to
unexpected conclusions in prediction” (Beven, 2002).

Communication with stakeholders

A passive element is the provision of an essential information package
supplying sources of model documentation and user guidelines, a summary
of the evaluation procedure, as well as a statement of confidence in the model.
A good practice example to increase transparency is the open source policy
of the models GCAM and DICE, see websites GCAM (2012) and Nordhaus
(2012). Another extremely valuable development is the standardization of
model outputs. Driven by model inter-comparison exercises, standard output
templates for some hundred variables have been developed. An increasing
number of final model output is collected in a community database at IIASA
which is accessible to the public. Useful are also interactive websites for
hand-on exploration of model results and scenarios. An example is the model
simulator of WITCH7.

Dissemination to stakeholders and the public can be actively supported
by face-to-face communication, e.g. discussing examples of how output vari-
ables might be interpreted or misinterpreted. Common practice are the in-
volvement of non-specialist experts and model end-users in project steering
committees (via participation in project workshops and the provision of sug-
gestions to the modelling teams) and the organization of stakeholder con-
ferences to bring project messages across. An example for the inclusion of
experts from other disciplines to review model input data is Bosetti et al.
(2012). In this paper, expert elicitation is used to refine process understand-
ing and data used for representing solar technologies in IAMs. An example
to include domain-experts is the RoSE project8. For a review of concepts

7See <www.witchmodel.org/simulator/>.
8See <www.rose-project.org/consortium>.
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on expert elicitation see Krueger et al. (2012). Inspiration for participa-
tory approaches can be found in Voinov and Bousquet (2010); White et al.
(2010). Kloprogge et al. (2011) is an example for assessing the value-ladeness
of model parameters, assumptions, and the influence of model-end users on
the modelling process.

5. Conclusions

The intention of this paper is to feed the discussion on how Integrated
Assessment Models of global climate change can be evaluated. The main
points are, firstly, that evaluation of IAMs is best understood as a step-by-
step demonstration of a model’s usefulness, in particular the plausibility of
its behavior. This gradual process of performing a variety of tests needs to
be accompanied by an open discourse from which a robust consensus can
crystallize. A transparent documentation and communication is integral to
the evaluation process.

The second point concerns the value of developing community-wide ac-
knowledged standards for performance testing. This would in particular in-
crease inter-subjectivity (Krueger et al., 2012) and enhance transparency. A
predestined forum for developing, discussing, and adopting a joint evalua-
tion framework is the Integrated Assessment Modeling Consortium, IAMC.
A promising step is the plan of establishing a scientific working group for this
purpose. However, such an effort is a matter of years and needs continuous
funding, which is a lesson learned from experience in the climate modelling
community (see e.g. Covey et al., 2003).

Supported by reviewing evaluation aspects in comparison to their under-
standing in other communities, we have proposed an evaluation hierarchy for
IAMs of global climate change. This included a discussion how the process
could practically be organized. From our perspective, action-items are:

• To assign enough resources to evaluation exercises in the budget of
research projects and/or to establish a community fund or program for
this purpose.

• Develop guidelines for good IAM modelling practice covering the evalu-
ation hierarchy, as described e.g. in Fig. 4. Suggestions of community-
wide standard diagnostic and evaluation tests are useful.
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• Discuss and test a list of relevant historical patterns that could be
used to evaluate model structure and behavior and is shared in the
community.

• Design a blueprint for an easy accessible chart summarizing a model’s
weaknesses and strengths found in the evaluation process. The aim is
to set a standard for transparency and comparability across models.

• Discuss what information about model evaluation should be offered to
peer-reviewers in addition.

Although community standards are of immense value, it should be kept
in mind that IAM are entering a Terra Incognita for many research fields. If
our knowledge about the isolated systems is already poor, it is even poorer
for the integrated, complex system. Thus, the development of performance
standards needs to account for the unavoidable trade-off between the indis-
pensable trial-and-error in research and the legitimate request for providing
useful answers to decision makers and the public.
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D.H., Jäger, J., Mitchell, R.B., 2003. Knowledge systems for sustainable
development. Proceedings of the National Academy of Sciences 100, 8086–
8091.

Celia, M.A., Gray, W.G., Hassanizadeh, S.M., Carrera, J., 1992. Validation
of geo-hydrological models: Part i. Adv. Water Resour. 15, 1–274.

Covey, C., AchutaRao, K.M., Cubasch, U., Jones, P., Lambert, S.J., Mann,
M.E., Phillips, T.J., Taylor, K.E., 2003. An overview of results from the
coupled model intercomparison project. Global and Planetary Change 37,
103–133.

32



EC COM, 2011. Energy Road map 2050. Tech-
nical Report. COM(2011) 885 final, available at
http://ec.europa.eu/energy/energy2020/roadmap/index en.htm.

Exxon Mobil, 2012. The Outlook to Energy: A
view of 2040. Technical Report. Retrieved from:
www.exxonmobil.com/Corporate/energy outlook view.aspx.

Fisher, M.S., 2007. Software Verification and Validation - An Engineering
and Scientific Approach. Springer, New York.

Funtowicz, S.O., Ravetz, J.R., 1990. Uncertainty and Quality in Science for
Policy. Kluwer Academic Publishers, Dordrecht.

GCAM, 2012. The GCAM model. Technical Report. Documentation avail-
able at www.globalchange.umd.edu/models/gcam/.

GEA, 2012. Global Energy Assessment - Toward a Sustainable Future. Cam-
bridge University Press. Cambridge UK and New York, NY, USA and the
International Institute for Applied Systems Analysis, Laxenburg, Austria.

Gruebler, A., 2004. Transitions in energy use. Encyclopedia of Energy 6,
163–177.

Heston, A., Summers, R., Aten, B., 2006. Penn World Table Version 6.3.
Technical Report. Center for International Comparisons of Production,
Income and Prices at the University of Pennsylvania.

Hourcade, J.C., Jaccard, M., Bataille, C., Ghersi, F., 2006. Hybrid modeling:
New answers to old challenges. The Energy Journal 2, Special issue, 1–12.

Huntington, H.G., Weyant, J.P., Sweeney, J.L., 1982. Modeling for insights,
not numbers: the experiences of the energy modeling forum. Omega 10,
449–462.

Institute of Electrical Engineers Japan, 2011. Publication on World Energy.
Technical Report. retrieved from http://eneken.ieej.or.jp/en/.

International Energy Agency, 2011. World energy outlook 2011. OECD
Publishing.

33



IPCC, 2011. IPCC Special Report on Renewable Energy Sources and Climate
Change Mitigation. Prepared by Working Group III of the Intergovernmen-
tal Panel on Climate Change [Edenhofer, O., Pichs-Madruga, R., Sokona,
Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P.,
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