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Abstract  

Agriculture is unique among economic sectors in the nature of impacts from climate change. The 
production activity that transforms inputs into agricultural outputs involves direct use of weather inputs 
(temperature, solar radiation available to the plant and precipitation). Previous studies of the impacts of 
climate change on agriculture have reported substantial differences in outcomes such as prices, 
production, and trade arising from differences in model inputs and model specification. This paper 
presents climate change results and underlying determinants from a model comparison exercise with 10 
of the leading global economic models that include significant representation of agriculture. By 
harmonizing key drivers that include climate change effects, differences in model outcomes were 
reduced. The particular choice of climate change drivers for this comparison activity results in large and 
negative productivity effects. All models respond with higher prices. Producer behavior differs by model 
with some emphasizing area response and others yield response. Demand response is least important.  
The differences reflect both differences in model specification and perspectives on the future. The 
results from this study highlight the need to more fully compare the deep model parameters, to 
generate a call for a combination of econometric and validation studies to narrow the degree of 
uncertainty and variability in these parameters and to move to Monte Carlo type simulations to better 
map the contours of economic uncertainty. 
 

JEL Codes: Q10, Q11, Q16, Q21, Q54, Q55  
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Introduction 

Agriculture is unique among economic sectors in the nature of impacts from climate change. Its 

production processes involve direct use of weather inputs (solar radiation available to the plant, 

temperature and precipitation). Climate change alters the weather and therefore has a direct, 

biophysical effect on agricultural productivity. Disentangling the consequences of these productivity 

effects from the other drivers of change, including income, population, and productivity investments of 

the private sector is crucial to formulating agricultural policies and programs that provide for sustainable 

food security. The goal of this paper is to contribute to our understanding of the extent to which the 

differing results represent substantive differences of opinion about how the future might evolve as 

opposed to differences arising in modeling methodologies. 

Previous studies of the impacts of climate change on agriculture have reported substantial differences in 

key outcomes such as prices, production, and trade, arising from differences in model inputs and model 

specification. This paper presents climate change results from a model comparison exercise with 10 of 

the leading global economic models that include significant representation of agriculture. We use data 

from two climate models, 2 crop modeling suites and 10 global economic models. Each crop model uses 

a common set of climate drivers from the climate models. Each economic model uses a common set of 

socioeconomic drivers and agricultural productivity drivers including the crop model outputs. This 

comparison is part of a study undertaken by the AgMIP global economic modeling group to explore the 

underlying determinants of differences in model outputs (See von Lampe & Willenbockel et al, 2013 for 

an overview of the study). This paper examines results from the four scenarios that vary climate change-

related drivers, comparing them to a reference scenario. 
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Climate change in long-term scenarios for agriculture: key 

results in the literature  

A summary of the literature on the effects of climate change on agriculture has witnessed a transition 

from relative optimism to significant pessimism.  In part the transition reflects gradual improvements in 

data availability and improvements in modeling, both biophysical and socioeconomic. But it also 

includes differences in underlying assumptions about adaptation implicit in the choice of modeling 

technique. The conventional wisdom is that models that rely heavily on biophysical, process-based 

modeling are more pessimistic about climate change effects, even when they attempt to incorporate 

adaptive behavior, while models that use more flexible economic functional forms or statistical 

techniques (general equilibrium or statistical models) are less pessimistic.  

Studies in the early 1990s (e.g., Tobey, Reilly, and Kane 1992 and Reilly, Hohmann, and Kane 1994) 

concluded that agricultural impacts of climate change would in some cases be positive, and in other 

cases would be manageable globally in part because negative yield effects in temperate grain-producing 

regions would be buffered by interregional adjustments in production and consumption and 

corresponding trade flows. 

A widely cited 2004 publication (Parry et al. 2004) based its conclusions on more complex modeling of 

both climate and agriculture, using the IPCC’s third assessment results. This report was still relatively 

sanguine about global food production, but with more caveats than the earlier papers: “The combined 

model and scenario experiments demonstrate that the world, for the most part, appears to be able to 

continue to feed itself under the SRES scenarios during the rest of this century. The explanation for this 

is that production in the developed countries generally benefits from climate change, compensating for 

declines projected for developing nations.” (Parry et al. 2004, p. 66). The IPCC’s Fourth Assessment 

Report (AR4) on impacts (IPCC et al. 2007) presents similar findings. 
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The literature that suggests a sanguine future for agriculture, with international trade flows largely 

compensating for regional negative effects, was based on less sophisticated modeling of biophysical 

impacts of climate change on agriculture and use of limited smaller, older set of climate change results. 

It has only been since AR4’s climate modeling results, released in the mid-2000s, that more detailed 

modeling has been possible.   

Nelson et al. (2009) and Nelson et al. (2010) represent recent analyses that combine detailed biophysical 

modeling of individual crop response to climate change at high spatial resolution across the globe using 

climate data from AR4 with a highly disaggregated partial equilibrium economic model of global 

agriculture. They report substantial declines in yields for some crops in key producing countries when 

only climate-specific biophysical effects are included (i.e., holding management practices, varieties, and 

production areas constant).  Depending on assumptions about technical change exogenous to the model 

as well as population and income growth trajectories, and allowing for a range of adaptation responses, 

they report simulated price increases of over 100 percent between 2000 and 2050 for some crops with 

some climate change results. By way of contrast, van der Mensbrugghe et al. (2011) suggest declining 

real prices are a possibility. 

An early literature that looks at the effects of climate change on land rents that uses statistical methods 

is sometimes referred to as Ricardian analysis after the seminal paper by Mendelsohn, Nordhaus, and 

Shaw (1994) based on cross section data for US agriculture in 1982. Papers in this literature essentially 

fit a multivariate regression with indirect measures of productivity such as land values or farm revenue 

on the left hand side and a variety of biophysical and socioeconomic variables on the right hand side. 

Mendelsohn, Nordhaus, and Shaw (1994) claim that the modeling approaches that include biophysical 

process modeling suffer in that “None permits a full adjustment to changing environmental conditions 

by the farmer.” The approach used in this paper for combining biophysical and socioeconomic model 
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addresses this concern. Of course, any statistical approach can only capture effects that are included in 

the data used for the analysis.  The unanswered question is whether out-of-sample projections using 

parameters estimated with this process, which any projection for climate effects in 2050 would be , are 

plausible. See Lobell and Burke 2008 and Lobell, Baldos, and Hertel 2013 for more recent statistical 

approaches to the effects of climate change on agriculture. 

Methods 

To eliminate common sources of model output differences, three types of exogenous drivers were 

provided to each of the modeling teams – GDP, population, and agricultural productivity growth with 

and without the effects of climate change.  Remaining output differences are then due to model-specific 

choices such as functional form, structural parameters such as demand elasticities and area and yield 

responses to price changes, and aggregation methods.2 A reference scenario, called S1, is based on the 

GDP and population values from the Shared Socioeconomic Pathway 2 (SSP2) developed for 

Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5).3 In SSP2, global 

population by 2050 reaches 9.3 billion, an increase of 35 percent relative to 2010. Global GDP is 

assumed to triple between 2010 and 2050. Exogenous agricultural productivity changes were provided 

from the IMPACT modeling suite (Rosegrant and IMPACT Development Team 2012).  The reference 

scenario does not include any effects of climate change on agricultural productivity. 

                                                             

2 An additional source of difference can be the choice of base year and/or calibration data base. 

3 See van Vuuren et al. (2012) and Kriegler et al. (2012) for a discussion of SSPs. The SSP data are available for 

download at https://secure.iiasa.ac.at/web-apps/ene/SspDb.  

https://secure.iiasa.ac.at/web-apps/ene/SspDb
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For the climate change scenarios, outputs from two GCMs4 using the representative concentration 

pathway (RCP) 8.5 from IPCC’s fifth assessment representative greenhouse gas concentration pathways, 

are used as inputs into two crop modelling suites5,6 resulting in 4 scenarios (see Table 1).7 Outputs from 

the crop models become inputs into ten global economic models – six computable general equilibrium 

and four partial equilibrium economic models (see the supplemental information for brief descriptions 

of these models). Remaining differences in economic model results are then due to model-specific 

choices such as functional form and parameters, supply and demand elasticities, calibration datasets, 

aggregation approaches, and optimization methods.  

Although this activity was designed to compare model responses to a climate change shock rather than 

generate plausible estimates of the effects, it is useful to consider how plausible are the results reported 

here. There are three major drivers of climate change effects – the choice of RCP, CO2 fertilization and 

omitted effects of climate change – that influence the plausibility of the results. RCP 8.5 has a radiative 

forcing of over 8.5 watts per square meter by the end of this century, with a CO2 concentration of about 

540 ppm in 2050 compared to a level in the early 21st century of about 370 ppm.8 The use of this RCP 

                                                             

4 HadGEM2-ES (C. D. Jones et al. 2011) and IPSL-CM5A-LR (Dufresne et al. 2013). 

5 The Lund-Potsdam-Jena managed Land Dynamic Global Vegetation and Water Balance Model (LPJmL)  (Bondeau 

et al. 2007) and the suite of crop models included in the Decision Support System for Agricultural Technology 

(DSSAT) software (J. W. Jones et al. 2003). 

6 The climate outputs from the GCMs were bias-corrected and downscaled as part of the ISI-MIP model 

comparison project (Hempel et al. 2013). Climate data for 2000 and 2050 were used to generate yields at ½ degree 

resolution (about 55.5 kilometers at the equator) (Müller and Robertson 2013). 

7 See Moss et al. 2010 for a discussion of RCPs. 

8 http://www.iiasa.ac.at/web-apps/tnt/RcpDb. 

http://www.iiasa.ac.at/web-apps/tnt/RcpDb
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puts these results at the upper end of the effects from the RCPs. However, the GHG concentrations (as 

of early 2013) are closer to RCP 8.5 than the RCPs that result in lower concentrations.9 Hence in choice 

of RCP these results seem plausible.  

CO2 fertilization is especially important for crops such as rice, oil seeds, and wheat that use the C3 

photosynthetic pathway and can partially offset the negative effects of higher temperatures and less 

precipitation. The crop models used a CO2 concentration in 2050 that is equivalent to that in the early 

21st century, approximately 370 ppm. This assumption of a constant CO2 concentration throughout the 

period means that we do not capture the benefits of additional CO2 for these crops and hence overstate 

the negative effects of climate change. Lobell and Gourdji ( 2012) suggest that “A likely scenario in the 

near term is that warming will slow global yield growth by about 1.5% per decade while CO2 increases 

will raise yields by roughly the same amount.” However, this assessment was based on a qualitative 

assessment of results using earlier climate data and crop response modeling and before the recent 

increases in GHG concentrations and so could understate the effect of temperature.  

Finally, both the results considered in the Lobell and Gourdji paper, this analysis, and indeed the bulk of 

literature ignore three effects of climate change that are all negative – increasing tropospheric ozone, 

because the crop models do not include it (Ainsworth and McGrath 2010), increasing biotic stresses 

from a range of pests that will thrive under higher temperatures and more CO2, because there are no 

quantitative estimates of the changes in pest and disease incidence, and increasing variability in weather 

including more extreme events (because none of the economic models included here incorporate 

                                                             

9 The most recent data from NOAA’s Earth System Research Laboratory 

(ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_gl.txt) shows no inflection in the rate of growth of CO2 

concentration. Simple OLS analysis, if anything, shows an acceleration over the last 6 years, notwithstanding the 

financial crisis. This would be consistent with a high radiative forcing trend such as RCP 8.5. 

ftp://ftp.cmdl.noaa.gov/ccg/co2/trends/co2_annmean_gl.txt
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uncertainty) – all of which will reduce agricultural productivity.  Hence, we conclude that, while from the 

point of view of temperature-driven impacts, the climate change shocks modeled reflect upper bound 

estimates from the 5th assessment activities of the IPCC on the climate change impacts on agriculture to 

2050, the omission of other, largely negative factors which will likely depress yields suggest that the 

productivity impacts may not be as extreme as they appear at first blush. 

The process of transforming crop model data to inputs for economic modeling involved three issues – 

deriving yield effects for crops not included in the crop models, aggregating from high resolution spatial 

crop model outputs to lower resolution country or regional units of the economic models, and 

determining yield effects over time.  See Mueller and Robertson (2013) for a detailed discussion of the 

how these issues were managed.  

The end result is four scenarios, dubbed here: S3 to S6, with climate change productivity effects for each 

crop10, conditioned by the SSP2 socioeconomic pathway, on the set of outputs reported by all the 

models. Table 2 reports the exogenous yield increases for selected crops or crop groups (coarse grains, 

oil seeds, rice, sugar, and wheat) and countries (Brazil, Canada, China, India, and the USA) used by all the 

modeling teams except MAgPIE. In the scenario without climate change (S1), the exogenous changes (in 

column 1 of Table 2) arise from investments in productivity enhancing technologies and changes in 

information delivery systems that are not captured in the modeling. These values are taken from the 

IMPACT model’s ‘intrinsic productivity growth rates’ (Rosegrant and IMPACT Development Team 2012). 

Between 2005 and 2050, these productivity increases range from 12 percent for oil seeds in Canada to 

132 percent for coarse grains in India. Across the countries included in Table 2, coarse grain increases 

are greatest and oil seeds the smallest.  

                                                             

10 MAgPIE does not use these exogenous productivity shifters. Instead it incorporates the outputs from the crop 

models directly. 
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Climate change effects are added to (or subtracted from) these exogenous effects. The climate effects 

used in this analysis are almost uniformly negative for the countries reported, with the largest negative 

effects most often found for Brazilian and Indian crops. In a few cases, in the northern parts of the 

northern hemisphere (coarse grains in Canada (S4), rice in China (S5 and S6), and wheat in Canada (S4) 

and China (S3)), climate change results in increased yields over the no-climate change exogenous 

effects. The exception to this general rule is sugar, where the climate change effect is positive in S3 and 

S4 and in India in all scenarios. 

One potential issue is whether either the crop models or the GCMs have a systematic bias in their 

climate change effects. To test this, we calculated the means of the scenarios that employed the same 

crop models (S3 and S4 use LPJmL; S5 and S6 use DSSAT) and differenced them. We followed the same 

procedure for the GCM scenarios (S3 and S5 use IPSL; S4 and S6 use Hadley). The crop model choice 

matters for coarse grains, sugar, and wheat; the DSSAT climate change results are uniformly more 

negative than the LPJmL results. For oil seeds and rice, the crop model results differ but not in a 

common direction. For example, DSSAT results in India are less negative for oil seeds (+0.21 percent 

difference in annual growth rate relative to S1) but more negative for rice (-0.44). The climate model 

results do not appear to have any systematic bias and the differences are relatively small, except for 

Canadian coarse grains and wheat, and Brazilian coarse grains, sugar and wheat, where the crop model 

results using the IPSL climate data show less negative yield consequences than with Hadley climate data. 

Each of the models used the exogenous productivity shocks to alter yield determinants. For the CGE 

models in this study, the shocks were implemented as shifts in the land efficiency parameters of the 

sectoral production functions.11 For the partial equilibrium models, the shocks were additive shifters in a 

                                                             

11 Labor productivity is generated by economy-wide estimates of labor productivity growth—with allowance for 

sector-specific deviations—and land productivity growth is calibrated exogenously to the yield growth assumptions 
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yield or supply equation (see Robinson, van Meijl and Willenbockel (2013) for more discussion on the 

differences between general and partial equilibrium modeling of productivity effects). Changes in crop 

yields are a function of both exogenous and endogenous elements in all models except MAgPIE, where 

there is no exogenous yield change component (see Dietrich et al. (2013) for a discussion of how 

MAgPIE models yield change) and AIM and GCAM where there is no endogenous response of yields to 

price within any agricultural region but global average yield can respond as production shifts to more 

productive agro-ecological zones. 

Conceptually, a negative yield shock reduces supply at the existing price. Area, yield and consumption all 

respond to equilibrate price at a new level. If the analysis is at the world level then net trade cannot 

change. But for individual countries, changes in trade are an additional response option to the yield 

shock. The model responses can be decomposed into their endogenous yield, area, and consumption 

changes with differences in model outcomes determined by their underlying specification of these 

endogenous changes.  

                                                                                                                                                                                                    

derived from IFPRI’s IMPACT model. The PE models do not have the option of including total factor productivity 

changes. There is anecdotal evidence of autonomous changes in farm practices that are not picked up by the GE 

models, but that could neutralize the impact of climate change on productivity of factors other than land in 

agriculture—for example changes in the timing of planting and harvesting. The GE models pick up endogenous 

adaptation that is a result of changes in relative (efficient) prices; i.e., the de facto rise in the price of land (in 

efficiency terms) leads to an increase in the demand for other inputs such as labor and capital; the degree of which 

is determined by the underlying factor substitution elasticities. Nonetheless, the question of how to implement 

exogenous factor productivity remains an open empirical issue that can be treated with additional sensitivity 

analysis (such as applying the shock to agricultural TFP) and through focused econometric research. 
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The yield shock from climate change causes endogenous adjustments in prices, consumption, area and 

yield. We decompose the effects of the climate change shock to identify the relative importance of the 

three adjustment components at the global level – consumption, area, and yield – in the model 

responses.12 Start from the basic equilibrium equation: 

(1) R R RQ A Y≡  

where Q is output, A is area, Y is yield and the superscript R stands for the variables in the reference 

scenario (S1). Now introduce a productivity shock from climate change. The final yield change, SY∆ , can 

be decomposed into exogenous ( )Y∆ and endogenous ( )NY∆  components. The exogenous 

component consists of the climate shock. The endogenous component consists of management 

responses to price changes including changes in input use. 

(2) S R NY Y Y Y≡ + ∆ + ∆ .  

We expect a climate shock to be generally negative ( 0)Y∆ < . The endogenous effect ( NY∆ ), which is 

part of the adaptation to the shock, will partially offset the effect of the exogenous shock.  

The direct impact is the application of the exogenous yield shock to the reference scenario yield YR: 

(3) ( )D R RQ A Y Y= + ∆  

where QD is the initial production effect from the climate change shock. 

Final output after the shock (QS) is: 

(4) ( )S S S S R NQ A Y A Y Y Y= = + ∆ + ∆  

after area, yield and demand adjust to changing relative prices. 

The effect of the initial shock on production 

                                                             

12 To do the decomposition at a regional level, the formula would also need to take into account changes in trade. 
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(5) D R D RdQ Q Q A Y= − = − ∆  

is a positive number for a negative climate shock, i.e. the direct effect of the shock leads to declining 

output. The final term shows that we are applying the exogenous shock (i.e. the exogenous difference in 

yields) just to the reference area.  

The adjustments to the shock at the world level can be decomposed into three effects—changes in 

demand, changes in area, and changes in yields (relative to the shock).13 The following formula captures 

these adjustments: 

(6) ( ) ( ) ( )
2 2

S R S R
D R S S R S R

Demand effect
Area effect Yield effect

Y Y A AdQ Q Q A A Y Y+ +
= − + − + −

 
 

The first term is adaptation via changes in demand; the second is adaptation via area change; the third is 

adaptation via endogenous yield change. The area change is weighted by the average of the reference 

yield and the final yield after the shock, an average of the Laspeyres and Paasche volume indices. The 

yield change is weighted by the average of the initial and final area.  The final term measures the change 

in output derived from the indirect yield changes. Note that the term ( )S R SY Y YX− −  is equal to NY∆

, the endogenous yield response. 

The previous discussion has emphasized the relative responses in consumption, area and yield to the 

climate change shock. To understand the effect on prices, Hertel (2011; 2010) has derived a framework 

that can be used to quantify the links from shock through to price change, though with certain 

restrictions. 

                                                             

13 The decomposition focuses on global averages. The models—being multi-regional—will also generate 

compositional effects that in some cases could reinforce the analysis and in others could compensate. 
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(7) 
D L Y

D E IP
η η η
∆ + ∆ −∆

∆ =
+ +

 

This equation links the change in prices to three exogenous factors and three partial price elasticities. 

The long-run shocks (in the numerator) include aggregate demand, ∆D (population, income, biofuels, 

other), an exogenous land supply shift, ∆L, (urbanization, conservation, etc.) and exogenous yield 

changes Y∆ . The key elasticities are the price elasticity of demand, ηD, the land supply (the area or 

extensification response) elasticity with respect to the agricultural price, ηE, (essentially the land price 

elasticity adjusted for land’s cost share), and the share adjusted substitution (yield or intensification 

response) elasticity of land with respect to the other inputs, ηI. 

The first two elements in the numerator, i.e. an increase in demand and an exogenous reduction in land 

supply, are likely to increase prices for given elasticities. The third element will lower prices—and thus it 

is the combination of the three that determines the sign of the price shift over the long run. 

Given that we are assessing deviations from the baseline brought about by climate change, the 

numerator is only composed of changes to Y∆ , i.e. an exogenous change in yields. The climate change 

impact leads generally to a drop in yields and therefore the direction of the price change will in general 

be positive. 

The size of the response to climate change will be determined by the sum of the elasticities, i.e. the 

more responsiveness in the system, the less impact there will be on price changes for the same shock. 

As the responsiveness parameters become smaller, the price changes grow larger. To the extent the 

relation holds in aggregate, the price response coming from the different models should be a reflection 

of these elasticities, inherent either explicitly or implicitly in all of the models, whether they be PE or GE. 

In other words, there is no theoretical reason why we should observe any systemic differences between 

the two classes of models. 
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Key results: prices, yield and area 

We look at effects on prices, yields, and area individually, and then relationships among these in the 

decomposition analysis. 

Price effects 

We begin by examining the effects of climate change on prices. We use the producer price variable for 

comparison (see Von Lampe et al. (2013) for a discussion of the choice of price variable). We focus on 

five commodities/commodity groups, collectively called CR5 – coarse grains  (predominantly maize in 

most countries), rice, oil seeds (mostly soybeans), sugar (about 80 percent is from sugar cane) and 

wheat – because these commodities make up the lion’s share of global agricultural production, 

consumption, and trade. 

The following discussion focuses on three key points drawn from Table 3 and Figure 1 – prices increase 

relative to the reference scenario across all models, there is significant variation by economic and crop 

model, and there is small variation by climate model. It is important to emphasize that these results are 

percent changes from the 2050 outcomes in each of the models for the reference scenario. There are 

also significant differences in 2005 to 2050 price changes, discussed in the overview paper (von Lampe 

and Willenbockel 2013). 

Figure 1 provides a visual overview of the price results for the individual CR5 crops by scenario – a few 

models have price declines for a few crops in selected scenarios but price increases dominate. The 

GCAM and Envisage models generally have the smallest price increases from climate change and 

MAgPIE the largest. The EPPA model does not generate crop-specific price increases but for its 

aggregate agricultural activity, price increases range from 1.3 to 4.6 percent over the price in 2050 

without climate change.  
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For the CR5 crop aggregate, all models report higher prices in 2050 with climate change than without 

(Table 3). The range of price increases for the CR5 aggregate is from 3.0 percent for S4 in GCAM to 78.9 

percent for S4 in MAgPIE. For all crops other than sugar, all models report a price increase; for coarse 

grains from 1.9 percent to 118.1 percent, for oil seeds from 4.4 percent to 89.0 percent, for rice from 1.5 

percent to 75.6 percent, and for wheat from 2.1 percent to 71.0 percent. Several models report sugar 

price declines in 2050 with climate change in S3 and S4, the scenarios that use the LPJmL crop model. 

See Mueller and Robertson (2013) for a discussion of why the LPJmL sugar results in S3 and S4 are likely 

more appropriate than the DSSAT-derived results. 

In general, the final price effects from the crop models follow the differences in the climate change 

productivity shocks, with LPJmL-based results having smaller price increases than the DSSAT-based 

shocks. For most economic models, the Hadley GCM results in higher prices for the CR5 aggregate than 

the IPSL GCM results. But the differences due to the climate model are quite small (-5.3 percent to 6.8 

percent), except in MAgPIE where the Hadley results are 8.8 percent to 61.1 percent greater than the 

IPSL results. 

If we look at some of the outliers in the context of expression (7), several features distinguish 

themselves. MAgPIE, which has the largest price deviations, has fixed demand and thus the price 

elasticity of demand is 0, thereby magnifying the price impacts of a perturbation in yields. Similarly, AIM 

also tends to have rather high price deviations, and it has near zero land substitution elasticities, low 

demand response, and low input flexibility. 14 

The results raise two related issues that require further research. Assuming the demand response is 

fairly similar across models, with the exception of MAgPIE, how different are the supply responses? (The 

latter include area response and substitutability with other factors (see Valin et al. (2013) for more 
                                                             

14 See Schmitz et al. (2013) on land use for further details. 
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details on the demand results). )  Do these elasticities correspond to long-run responsiveness, or have 

they been calibrated to short- and medium-term responsiveness as hypothesized by Hertel (2011) who 

suggests that such models are overly influenced by the need to generate near-term forecasts (e.g., 

FAPRI, AgLink/Cosimo)? 

Yield effects 

Figure 2 provides an overview of the combined exogenous and endogenous effects of climate change on 

yields. While almost all models have yield reductions relative to S1, the magnitudes differ substantially 

by model. GTEM generally has the smallest negative effects; MAgPIE has the largest number of positive 

effects. MAGNET, GCAM, and GLOBIOM generally have the largest negative effects across all 

commodities. Sugar yields are positively affected by climate change in several of the models in the S3 

and S4 scenarios that use the LPJmL crop model results. 

Table 4 provides a more detailed look at the global average yield effects for CR5 crops. The minimum 

values are relatively consistent across the crops, ranging from -17.1 percent for rice (AIM, S5) to -28.8 

percent for coarse grains (MAGNET, S8). The maximum values differ dramatically. Rice yields in MAgPIE 

for S5 increase 25.6 percent; wheat yields decline by 2.3 percent in GTEM.  

The choice of crop model has a greater effect on yields than does the choice of GCM. But the crop model 

differences are starker for some crops (e.g., coarse grains and sugar) than others. 

Area effects 

Figure 3 provides an overview of crop area change from climate change in 2050 relative to the reference 

scenario (with no climate change) in 2050. Almost all models show an increase in crop area over the S1 

scenario. MAGNET has the largest crop area increases across the scenarios; MAgPIE the smallest for all 

but S4 where GLOBIOM is the smallest.   
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Table 5 provides numerical results of the area changes for the individual CR5 crops. Coarse grains and 

wheat area increase in all the models for all the scenarios, with the largest increases in MAGNET, S6 – 

35.4 percent for coarse grains and 27.4 percent for wheat. Oil seed area increases in all scenarios for all 

models except MAgPIE where it falls slightly in S5 and S6. Rice area declines in GLOBIOM in S3 and S4 

and in MAgPIE in S3 to S5. Sugar area is constant or declines in all models for S3 and S4, and MAgPIE also 

has a sugar area decline in S5. The sugar results are driven by the dramatically different crop model 

assessment of climate change impacts on sugar productivity.  

Decomposing area, yield and consumption responses by model 

Table 6 compiles the decomposition results for the world in 2050 under different aggregations of the 

underlying model simulations. Nine of the 10 models provided sufficient detail to undertake the 

decomposition analysis. Averaging across all scenarios, models, and commodities, area response 

contributes about 44 percent of the adjustment with roughly 17 percent from demand and 38 percent 

from yield. The results are roughly the same for the individual climate change scenarios S3 to S6 but the 

scenarios based on the LPJmL crop model (S3 and S4) have somewhat larger area adaptations than the 

DSSAT-based results (S5 and S6). The commodity-specific decompositions show greater differences. 

Wheat, for example, shows a much larger area contribution on average, and rice a much lower 

contribution.  

Since this decomposition is largely a reflection of the underlying model parameters, it is hardly 

surprising that the largest differences in results occur across economic models – as opposed to across 

scenarios. The demand contribution varies from a low of about 5 percent in FARM and GTEM to a high 

for IMPACT (39 percent) and GLOBIOM (49 percent). Area response is greatest in MAGNET (109 percent) 

and smallest in MAgPIE (-8 percent) where pasture and forest are not allowed to be converted to 
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agriculture. The yield adjustment contribution varies from a low of -19 percent in MAGNET to a high of 

108 percent in MAgPIE.15  

The results in Table 6 can be used to back-out the implicit elasticities for each of the models based on 

expression (7).16 There are some caveats. First, only the relative size of the elasticities can be derived, 

not the absolute values—this is consistent with the conclusions in Hertel (2011). Second, the derived 

supply-side elasticities are not the models’ input elasticities, but the input elasticities adjusted for the 

land share in production.  They also reflect equilibrium elasticities, i.e. not just movements along supply 

and demand schedules, but also shifts in the schedules. Thus if the backed-out extensification (area 

change) elasticity is 1, the input elasticity is 1 times the land share, or 0.2 if the land share is 20 percent. 

Third, the derived elasticities are based on the suite of all four climate and crop model simulations and 

thus reflect an average. Fourth, the Hertel formulas hold for aggregate agricultural production. In this 

paper, we are only assessing the impacts from a subset of global agriculture that accounts for about 70 

percent of global agricultural area. 

Table 7 shows the derived model elasticities. Note that they have been normalized to sum to 1 as the 

formulas only hold for relative elasticities and not absolute levels. As expected the MAgPIE demand 

elasticity is zero, since price does not affect demand in that model. The demand elasticities are also 

small for FARM (0.04), GTEM (0.06), MAGNET (0.10), and AIM (0.12). The partial equilibrium models 

other than MAgPIE all have relatively high demand elasticities.   

                                                             

15 The negative yield response in MAGNET is most likely a compositional effect reflecting a re-allocation of 

agricultural production across modeled regions with different agricultural yields—for example towards Sub 

Saharan Africa and Latin America that have relatively high land supply elasticities in MAGNET. 

16 The formulas are summarized in the Annex and the derivation of the formulas is available from the authors. 
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The extensive margin (area) elasticities differ dramatically, from a low of -0.08 for MAgPIE (in part 

because the version of the model used for this exercise does not allow conversion of pasture and forest 

area to agriculture) to a high of 1.39 for MAGNET.  

The intensive margin elasticities of AIM and MAGNET are negative, relatively low for IMPACT and zero 

for GCAM. AIM allows relatively low levels of substitution of other inputs for land and thus low levels of 

an intensification response when faced with a climate change yield shock. MAGNET’s large area 

elasticities and low substitution elasticities result in compensating factor price effects that result in the 

estimated intensive elasticity being negative.  GTEM, ENVISAGE, and GLOBIOM are towards the other 

end of the supply response, with relatively low land extensification response and higher intensification 

response.  

The fourth column shows the demand elasticity over the sum of the two supply elasticities. The higher 

this value, the greater the importance of demand adjustments to price. GLOBIOM and IMPACT have the 

highest ratios. FARM and MAGNET have the lowest ratios (other than MAgPIE which explicitly does not 

allow demand price adjustments). 

Combining these elasticities with the supply response suggests some of the following considerations for 

parameter evaluation in individual models (keeping in mind the caveats about the estimation approach 

noted above). 

• Demand elasticities for GLOBIOM and IMPACT could be on the high side in the long run, with 

FARM perhaps under-estimating the long-run demand elasticity. 

• AIM, GCAM and MAGNET may be under-estimating the degree of input substitution and over-

estimating the degree of extensive response of land over the long-run. 
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• GLOBIOM and MAgPIE may be under-estimating the price responsiveness of land supply—

though this may be the hardest to categorize over the long run as the regulatory environment is 

likely to have a significant influence on land supply responsiveness. 

• FARM and ENVISAGE are highly responsive, with the latter probably over-estimating both the 

demand responsiveness as well as the flexibility of the production system. 

• Preliminary analysis suggests that four of the seven models have chosen parameters that result 

in low supply and demand responsiveness and this is reflected in the relatively high price 

impacts. 

Figure 4 to Figure 6 below highlight the decomposition for seven models for four of the commodities 

(wheat, rice, coarse grains and oil seeds), pooled over the four climate shock scenarios. 

The figures reinforce conclusions drawn from the discussions above: 

• Adaptation generally relies more on the supply side than on the demand side, where the 

average contribution is 20 percent or less with the exception of GLOBIOM, GCAM and IMPACT. 

There is some evidence of higher demand adjustment on average in the PE models compared to 

the CGE models, as well as more variance in demand’s contribution to adjustment (see Valin et 

al. (2013) for more details on the demand results). One possible explanation is the supply chains 

in the CGE models dampen the transmission of the farm level price impacts at the consumer 

level. 

• By definition, there is a symmetric response between area and yield adjustments—models with 

high area responses (AIM and MAGNET) have low yield responses, and vice versa for the 

remaining models. 

• The figures highlight some significant outliers—area response for MAGNET in S5 and S6 

(mirrored in the yield response), and yield adjustment for rice in IMPACT for S5. 
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• Across the board, all models had very wide bands for the sugar sector (not shown), particularly 

for scenarios S3 and S4, because of the differences in the way that DSSAT and LPJmL model 

sugar responses to climate shocks. 

• The choice of underlying structural parameters differ across the models. MAGNET, AIM, and 

GCAM modelers have chosen parameters that allow area expansion to be relatively easy. For 

the CGE models, the choice of relatively high factor substitution elasticities will see relative 

increases in labor and capital as land becomes dearer, thereby raising yields at the expense of 

land expansion. GLOBIOM demand parameters are the most responsive. Crop-specific supply 

side parameters vary most in AIM, MAGNET, and GCAM. GCAM demand parameters vary most 

across the crops. 

Concluding remarks 

With harmonization of key drivers, model outputs are more consistent with each other than in earlier 

comparisons (see Von Lampe et al. (2013)). For the particular climate shock chosen, all models report 

higher prices for almost all commodities in all regions, with yields down, area up and consumption 

somewhat reduced. But the relative size of the adjustments varies dramatically by model. These 

differences depend on both model structure and parameter choice. For model structure, the CGE 

models explicitly allow factor substitutability which can sometimes result in significant yield response. 

But, in their effort to track bilateral trade flows, these CGE models also use the Armington assumption 

(Armington 1969) which can result in less responsive net trade depending on choice of Armington 

elasticities Within the PE models, GLOBIOM and MAgPIE explicitly optimize land use while the other PE 

models rely on reduced form specifications. 
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Examples of parameter choice decisions affecting outcomes include MAgPIE and GCAM’s choice of 

wholly elastic price elasticities of demand and yield, and AIM, GCAM and MAGNET choices of low values 

for the degree of input substitution and high values for degree of extensive response of land over the 

long-run. All of the models rely on some plausible set of deep parameters (such as demand, land supply 

and factor substitution elasticities, but it must be recognized that many of the parameters have limited 

econometric and/or validation studies to back them up with significant confidence at least not on the 

disaggregated level (both spatial and sectoral) that these models operate on. Moreover, to the extent 

parameters have been sourced from econometric studies, it is unclear to what extent they reflect 

medium term relations rather than the long-term. The results from this study highlight the need in a 

subsequent phase to more fully compare the deep model parameters and to generate a call for a 

combination of econometric and validation studies to narrow the degree of uncertainty and variability in 

these parameters and to move to Monte Carlo type simulations to better map the contours of the 

economic uncertainty. 
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Table 1. Key scenario elements 

Scenario identifier General circulation model  Greenhouse 

gas emissions 

pathway 

Crop model  CO2 atmospheric 

concentration 

assumed by the 

crop models 

 

S1 None None None 350 ppm in all 

periods 

 

S3 IPSL-CM5A-LR RCP 8.5 LPJmL 350 ppm in all 

periods 

 

S4 HadGEM2-ES RCP 8.5 LPJmL 350 ppm in all 

periods 

 

S5 IPSL-CM5A-LR RCP 8.5 DSSAT 350 ppm in all 

periods 

 

S6 HadGEM2-ES RCP 8.5 DSSAT 350 ppm in all 

periods 

 

Notes: LPJml  – Lund-Potsdam-Jena managed Land Dynamic Global Vegetation and Water Balance 

Model, DSSAT – Decision Support System for Agricultural Technology. All GCMs use the greenhouse gas 

emissions pathway RCP 8.5. The crop models assume CO2 fertilization is constant at 370 ppm 

throughout the period of the analysis. Effects of increased ozone concentration, increased weather 

variability, and greater biotic stresses are not included. 
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Table 2. Examples of exogenous annual yield increases in the scenarios, 2005-2050 (percent per year) 

Crop and 
commodity 

S1 S3 – S1 S4 – S1 S5 – S1 S6 – S1 DSSAT-
LPJmL 

Hadley - 
IPSL 

Coarse grains 
Brazil 2.23 -0.30 -0.15 -0.70 -0.68 -0.47 0.09 
Canada 2.19 -0.11 0.12 -0.23 -0.20 -0.22 0.13 
China 2.04 -0.13 -0.11 -0.53 -0.48 -0.39 0.04 
India 2.32 -0.20 -0.28 -0.72 -0.70 -0.47 -0.03 
USA 1.68 -0.31 -0.20 -0.64 -0.82 -0.48 -0.04 
Oil seeds 
Brazil 1.23 -0.42 -0.39 -0.27 -0.27 0.14 0.02 
Canada 1.12 -0.12 -0.01 -0.10 -0.23 -0.10 -0.01 
China 1.50 -0.09 -0.13 -0.06 -0.04 0.06 -0.01 
India 1.38 -0.37 -0.46 -0.20 -0.21 0.21 -0.05 
USA 1.43 -0.24 -0.18 -0.18 -0.26 -0.01 -0.01 
Rice 
Brazil 1.48 -0.30 -0.24 -0.12 -0.19 0.12 -0.01 
China 1.43 -0.07 -0.06 0.04 0.04 0.11 0.01 
India 1.79 -0.18 -0.23 -0.67 -0.61 -0.44 0.00 
USA 1.44 -0.11 -0.09 -0.01 -0.10 0.04 -0.03 
Sugar 
Brazil 1.71 0.35 0.31 -0.44 -0.40 1.71 0.35 
Canada 1.69 0.08 0.06 0.10 -0.03 1.69 0.08 
China 1.65 0.09 0.08 -0.28 -0.25 1.65 0.09 
India 1.12 -0.14 -0.15 -0.54 -0.50 1.12 -0.14 
USA 1.32 0.02 0.01 -0.23 -0.32 1.32 0.02 
Wheat 
Brazil 2.03 -0.43 -0.36 -0.70 -0.46 -0.19 0.16 
Canada 2.29 -0.09 0.29 -0.29 -0.05 -0.27 0.31 
China 1.62 0.03 -0.01 -0.37 -0.31 -0.35 0.01 
India 1.40 -0.20 -0.23 -0.58 -0.47 -0.31 0.04 
USA 1.49 -0.20 -0.14 -0.18 -0.20 -0.02 0.02 
 Source: AgMIP Global Model Intercomparison Project. 

Notes: Positive effects of climate change under RCP 8.5 are indicated in bold. The productivity effects 
reported here are exogenous to the modeling environment but reported values can differ from model to 
model because of model-specific aggregation procedures. The values for S1 are taken from the IMPACT 
model (Rosegrant and IMPACT Development Team 2012). See notes to Table 1 for the key elements of 
the scenarios. 
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Table 3. Scenario effects on world agricultural prices (percent change, S3-S6 results in 2050 relative to 

S1 results in 2050). 

 Model/scenario Coarse grains Oil seeds Rice Sugar Wheat Weighted average of 5 crops (CR5) 
AIM             

S3 5.6 20.4 14.1 14.2 12.7 14.1 
S4 5.8 23.8 17.1 18.0 15.1 16.7 
S5 14.4 17.3 36.1 76.3 31.9 30.9 
S6 17.1 19.1 31.5 65.1 26.4 28.6 

DSSAT - LPJmL 10.1 -3.9 18.2 54.6 15.2 14.4 
Hadley - IPSL 1.5 2.6 -0.8 -3.7 -1.5 0.1 
ENVISAGE             

S3 2.5 11.1 4.2 1.2 2.8 4.2 
S4 2.1 11.6 4.6 1.3 2.7 4.4 
S5 7.1 5.7 4.7 8.9 5.6 6.3 
S6 8.4 7.4 4.3 7.9 4.5 6.4 

DSSAT - LPJmL 5.4 -4.8 0.1 7.2 2.3 2.1 
Hadley - IPSL 0.4 1.1 0.0 -0.5 -0.6 0.1 
FARM             

S3 3.1 14.9 10.2 4.2 5.6 8.0 
S4 2.9 19.2 13.0 5.5 7.2 10.0 
S5 7.5 12.9 18.4 19.5 16.8 14.2 
S6 7.6 12.2 15.5 15.4 11.9 12.0 

DSSAT - LPJmL 4.5 -4.5 5.4 12.6 7.9 4.1 
Hadley - IPSL 0.0 1.8 -0.1 -1.4 -1.7 -0.1 
GTEM             

S3 6.0 23.6 7.8 3.2 9.6 10.4 
S4 6.2 31.2 9.2 3.8 11.6 12.8 
S5 14.6 18.8 9.8 15.7 31.9 17.4 
S6 14.9 18.4 8.7 13.6 23.2 15.2 

DSSAT - LPJmL 8.7 -8.8 0.8 11.2 17.0 4.7 
Hadley - IPSL 0.3 3.6 0.2 -0.7 -3.4 0.1 
MAGNET             

S3 21.5 40.0 19.7 -2.0 16.2 14.6 
S4 17.2 38.9 21.1 -2.1 14.7 13.9 
S5 37.4 27.9 24.5 5.9 29.8 21.8 
S6 43.2 34.5 25.1 8.1 29.0 24.6 

DSSAT - LPJmL 20.9 -8.3 4.4 9.0 14.0 8.9 
Hadley - IPSL 0.8 2.8 1.0 1.0 -1.2 1.0 
GCAM             

S3 3.7 7.8 2.7 -4.4 4.4 3.6 
S4 2.5 7.4 2.7 -3.9 2.5 3.0 
S5 9.7 4.8 1.5 13.1 3.1 6.2 
S6 10.1 6.6 1.5 12.7 2.0 6.5 
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DSSAT - LPJmL 6.8 -1.9 -1.2 17.1 -0.9 3.1 
Hadley - IPSL -0.4 0.7 0.0 0.0 -1.5 -0.1 
GLOBIOM             

S3 23.2 37.8 20.5 -6.1 21.0 21.6 
S4 19.8 34.0 22.4 -6.0 21.9 20.9 
S5 55.7 30.7 14.8 44.9 42.4 35.6 
S6 64.8 44.7 13.6 36.8 30.6 36.7 

DSSAT - LPJmL 38.7 1.8 -7.3 46.9 15.0 14.9 
Hadley - IPSL 2.8 5.1 0.4 -4.0 -5.5 0.2 
IMPACT             

S3 16.5 27.1 11.0 -1.2 14.2 18.7 
S4 14.9 25.1 14.4 1.1 11.0 17.8 
S5 39.6 17.1 17.6 20.8 23.3 22.4 
S6 46.7 22.7 24.0 21.6 23.7 27.3 

DSSAT - LPJmL 27.5 -6.2 8.1 21.3 10.9 6.6 
Hadley - IPSL 2.7 1.8 4.9 1.5 -1.4 2.0 
MAgPIE             

S3 28.9 6.2 12.4 -2.9 10.9 14.3 
S4 118.1 89.0 67.8 7.1 71.0 78.9 
S5 59.8 13.0 34.1 41.0 52.4 33.8 
S6 92.8 42.1 75.6 48.6 69.4 59.7 

DSSAT - LPJmL 2.8 -20.0 14.7 42.6 20.0 0.2 
Hadley - IPSL 61.1 56.0 48.4 8.8 38.5 45.3 
Source: AgMIP global economic model runs, February 2013. See notes to Table 1 for the key elements of 
the scenarios.  
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Table 4. Scenario effects on global average yields of CR5 crops (S3-S6 results in 2050 relative to S1 

results in 2050) 

Model/ 
scenario 

Coarse 
grains 

Oil seeds Rice Sugar Wheat Weighted average of 5 
crops (CR5) 

AIM             
S3 -10.8 -23.2 -12.6 1.3 -12.1 -15.0 
S4 -10.0 -20.4 -13.1 0.2 -9.9 -13.5 
S5 -22.4 -11.3 -17.1 -24.6 -16.2 -18.1 
S6 -24.8 -14.3 -16.1 -23.7 -13.9 -19.3 
DSSAT - LPJmL -13.2 8.9 -3.7 -24.9 -4.0 -4.4 
Hadley - IPSL -0.8 -0.1 0.2 -0.1 2.2 0.1 

ENVISAGE             
S3 -4.5 -10.9 -5.4 -1.1 -4.9 -6.2 
S4 -3.7 -10.4 -5.9 -1.1 -4.5 -5.9 
S5 -12.0 -5.5 -5.8 -14.3 -9.1 -8.6 
S6 -13.6 -6.1 -5.4 -13.2 -7.3 -8.7 
DSSAT - LPJmL -8.7 4.9 0.1 -12.7 -3.5 -2.5 
Hadley - IPSL -0.4 -0.1 0.0 0.5 1.1 0.1 

FARM             
S3 -7.7 -17.3 -8.6 2.8 -8.0 -10.3 
S4 -6.6 -15.5 -9.5 2.1 -7.0 -9.4 
S5 -16.0 -8.0 -9.9 -18.5 -13.5 -12.6 
S6 -17.3 -9.9 -8.9 -17.1 -10.2 -12.7 
DSSAT - LPJmL -9.5 7.4 -0.4 -20.3 -4.3 -2.8 
Hadley - IPSL -0.1 -0.1 0.1 0.4 2.1 0.4 

GTEM             
S3 -2.2 -10.2 -7.0 3.2 -4.0 -6.2 
S4 -1.9 -10.0 -7.9 3.1 -2.3 -5.8 
S5 -8.3 -3.3 -8.2 -14.1 -8.2 -7.5 
S6 -9.3 -4.3 -7.6 -12.8 -5.7 -7.8 
DSSAT - LPJmL -6.8 6.4 -0.4 -16.7 -3.8 -1.7 
Hadley - IPSL -0.3 -0.4 -0.2 0.6 2.1 0.1 

MAGNET             
S3 -12.0 -24.2 -13.0 4.7 -14.6 -14.7 
S4 -9.0 -22.7 -14.0 3.7 -12.5 -13.1 
S5 -25.2 -13.3 -13.4 -21.3 -25.4 -17.3 
S6 -28.8 -16.9 -12.8 -21.7 -21.9 -18.7 
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DSSAT - LPJmL -16.5 8.3 0.4 -25.7 -10.1 -4.1 
Hadley - IPSL -0.3 -1.1 -0.2 -0.7 2.8 0.1 

GCAM             
S3 -11.8 -20.0 -12.7 13.6 -11.7 -11.5 
S4 -7.0 -17.8 -13.5 11.8 -8.6 -8.9 
S5 -23.7 -13.0 -7.7 -26.9 -11.3 -15.1 
S6 -26.4 -18.6 -7.8 -25.4 -9.9 -17.1 
DSSAT - LPJmL -15.6 3.1 5.3 -38.8 -0.4 -5.9 
Hadley - IPSL 1.1 -1.7 -0.5 -0.1 2.2 0.3 

GLOBIOM             
S3 -7.3 -10.7 -9.5 12.7 -9.2 -6.5 
S4 -6.3 -8.4 -7.6 7.5 -8.2 -5.2 
S5 -13.3 -10.3 -4.1 -31.2 -9.4 -12.5 
S6 -19.1 -15.7 -5.8 -28.2 -9.5 -15.4 
DSSAT - LPJmL -9.4 -3.4 3.6 -39.8 -0.8 -8.1 
Hadley - IPSL -2.4 -1.5 0.2 -1.1 0.5 -0.8 

IMPACT             
S3 -9.6 -19.1 -3.1 7.7 -9.5 -6.8 
S4 -9.2 -17.1 -5.9 5.2 -6.6 -6.8 
S5 -20.8 -10.8 -6.5 -20.9 -13.1 -18.1 
S6 -24.2 -14.0 -10.4 -20.1 -12.7 -19.7 
DSSAT - LPJmL -13.1 5.7 -3.9 -27.0 -4.8 -12.1 
Hadley - IPSL -1.5 -0.6 -3.3 -0.8 1.7 -0.8 

MAgPIE             
S3 -2.4 -6.1 9.6 15.4 -16.3 -5.5 
S4 -1.5 -4.8 6.2 15.9 -19.0 -6.3 
S5 -11.7 3.4 25.6 13.6 -11.1 -4.6 
S6 -10.8 8.3 19.8 -7.6 -8.0 -3.7 
DSSAT - LPJmL -9.3 11.3 14.8 -12.6 8.1 1.8 
Hadley - IPSL 0.9 3.0 -4.5 -10.3 0.2 0.0 

Source: AgMIP global economic model runs, February 2013. See Table 2 for the key elements of the 
scenarios. 
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Table 5. Scenario effects on global area of CR5 crops (percent change, S3-S6 results in 2050 relative to 

S1 results in 2050) 

Model/Scenario Coarse grains Oil 
seeds 

Rice Sugar Wheat Weighted average of 
5 crops (CR5) 

AIM             
S3 12.1 25.7 10.5 -2.9 13.2 15.5 
S4 11.1 21.7 10.8 -2.0 10.7 13.6 
S5 28.1 9.9 15.7 26.8 17.3 19.2 
S6 31.7 13.4 13.8 25.5 15.9 21.0 
DSSAT - LPJmL 18.3 -12.1 4.1 28.5 4.7 5.5 
Hadley - IPSL 1.3 -0.2 -0.8 -0.2 -1.9 -0.1 

ENVISAGE             
S3 3.3 7.9 3.5 0.0 3.6 4.5 
S4 2.5 7.2 3.9 0.0 3.0 4.1 
S5 10.2 3.5 3.3 11.6 5.8 6.0 
S6 12.0 4.3 3.0 10.6 4.5 6.3 
DSSAT - LPJmL 8.2 -3.7 -0.5 11.1 1.9 1.8 
Hadley - IPSL 0.5 0.1 0.1 -0.5 -1.0 0.0 

FARM             
S3 8.2 19.0 8.6 -3.0 9.0 11.0 
S4 6.7 16.3 9.5 -2.4 7.9 9.8 
S5 16.7 7.6 9.9 21.9 16.5 13.2 
S6 17.9 9.7 8.7 19.9 12.0 13.0 
DSSAT - LPJmL 9.8 -9.0 0.2 23.6 5.8 2.7 
Hadley - IPSL -0.1 -0.3 -0.1 -0.7 -2.7 -0.7 

GTEM             
S3 2.5 11.4 5.7 -3.5 3.7 5.7 
S4 2.2 11.1 6.4 -3.3 1.9 5.3 
S5 9.4 3.4 6.2 17.0 8.4 7.1 
S6 10.5 4.4 5.6 14.8 5.6 7.1 
DSSAT - LPJmL 7.6 -7.4 -0.2 19.3 4.2 1.6 
Hadley - IPSL 0.4 0.4 0.1 -1.0 -2.3 -0.2 

MAGNET             
S3 13.3 23.7 13.3 -1.7 15.5 16.4 
S4 9.6 22.8 14.6 -0.4 14.1 14.8 
S5 29.4 12.3 16.3 46.2 33.3 24.6 
S6 35.4 17.0 15.1 45.5 27.4 26.3 
DSSAT - LPJmL 21.0 -8.6 1.7 46.9 15.6 9.9 
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Hadley - IPSL 1.1 1.9 0.1 0.3 -3.7 0.0 
GCAM             

S3 12.5 6.5 14.7 -11.4 12.7 10.2 
S4 7.7 4.0 15.7 -10.1 9.3 7.3 
S5 22.6 5.6 8.7 35.9 12.5 14.3 
S6 26.3 8.7 9.0 33.2 11.6 16.2 
DSSAT - LPJmL 14.4 1.9 -6.3 45.3 1.0 6.5 
Hadley - IPSL -0.6 0.3 0.6 -0.7 -2.1 -0.5 

GLOBIOM             
S3 0.2 3.4 0.6 -13.3 6.3 1.7 
S4 -0.4 1.1 -1.4 -9.2 4.8 0.4 
S5 2.9 1.1 -4.5 27.5 5.8 2.5 
S6 9.1 4.5 -2.8 23.0 5.7 5.7 
DSSAT - LPJmL 6.1 0.5 -3.2 36.5 0.2 3.0 
Hadley - IPSL 2.7 0.5 -0.2 -0.2 -0.8 0.9 

IMPACT             
S3 5.1 12.9 2.0 -2.5 5.8 6.7 
S4 5.7 11.5 3.3 -1.6 4.6 6.4 
S5 13.4 5.8 3.6 6.6 8.5 8.6 
S6 16.0 7.9 5.2 6.6 8.5 10.3 
DSSAT - LPJmL 9.3 -5.3 1.8 8.6 3.4 2.9 
Hadley - IPSL 1.6 0.4 1.5 0.5 -0.6 0.7 

MAgPIE             
S3 2.4 6.3 -8.4 -13.3 19.3 5.9 
S4 1.7 4.9 -5.9 -13.7 23.0 6.7 
S5 13.1 -3.4 -20.0 -11.9 12.4 4.9 
S6 12.3 -7.8 -16.1 8.2 8.2 4.0 
DSSAT - LPJmL 10.7 -11.2 -10.9 11.7 -10.8 -1.9 
Hadley - IPSL -0.7 -3.0 3.2 9.9 -0.2 0.0 

 Source: AgMIP global economic model runs, February 2013. See notes to Table 2 for caveats on the 
climate change productivity estimates. 
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Table 6. Decomposition of adjustment to climate shock in 2050 (based on RCP 8.5 as interpreted by two 

GCMs, and constant CO2 fertilization assumed in the crop models), percent 

 Decomposition  Decomposition relative to average 
 Demand Area Yield  Demand Area Yield 
Model-specific results 
AIM 12 73 15  -6 29 -23 
ENVISAGE 17 28 56  -1 -17 18 
FARM 4 57 40  -14 12 2 
GTEM 6 25 69  -11 -20 31 
MAGNET 10 109 -19  -7 64 -57 
GCAM 22 64 15  4 19 -23 
GLOBIOM 49 10 40  32 -34 2 
IMPACT 38 43 19  20 -2 -19 
MAgPIE 
 

-1 -8 108  -18 -52 70 
Scenario-specific results 
S3 17 53 30  0 9 -8 
S4 17 49 34  -1 5 -4 
S5 18 36 47  0 -9 9 
S6 18 40 42  1 -4 4 
Commodity-specific results 
Wheat 11 63 27  -7 18 -11 
Rice 15 21 64  -2 -24 26 
Coarse grains 17 54 30  -1 9 -8 
Oil seeds 28 41 32  10 -4 -6 
Average 17 44 38     
Source: AgMIP global economic model runs, February 2013. 

Notes:  The model-specific results are averaged across all scenarios and four crops – wheat, rice, coarse 

grains, and oil seeds – all equally weighted. In the scenario-specific and crop-specific results, results 

from the 9 models with sufficient detail are weighted equally. In the crop-specific results all models and 

scenarios are weighted equally. The last three columns report the decomposition effects relative to the 

overall average. 
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Table 7. Implicit aggregate model elasticities (normalized) 

 Demand Extensive Intensive Demand/Supply 
AIM 0.12 0.90 -0.02 0.14 
ENVISAGE 0.17 0.32 0.51 0.20 
FARM 0.04 0.67 0.29 0.04 
GTEM 0.06 0.29 0.65 0.06 
MAGNET 0.10 1.39 -0.49 0.11 
GCAM 0.22 0.78 0.00 0.28 
GLOBIOM 0.49 0.12 0.38 0.98 
IMPACT 0.38 0.53 0.09 0.61 
MAgPIE -0.01 -0.08 1.09 -0.01 
AVERAGE 0.17 0.53 0.30 0.21 

 Note: The ‘Extensive’ elasticities relate a price change to a change in area. The ‘Intensive’ elasticities 

relate a price change to a change in yield. The fourth column shows the demand elasticity over the sum 

of the two supply elasticities. 
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Figure 1. Scenario effects on agricultural prices (S3-S6 results in 2050 relative to S1 results in 2050) 

 

Note: Price comparisons based on producer price at the world level. See Table 1 for a description of the 

scenarios. See supplementary information for details. 

Source: AgMIP global economic model runs, February 2013.  
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Figure 2. Scenario effects on global average yields of CR5 crops (S3-S6 results in 2050 relative to S1 

results in 2050) 

 

Note: Area weighted yields at world level. See Table 1 for a description of the scenarios. See 

supplementary information for details. 

Source: AgMIP global economic model runs, February 2013.  
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Figure 3. Scenario effects on global area of all crops (S3-S6 results in 2050 relative to S1 results in 

2050) 

 

Source: AgMIP global economic model runs, February 2013. See Table 1 for a description of the 

scenarios. 
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Figure 4. Demand contribution to economic adaptation 

 

Source: AgMIP global economic model runs, February 2013. 

Note: Demand component of decomposition for the 9 models with sufficient disaggregation for four of 

the commodities (wheat, rice, coarse grains and oil seeds) pooled over the four climate shock scenarios, 

S3 to S6. See Table 1 for a description of the scenarios. Boxes represent first and third quartiles and 

whiskers include all points up to two times the box width. The thick black line represents the median 

value. 
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Figure 5. Area contribution to economic adaptation 

 

 

Source: AgMIP global economic model runs, February 2013. 

Note: Area component of decomposition for nine models with sufficient disaggregation for four of the 

commodities (wheat, rice, coarse grains and oil seeds) pooled over the four climate shock scenarios, S3 

to S6. See Table 1 for a description of the scenarios.  Boxes represent first and third quartiles and 

whiskers include all points up to two times the box width. The thick black line represents the median 

value. 
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Figure 6. Yield contribution to economic adaptation 

 

Source: AgMIP global economic model runs, February 2013. 

Note: Yield component of decomposition for nine models with sufficient disaggregation for four of the 

commodities (wheat, rice, coarse grains and oil seeds) pooled over the four climate shock scenarios, S3 

to S6. See Table 1 for a description of the scenarios. Boxes represent first and third quartiles and 

whiskers include all points up to two times the box width. The thick black line represents the median 

value. 
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