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Abstract
Climate change may pose a high risk of change to Earth’s ecosystems: shifting climatic boundaries may induce
changes in the biogeochemical functioning and structures of ecosystems that render it difficult for endemic plant and
animal species to survive in their current habitats. Here we aggregate changes in the biogeochemical ecosystem state
as a proxy for the risk of these shifts at different levels of global warming. Estimates are based on simulations from
seven global vegetation models (GVMs) driven by future climate scenarios, allowing for a quantification of the
related uncertainties. 5–19% of the naturally vegetated land surface is projected to be at risk of severe ecosystem
change at 2 ◦C of global warming (1GMT) above 1980–2010 levels. However, there is limited agreement across the
models about which geographical regions face the highest risk of change. The extent of regions at risk of severe
ecosystem change is projected to rise with 1GMT, approximately doubling between 1GMT = 2 and 3 ◦C, and
reaching a median value of 35% of the naturally vegetated land surface for 1GMT = 4 ◦C. The regions projected to
face the highest risk of severe ecosystem changes above 1GMT = 4 ◦C or earlier include the tundra and shrublands
of the Tibetan Plateau, grasslands of eastern India, the boreal forests of northern Canada and Russia, the savanna
region in the Horn of Africa, and the Amazon rainforest.
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Climate change is likely to alter the biogeochemical

functioning and structure of ecosystems, and therefore to

Content from this work may be used under the terms of
the Creative Commons Attribution 3.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

affect the ability of plant and animal species to prosper in their
current habitats [1]. Even before changes in the ecosystem are
observed, the global terrestrial biosphere can be committed to
long-term change [2], with potentially severe impacts on the
complex interactions in trophic chains (e.g. between plant and
animal species) [3] and on the ecosystems services provided
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to societies [4]. Furthermore, greenhouse gas emissions can
feed back on the climate [5] through shifts in productivity and
decomposition [6].

Until now, attempts to study the impacts of climate
change on these highly networked complex systems have
taken two broad paths: (1) top-down approaches that utilize
global vegetation models (GVMs) to assess the changes in
large-scale biogeochemical variables such as net primary
product (NPP) or vegetation carbon (Cveg), without explicitly
modelling the impacts on the ecosystem as a whole,
including complex interactions between plants, animals and
disturbances; or (2) bottom-up studies of individual species
or habitats [7, 8], with necessarily limited coverage. Whilst
comprehensive efforts to intercompare GVMs have provided
a detailed picture of the spread in projections of key
biogeochemical variables [9–12], studies that attempt to
interpret these results in terms of impacts on the whole
ecosystem have thus far been limited to single-model
studies [13, 14].

A multi-model study of climate change impacts on
ecosystem functioning at the global scale requires an high
level of coordination between modelling groups. In addition,
a robust methodology is required to measure the relevance
of biogeochemical changes for the complex interactions and
dependences that characterize ecosystems. In this study we
take a first step towards filling this gap. We assume that
changes in the fundamental biogeochemical properties, which
GVMs are well suited to simulate, can serve as proxies
for the risk of more general shifts in these ecosystems. We
argue that such shifts in the fundamental biogeochemistry
are likely to imply transformations in the underlying
system characteristics, such as species composition [15],
and relationships between plants, herbivores and pollinators
[3, 16, 17]. For example, if the productivity of a land area
increases or decreases, the composition of species it carries
will be affected; similarly, prolonged drought or increased
rainfall in an area will cause changes to trophic chains.

Some ecosystem changes induced by climate change
could indeed be regarded as positive, including greater
productivity through longer growing seasons, increases
in nutrient richness, CO2 fertilization and migration into
previously poorly vegetated regions [18–21, 46]. Other
changes could be regarded as detrimental, for example,
reduced vegetation growth, increased limitations from
decreasing soil moisture, increased occurrence of fires, or
increased mortality of saplings. Whether the change is in the
direction of more biogeochemical activity or less, it poses a
risk of restructuring. We therefore do not subscribe to the
common assumption that ‘more growth is better’ from the
perspective of risk to currently existing ecosystems in their
present locations.

Building on significant efforts in the past to compare the
output from global biogeochemical models [12, 11, 10, 9],
we investigate biogeochemical and structural shifts simulated
by seven GVMs, driven by the latest climate projections
from multiple global climate models (GCMs) based on
the representative concentration pathways (RCPs [22]). The
simulations were performed as part of the Inter-Sectoral

Impact Model Intercomparison Project (ISI-MIP), which
offers a consistent, cross-sectoral framework for the study
of uncertainties in climate change impacts at different
levels of global warming [23]. The project framework also
allows for comparison and aggregation of impacts across
sectors [24, 47], which are essential to understanding the
impact of changing land-use patterns on natural ecosystems,
and the competing interests of climate mitigation and food
security [48].

1. Methods

1.1. The ecosystem shift proxy

GVMs are developed to simulate changes in biomass,
carbon turnover, water flows and ecophysiological functional
strategies (woody or non-woody, evergreen or deciduous,
needleleaf or broadleaf etc) on a coarse scale. While changes
in these stocks and fluxes are interesting in themselves, they
do not directly reveal the risk of shifts in ecosystems under
pressure from climate change. Ecosystems are characterized
by complex networks of interactions between species,
communities and their local niches. However, here we suggest
using changes in the biogeochemical state of the vegetated
land surface, as simulated by GVMs, as a proxy for risk of
such change.

Following [15], we argue that any of the following
effects are indicative of risk that ecosystem structures will
be affected: change in functional strategies of the vegetation
present (1V); relative, changes in local biogeochemical
carbon and water stocks and fluxes (c); absolute, local change
in biogeochemical stocks and fluxes with respect to globally
averaged changes in stocks and fluxes (g); changes in the
relative (to one another) magnitude of key biogeochemical
exchange fluxes (b); or change in interannual variability of
biogeochemical stocks and fluxes (S(x, σx)). The variability
term S(x, σx) is a normalized sigmoid function of the ratio
of the respective components to their standard deviation in
the reference period. We use the aggregate of these effects,
based on the biogeochemical quantities listed in table S3
(where ‘S’ refers to the supplementary material, available
at stacks.iop.org/ERL/8/044018/mmedia), as a proxy for the
risk of ecosystem shift, 0 [15]. The multiple dimensions are
first normalized using a sigmoid function, and then combined
according to

0 = [1V + cS(c, σc)+ gS(g, σg)+ bS(b, σb)]/4. (1)

Each of the components c, b and g is constructed by first
considering a set of biogeochemical fluxes and stocks, which
are combined into a state vector for each grid cell, at each
point in time, and then comparing the state vector for the same
grid cell at a given time with that of a reference period. In
the case that a GVM does not model changes in vegetation
composition, the vegetation composition change component
of the metric (1V) is not included in the calculation of
0, resulting in an increased weighting of the other three
components (c, b and g). A comprehensive description of the
proxy can be found in [15].
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Our correlation of 0 to risk of ecosystem change makes
use of a space-for-time evaluation (i.e. using the difference
between contemporaneous, but geographically separate states
as a substitute for different points in time for the same
location; see figure S1, available at stacks.iop.org/ERL/8/
044018/mmedia). In the absence of both a well-founded
theory of global-scale ecosystem changes under climate
change, and a sufficient density and duration of instrumented
test sites, space-for-time can give an indication of the degree
of difference between ecosystem states implied by a given
value of 0 [25]. We do not attempt to correlate 0 fully to
risk of ecosystem change, but consider two thresholds for
moderate and severe risk (0 = 0.1 and 0 = 0.3 respectively),
chosen in view of the space-for-time analysis.

Comparison of two identical vegetation states produces
0 = 0, whereas a replacement of a biome by a completely
different biome produces a Gamma of nearly 1 (e.g. 0 =
0.98 for a change from rainforest to semi-desert) [14].
Analysis shows that when global vegetation modelled by a
GVM (here, LPJmL) is mapped into 16 major biomes, the
difference between any two of these biomes is never smaller
than about 0 = 0.1 [14], which is the value characterizing
the difference between closely related, but different biomes,
e.g. the difference between a temperate coniferous and a
mixed forest. Hence, we designate 0 = 0.1 as a substantial,
but still moderate risk of shifts in ecosystem properties.
Most between-biome differences are larger, with 0 = 0.3
characterizing, for example, the difference between a boreal
evergreen forest and a temperate broadleaved deciduous
forest (0 = 0.32), or a warm wood- and shrubland and a
tropical seasonal forest (0 = 0.31). Since these biomes are
substantially different, we designate changes of 0 > 0.3 as
severe risk of ecosystem change. All other between-biome
differences studied produce larger 0 [14]. For example,
between a temperate grassland and Arctic tundra 0 = 0.57;
between warm, woody savannah and a tropical rainforest
0 = 0.51; and between temperate and tropical vegetation
0 > 0.5. The table in figure S1 provides a comprehensive
listing of 0 values between different biomes and is based on
calculations performed using the LPJmL model [14]. It should
be noted that a number of factors may combine to produce a
particular value of 0; the examples given should be used as an
illustrative guide only.

In order to calculate 0 for each year, we calculate changes
to the quantities listed in table S2 (available at stacks.iop.
org/ERL/8/044018/mmedia) by comparing the running mean
over a 30-year period centred on the year of interest and
the average for the period 1980–2009, which is taken to be
the baseline state of the ecosystem. The 30-year window
ensures that year-to-year variability does not dominate the
signal, favouring long-term shifts in the basic ecosystem
properties. In addition, it allows for the required quantification
of changes in the variability of the considered variables.
Simulations were performed for the time frame 1980–2100.
Where a contributing variable of 0 was not supplied by
a model (see table S3), it was left out of the calculation.
Where no dynamic vegetation composition was modelled,
this component was not included in the calculation and the

other components (carbon and water stocks and fluxes) were
scaled up accordingly (i.e. in equation (1), 1V = 0 and the
factor in the denominator is 3). The risk of ecosystem changes
is presented at different levels of global mean temperature
change (1GMT, compared to 1980–2009 levels, which are
in turn approximately 0.7 ◦C above pre-industrial levels),
thus contributing to the discussion about targets for limiting
climate change.

1.2. Model simulations

This study reports results from seven GVMs, forced by
the bias-corrected ISI-MIP climate data set [23] on a
0.5◦ × 0.5◦ grid (JeDi and JULES were simulated on a
1.25◦ × 1.85◦ grid) for four RCPs, with and without variable
atmospheric CO2 concentration. The bias correction method
maintained the climate sensitivities of the GCMs (absolute
change in monthly mean temperature and relative change in
precipitation and other climate variables), whilst adjusting
the absolute mean monthly climate variables to statistically
match a historical data set. The method also corrects the
daily variability of all climate variables to statistically match
the observational data set. A detailed description of the bias
correction method can be found in [26].

Each GVM performed a spin-up separately for each
GCM, with the aim of bringing carbon and water pools into
equilibrium for 1950 climate conditions. This spin-up was
performed by recycling de-trended climate fields simulated
by each GCM over the period 1950–1980 (JULES performed
a single spin-up using HadGEM2-ES data). The length of the
spin-up was determined individually according to the needs of
each model. A CO2 concentration of 280 ppm was adopted for
the period until the year 1765. From 1765 CO2 concentration
was increased according to historical data until 2006 [27]. The
atmospheric CO2 concentration for 2006–2100 is prescribed
by the four representative concentration pathways ([22] RCP
2.6, RCP 4.5, RCP 6.0 and RCP 8.5) used to drive the GCMs.
Table S3 gives details of the model runs performed by each
GVM in combination with the GCMs, as well as 1GMT for
the period 2070–2099 compared to the 1980–2009 for each
climate scenario. Further description of the climate data set
can be found in [23].

The GVMs and their main characteristics are summarized
in table 1. The 0 proxy was calculated using all available
variables from each model. Four of these models (LPJmL,
Hybrid, JeDi and JULES) simulate the changing vegetation
composition due to changing climate and atmospheric
conditions, albeit with unique classification of plant types
into clusters (see the supplementary material for a full listing,
available at stacks.iop.org/ERL/8/044018/mmedia). For JeDi,
the vegetation changes, denoted 1V , were not used to
calculate 0, since the large number of growth strategies
considered were not easily categorized as plant functional
types, as required by 0. For the three models that provided
dynamic vegetation composition (see table 1 for more details),
0 values were additionally calculated ignoring the 1V
component (results shown in the supplementary material), in
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Figure 1. The ecosystem component that individually results in the largest 0 value according to the multi-model median. The blue, red and
orange colours denote the dominance of the water, carbon flux and carbon stocks components of 0 respectively. The intensity of the colour
indicates the magnitude of the median of the dominant component. On 41% of the global naturally vegetated land surface carbon fluxes are
the dominant component of 0. Grey cells have <2.5% vegetation cover according to the GVMs, and white cells have <50% natural
vegetation cover. Only the RCP 8.5 scenario for the HadGEM2-ES climate data for the year 2084 (2070–2099) is used here.

Table 1. Basic properties of participating ecosystem models.

Dyn. veg. Perma-frost Fire N cyc. Resolution Remarks Reference

JeDi 3 — — — 1.25◦ × 1.85◦ 1V not used to calculate 0 [29]
SGVM — — 3 3 0.5◦ × 0.5◦ Competition within but not between PFTs [30, 31]
VISIT — — 3 — 0.5◦ × 0.5◦ No N limitation of photosynthesis. Fixed

1850 land-cover
[32]

JULES 3 3 — — 1.25◦ × 1.85◦ All spin-up with HadGEM2-ES data [33, 34]
Hybrid4 3 — — 3 0.5◦ × 0.5◦ [35]
LPJmL 3 3 3 — 0.5◦ × 0.5◦ No N limitation of photosynthesis [36, 37]
ORCHIDEE — 3 — — 0.5◦ × 0.5◦ Fixed 1850 land-cover [38, 39]

order to limit the inconsistency in comparing these two classes
of models.

In contrast to the coupled climate–land-surface modelling
intercomparison as part of CMIP5, in this exercise the
entire global surface was assumed to be covered by natural
vegetation only (i.e. no anthropogenic land-cover), resulting
in output of only climate driven rather than land-use-change-
driven vegetation composition and biogeochemical changes.
In this way we separate the pure climate impact from the
extensive impacts of changing human agricultural practices
and urbanization and focus on the vulnerability of natural
ecosystems. For the two models where agricultural pastures
was part of the default setup (ORCHIDEE and VISIT), results
for the naturally vegetated portion of each cell were scaled
up to ‘fill’ the cell. For display purposes, cells with <50%
natural vegetation cover (based on the MIRCA 2000 data set
of irrigated and rainfed crop areas [28]) are not shown on the
world maps (coloured white). However, for the aggregation
of the total land surface at risk of ecosystem change, all grid
cells with >2.5% actual vegetation cover according to the
GVMs are considered and weighted by the fractional area
of natural vegetation. For grid cells where actual vegetation
cover <2.5%, no 0 is calculated (coloured grey in the world

maps) and the cells are not included in the aggregation
calculations.

2. Results and discussion

2.1. Drivers of change

We quantify the risk of ecosystem change using the ecosystem
shift proxy 0 described in [15]. In order to understand
the drivers of the risk of ecosystem change, we first
consider the relative contribution of changes to carbon
stocks, carbon fluxes, water fluxes and vegetation composition
changes (where available). This is done by calculating 0 as
given in equation (1) for each GVM only for the chosen
biogeochemical or vegetation properties. An example of the
results are shown in figure 1, where the colour denotes
the dominant component of 0 in 2084 for the median
of the ecosystem-model ensemble for all RCP 8.5 GCM
runs, and the intensity of the colour denotes the magnitude
of that component (see also figures S13–S15, available at
stacks.iop.org/ERL/8/044018/mmedia). It should be noted,
that these results do not represent the output of any one
GVM, and that results across the GVMs vary both in
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Figure 2. Fraction of global natural vegetation (including managed forests) at risk of ecosystem change as a function of global mean
temperature (left panels) and time (right panels) for the JeDi (left) and JULES (right) dynamic global vegetation model driven by the
HadGEM2-ES global climate model. Results are shown for small (0 ≥ 0.1, circles) and severe (0 ≥ 0.3, diamonds) shifts. The colours
represent the different RCPs used to drive the climate model. Good agreement of results at different levels of global warming demonstrate
that results are independent of the emissions scenario. Similar plots for all ecosystem models and GCMs can be found in figure S8
(available at stacks.iop.org/ERL/8/044018/mmedia).

magnitude and spatial distribution. In most cases, changes
to carbon fluxes between ecosystem and atmosphere (red
colours in figure 1) mainly drive the risk of ecosystem change,
which arises from the climate sensitivity of photosynthesis,
respiration and plant water-use efficiency to atmospheric CO2
concentrations increases. Steady increases with 1GMT in
net primary production across all models except Hybrid, and
total vegetation carbon across all models, is driven largely by
CO2 fertilization of photosynthesis [46]. This is confirmed
by the reduced risk of ecosystem shift when atmospheric
CO2 levels are held constant at present-day levels (see figures
S2–S4, available at stacks.iop.org/ERL/8/044018/mmedia).
This difference is more pronounced at low temperatures
(e.g. LPJmL projects 5% natural vegetation at risk of severe
ecosystem change with fixed, present-day CO2 compared to
16% with changing CO2 concentration at 1GMT = 2 ◦C)
compared to high temperatures (27–32% in both cases for
LPJmL at 1GMT = 4 ◦C). The Amazon is an exception,
where changes to water fluxes and carbon stores also play
a prominent role in most ecosystem models (see figures
S13–S15). For ORCHIDEE changes in water fluxes dominate
in the far northern latitudes and for both ORCHIDEE and
VISIT, changes in water fluxes also dominate the region in
and around the Democratic Republic of the Congo.

No cells are dominated by vegetation change (1V ,
green) since four of the seven GVMs considered do not
include dynamic vegetation composition changes. However,
vegetation changes dominate 0 for some regions of the
northern Boreal forests according to the three models with
dynamic GVMs. Even when only these three models with
dynamic vegetation are considered, only 4% of the land
surface is dominated by vegetation changes (see figure S14),
most notably due to shifts in the Boreal treeline northwards
in Canada and Russia, greening in the Sahel, and transitions
between grass and shrub biomes in western Russia and eastern
India. The relatively small contribution of 1V to the overall

value of 0 is further confirmed by the 15% reduction in
land surface at risk of severe change when the vegetation
component of 0 is accounted for. However, comparison of the
solid and dashed (with and without1V respectively) curves in
figure 3 shows this effect does not result in a systematic offset
between those models with dynamic vegetation and those
without. Furthermore, figure S7 (available at stacks.iop.org/
ERL/8/044018/mmedia) shows maps of 0 for one scenario
run (HadGEM2-ES RCP 8.5), where 0 is calculated without
(top) and with (bottom) the 1V component. There does not
appear to be a qualitative difference in the pattern of risk of
ecosystem change, whilst there is a slight tendency for the
0 values to be higher when 1V is not included, possibly
resulting from a slower response of vegetation composition
than biogeochemical ecosystem properties.

2.2. Global risk of ecosystem change

In order to assess the global risk of ecosystem change
under different warming scenarios, we calculate the fraction
of natural vegetation globally (by surface area) where the
risk of ecosystem shift exceeds the moderate or severe
threshold (0 ≥ 0.1 and 0 ≥ 0.3 respectively) as a function
of 1GMT. We emphasize that the use of a single proxy
may mask compensatory changes in its different components
and information on processes that cause the change in 0,
but the aggregation facilitates evaluation and intercomparison.
We find that 1GMT is a reasonable proxy for the regional
climate changes that drive shifts in the biogeochemical
processes represented in the GVMs. In figure 2 the fraction
of global natural vegetation at risk of change for the
different RCP pathways is shown for single GCM–GVM
combinations. Each point represents a comparison between
the biogeochemistry of the 30-year period centred on the
year shown and the baseline conditions (1980–2009). The
0 pathway is clearly dependent on the emissions scenario
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Figure 3. Fraction of global natural vegetation (including managed
forests) at risk of severe ecosystem change as a function of global
mean temperature change for all ecosystems models, global climate
models and RCPs. The colours represent the different ecosystems
models, which are also horizontally separated for clarity. Results are
collated in unit-degree bins, where the temperature for a given year
is the average over a 30-year window centred on that year. The
median in each bin is denoted by a black horizontal line. The grey
boxes span the 25th and 75th percentiles across the entire ensemble.
The short, horizontal stripes represent individual (annual) data
points, the curves connect the mean value per ecosystem model in
each bin. The solid (dashed) curves are for models with (without)
dynamic vegetation composition changes. JeDi is plotted as a
dashed curve since the vegetation change component of 0,1V , was
not used to calculate 0. 0 values greater than 0.3 are interpreted as a
risk of severe ecosystem change.

in the plot against time. However, when plotted against
1GMT, the results are relatively independent of the RCP
scenario (see also figure S8, available at stacks.iop.org/ERL/
8/044018/mmedia), despite the strong effects of elevated CO2
concentrations and potential inertia in the system.

RCP 2.6, for which the climate and atmospheric CO2
concentrations flatten out and slightly decline after 2050,
is an exception to the RCP-independent ecosystem-model
response, where the natural vegetation land area at risk of
change continues to increase despite no further temperature
rise (see also figure 1 in [23] and figure S8). This result
suggests that adjustment of the ecosystem lags behind the
changing climatic conditions, reflecting the long residence
time of carbon stocks [2, 40]. This effect, manifested as a
sharp up-turn in the fraction of natural vegetation at risk of
change once 1GMT ceases to rise, is more pronounced for
the 0 > 0.1 curves, where slowly adjusting carbon stocks
are sufficient to push 0 over the small changes threshold.
Furthermore, the fall-off in atmospheric CO2 concentration
in RCP 2.6 results in a net CO2 flux from vegetation to
the atmosphere, despite only moderate climate change [41],
which also registers as an increase in 0 through increased
net primary production and ecosystem to atmosphere carbon
flux. One could also suspect that inherently slow adjustment
of vegetation composition plays a role, however the results in
figure 3 exhibit no systematic offset between those models
with and without (solid and dashed curves respectively)

dynamic changes to vegetation composition, suggesting that
vegetation changes are not the main driver of these changes.

According to the multi-model ensemble depicted in
figure 3, where results from all scenario combinations of
RCP and GCM are included in the calculation, the median
fraction of natural vegetation at risk of severe ecosystem
change approximately doubles between 1GMT = 2 and 3 ◦C
(from 13% (8%–20%) to 28% (20%–38%); bracketed values
are inter-quartile ranges). However, agreement on the extent
of natural vegetation at risk of severe change across the
models is limited to a monotonically increasing trend as
a function of 1GMT. JULES projects the lowest fraction
of naturally vegetated land area at risk of severe change,
partially resulting from only small changes in vegetation
composition compared to Hybrid and LPJmL. The highest
projection comes from Hybrid, which probably results from
lower mortality rates, especially in the northern latitudes,
and significant reduction of vegetation carbon in the Amazon
due to increased vapour pressure deficits arising from heat
stress [46]. At lower temperatures significant uncertainty
arises from both the GCM forcing and the GVMs, whereas at
higher temperatures (where there are fewer available climate
scenarios) the ecosystem models dominate the uncertainty
budget (see also figure 5).

2.3. Regional pattern of risk of ecosystem change

The spatial distribution of sensitivity of the biosphere to
global warming is investigated in figure 4 using the median
1GMT at which 0 first exceeds the severe change threshold
(0.3) across all GVMs for RCP 8.5. Together with the
far northern boreal forests of Canada and Russia, some
regions of the tundra and shrublands of the Tibetan Plateau,
where warmer winters result in longer growing seasons,
are projected to be at risk of severe change as early as
1GMT ≈ 1.5 ◦C. By 1GMT ≈ 3 ◦C, the savannah regions
in the Horn of Africa, along with large boreal forest regions
across northern Canada and northern Russia, the Amazon
forest and the grasslands of south-eastern India are projected
to be at risk of severe change.

However, individual maps of 0 for each GCM–GVM
combination reveal large differences in the spatial distribution
and intensity of ecosystem shifts (see figure S9–S12 for a
full set of world maps, available at stacks.iop.org/ERL/8/
044018/mmedia). In general, the uncertainty in the spatial
distribution of risk of severe change coming from the GVMs
is greater than from the GCMs (see section 2.4). For example,
the projections of changes in the savannah region in the
Horn of Africa range from little to small change for JeDi
with the HadGEM2-ES RCP 8.5, to values above 0.3 for
LPJmL for the same climate forcing. Projections of the spatial
extent and magnitude of 0 in the Tibetan Plateau also vary
significantly across the GVMs, despite a similar projection
of global land fraction at risk, ranging from widespread,
severe change for SGVM for IPSL-CM5A-LR RCP 8.5,
through to only small risk of ecosystem change according to
ORCHIDEE for the same forcing. These regional differences
highlight the importance of such analysis to identify where
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Figure 4. Median 1GMT (averaged over a 30-year window), across all ecosystem models and RCP 8.5 climate runs (ensuring that all runs
reach 1GMT = 4 ◦C), at which the ecosystem is projected to first be at risk of severe change (0 > 0.3, during the period 1994–2084). Each
pixel is coloured according to the median temperature across all RCP 8.5 GCM runs above which severe ecosystem change is projected. In
the case that a severe change is not experienced, pixels are coloured grey. Where fractional vegetation cover is less than 2.5%, pixels remain
white. Where more than half the models do not cross the 0 = 0.3 threshold, pixels are coloured grey. White cells have either <50%
naturally vegetated land surface according to [28] or <2.5% vegetation cover. The spread in the value of 0 arising from GCMs and
ecosystem models is shown in figure 5.

the differences in process implementation across the GVMs
lead to the greatest discrepancy in projections of ecosystem
change. Global aggregations such as reported in figure 3
should therefore be treated cautiously, as they can obscure the
fact that these global values arise from significantly different
spatial distributions of change.

2.4. Model agreement and uncertainty

At1GMT = 4 ◦C (reached only using RCP 8.5; see table S3),
the uncertainty in 0 arising from the GVMs is on average
approximately twice as large as the uncertainty arising
from the GCMs (shown as the standard deviation in 0

across GCMs and GVMs in the top and bottom panels
of figure 5 respectively). The standard deviation across the
ecosystem models is particular high in south-eastern North
America, Turkey, south-east Australia, the Tibetan Plateau,
south-east India, Canada and southern South America. In
many of these regions, LPJmL and Hybrid project relatively
large changes in vegetation composition, which cannot
be mimicked in those models without dynamic vegetation
composition. Additionally, differences across impact models
are considerably more pronounced at 1GMT = 4 ◦C
compared to 2 ◦C (see figure S16, available at stacks.iop.org/
ERL/8/044018/mmedia), in line with the conclusions drawn
from figure 2. Major differences in the behaviour of stomatal
conductance in response to vapour pressure deficit may
contribute to spread in the ecosystem models, in particular
in tropical forests. Mortality is also handled differently across
the models, which contributes to the factor of two difference in
carbon residence times across the models [46], and contributes
particularly strongly to the uncertainty in 0 projections in
the northern latitude boreal forests. In addition, the shifts
in this region are driven strongly by the response, among

other processes, of water-use efficiency to atmospheric CO2
concentration, which is shown in figure S3 (available at
stacks.iop.org/ERL/8/044018/mmedia) to vary greatly across
the ecosystem models. Despite these differences in the
magnitude of 0, at 1GMT = 4 ◦C approximately 60% of
all combinations of ecosystem model and GCM project 0 >
0.3 across the northern Amazon forest, southern India and
the Tibetan Plateau (see figure S17 for the percentage of
model runs agreeing on 0 > 0.3 at different levels of global
warming, available at stacks.iop.org/ERL/8/044018/mmedia).

Uncertainty in the projections of risk of ecosystem
change arising from the GCMs dominates the Sahel region,
where the median temperature at which the median 0 first
exceeds 0.3 is 2.5 ◦C < 1GMT < 3.5 ◦C and water fluxes
dominate 0 (see figure 1). 0 in the monsoon region of India is
also dominated by uncertainty arising from the GCMs, where
the relative change in discharge compared to present day is
also projected to increase by over 30% based on multi-model
projections conducted as part of ISI-MIP [49]. It is interesting
to note that very few of the regions of projected risk of
severe ecosystem change correspond to regions projected to
get drier under climate change. This most likely arises from
the increased water-use efficiency of plants under elevated
atmospheric CO2, which help to counter this effect.

2.5. Biodiversity hotspots

In many cases, the regions projected to be threatened by
severe ecosystem change at 1GMT > 2 ◦C coincide with
regions that harbour exceptional biodiversity according to
‘The Global 200’ (compiled by [42] and comprising 142
terrestrial regions, see figure S18, available at stacks.iop.org/
ERL/8/044018/mmedia). This set of regions was selected by
analysing patterns of biodiversity to identify distinctive and
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Figure 5. Spread in 0 across GCMs (top) and ecosystem models (EM, bottom) at 1GMT = 4 ◦C for the RCP 8.5 runs. The EM (GCM)
values are calculated by averaging the standard deviation over all GVM (GCM) runs around the mean for each GCM (GVM) at each pixel.
Figure S16 (available at stacks.iop.org/ERL/8/044018/mmedia) shows the spread for 1GMT = 2 ◦C. White cells have <50% naturally
vegetated land surface according to [28] and grey cells have <2.5% vegetation cover.

irreplaceable biomes and biogeographic realms, whilst relying
on the discretion of the authors to make a final selection. The
assessment accounts for species richness and endemic species,
as well as unusual ecological or evolutionary phenomena and
rarity of global habitats. Regions of overlap between projected
risk of severe ecosystem changes and regions of exceptional
biodiversity are myriad, including the montane grass and
shrublands of the Tibetan Plateau Steppe and the Kamchatka
Taiga and Grasslands in north-eastern Russia. Several moist
forest regions also overlap with regions of projected severe
change, including the Guayanan Highland Moist forests and
Amazon forests, and the moist and dry forests of north-eastern
India. The Cerrado woodlands south-east of the Amazon
basin, constituting one of the largest savanna forest complexes
in the world, coincide with an area where the median projects
risk of severe ecosystem changes at 3 ◦C < 1GMT < 4 ◦C.
In a similar temperature range, the Acacia Savannas in the
Horn of Africa and the Northern Australian and Trans-Fly
Savannas also overlap with model predictions of risk of severe
ecosystem shifts.

2.6. Response to regional temperature and precipitation
changes

On the regional scale, we can relate 0 to local changes
in precipitation and temperature patterns. Taking the much-
studied moist Amazon forest as an example [43, 44],
in figure 6 we plot the percentage of ecosystem models
that agree on a risk of moderate (left) and severe (right)
ecosystem change in the Amazon region for each year of
each combination of RCP and GCM. Unlike in [45], where
a strong trend in the plant functional type composition
change with both regional precipitation and temperature
change was projected, no trend is visible here. Note that
relative precipitation changes here are limited to ≤20%. The
strong trend in agreement with increasing regional absolute
temperature change is most likely driven by increased
vegetation carbon stocks due to CO2 fertilization effects
(see figure 1 and [46]). It is also important to note that 0 is not
only a measure of dieback or greening (although both Hybrid
and LPJmL project a decline in Amazon rainforest trees [46]),
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Figure 6. Percentage of models that project a risk of small (left) and severe (right) ecosystem change as a function of relative regional
precipitation change and absolute regional temperature change in the Amazon forest. 0 is averaged over the same region as the temperature
and precipitation changes. Each point gives the percentage of models that project a small or severe risk of change in a given year. The
individual plots for each ecosystem model are shown in figure S15 (available at stacks.iop.org/ERL/8/044018/mmedia).

but rather of the aggregated biogeochemical biomes changes.
A similar approach to regional analysis of ecosystem shifts
could be extended to develop regional ecosystem impact
functions, facilitating inclusion of risk of ecosystem change
in globally aggregated and sectorally integrated models.

3. Conclusions

The balance of carbon and water fluxes and stores, together
with vegetation composition, help to define the unique
biogeochemical conditions of an ecosystem. In this study
we have presented a summary of a multi-model, global
investigation of the risk of climate change driven changes
in these properties, which we have interpreted as risks
of ecosystem shifts at different levels of global warming.
The seven participating ecosystems models report a broad
range of projections under future climate change scenarios,
both in terms of the spatial distribution of changes, as
well as their magnitude. Large discrepancies in both the
globally aggregated level of risk of ecosystem change, and its
geographical distribution arise from the diversity of processes
implemented and their sensitivities to climate changes
and increasing atmospheric CO2 concentrations, where the
uncertainty is dominated in most regions by the uncertainty
arising from the GVMs rather than the climate input. Despite
the large uncertainty in results, the model ensemble agrees
on an increasing risk of severe change globally under all
warming scenarios considered, with a doubling in the median

naturally vegetated land surface area at risk of severe change
between 1GMT = 2 and 3 ◦C (compared to 1980–2010).
Therefore, this study represents an important first step
towards multi-model, multi-scenario assessments of the risks
of ecosystem shifts under climate change. However, further
investigation is required to understand the full extent of impact
of biogeochemical shifts on highly networked ecosystems.

A more concrete projection of the regions at greatest risk
of ecosystem change and the inherent uncertainties requires
greater consistency across the models in the biogeochemical
processes represented, and in particular a careful treatment of
the response of these processes to elevated atmospheric CO2

concentrations. Studies such as presented in [46] where it is
shown that discrepancies in residence times across the models
is the major contributor to differences in vegetation carbon
across the model ensemble, are essential contributions to our
understanding of the risks posed to ecosystems by climate
change. Representation of dynamic vegetation composition
changes in all models, and expansion of the study to include
other models that already include these changes, would
also provide for a more consistent informative multi-model
approach. Identification and reduction of individual sources
of uncertainty are thus necessary steps towards a better
understanding of ecosystem changes due to climate change,
and towards addressing urgent questions about the impact of
climate change of Earth’s ecosystems and the human societies
that depend on them.
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