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Abstract

We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic
network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit
measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of
noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a
manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield
complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logic.
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Introduction

Realization of logic functions in different physical systems is one

of the key questions that commands widespread research interest

in science and engineering. Universal general-purpose computing

devices can be constructed entirely from NOR/NAND logic gates

[1,2]. It is particularly interesting to investigate if systems of

biological relevance can also yield logic outputs consistent with the

truth tables of different logic functions (see Table 1). Biological

systems are capable of stochastic resonance[3–6], a process in

which a small signal is amplified due to the presence of an

appropriate level of noise, leading to the possibility of a biological

system performing robust noise-aided logic operations in response

to weak input signals.

A new idea in this direction uses the interplay between noise

and nonlinearity constructively to enhance the robustness of logic

operations. Namely, in an optimal window of noise, the input-

output characteristics of a logic gate is reproduced faithfully. This

phenomenon is termed Logical Stochastic Resonance (LSR) [7–12].

Specifically, in LSR we consider the state of a nonlinear system

when driven by input signals, consisting of two randomly

streaming square waves. It was observed that the response of

such a system shows a remarkable feature: in an optimal band of

noise, the output of the system, determined by its state, is a logical

combination of the two input signals in accordance with the truth

tables of fundamental logic operations.

An important motivation for further studying LSR stems from

an issue that is receiving widespread attention currently. The

number of transistors in an integrated circuit has approximately

doubled every year in accordance with Moore’s law. The rapid

shrinking of computing platforms with smaller power supplies has

brought with it problems of smaller noise margins and higher error

rates. Namely, as computational devices and platforms continue to

shrink in size, we encounter fundamental noise that cannot be

suppressed or eliminated. Hence an understanding of the

cooperative behavior between a device noise-floor and its

nonlinearity plays an increasingly crucial role in paving the way

for smart computing devices. In this direction, LSR indicates a

way to turn potentially performance degrading noise to assist the

desired operation. Further, it is of far reaching interest to obtain

analogous behaviour, not merely in human engineered physical

systems, but also in systems of chemical and biological relevance,

in order to explore the information processing capacity of

naturally occurring systems where noise is ubiquitous.

Since the idea of LSR was first introduced [7], several systems

implementing and displaying LSR have been found. To begin

with, the basic electronic realizations of simple bistable potentials

were reported [7,8]. Subsequently, noise-aided reprogrammable

Table 1. Logic Table.

Input Set (I1,I2) OR AND NOR NAND

(0,0) 0 0 1 1

(0,1)/(1,0) 1 0 0 1

(1,1) 1 1 0 0

Relationship between the two inputs and the output of the fundamental OR,
AND, NOR and NAND logic operations. Note that the four distinct possible input
sets (0,0), (0,1), (1,0) and (1,1) reduce to three conditions as (0,1) and (1,0) are
symmetric. Note that any logical circuit can be constructed by combining the
NOR (or the NAND) gates [1,2].
doi:10.1371/journal.pone.0076032.t001
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logic gates have been implemented with noisy nanomechanical

oscillators [12], chemical systems [12] and optical systems [13,14].

Most recently, in the context of biological systems, theoretical

ideas have been proposed [15–18] on the implementation of LSR

in a synthetic genetic network [19]. Now, in this work, we will

provide experimental realizations of these ideas in an electronic analog

of a noisy synthetic gene network. Specifically then, we will

investigate the possibility of obtaining reliable logic outputs, and

explicitly demonstrate the pivotal role of noise in the optimization of the logic

performance in this circuit. Further, we will show that the system is

easily changed from AND/NAND logic to OR/NOR demon-

strating potential for re-programmability [15,16]. Our results will

thus provide verification and further understanding of noise aided

logic in systems that are of considerable importance in biology.

Since understanding the intracellular processes in a network of

interacting biomolecules is difficult, an alternative approach has

been started recently [20], to design artificial genetic networks to

derive desired functional behaviors. One important early design is

a clock using three genes inhibiting each other in a cyclic order

[21]. Taking into account the standard chemical kinetics for

expression, degradation and inhibition, a dynamical system model

was proposed where the repressor-protein concentrations and

mRNA concentrations were expressed as dynamical variables.

Another design is a synthetic genetic toggle-switch network [22]

whose potential for noise-aided logic operation is investigated here.

The significance of using both numerical simulation and

electronic circuits to model a potential synthetic genetic network

is two-fold. Firstly, the numerical and circuit methods provide

different imperfect models of a potential biological system.

Agreement between these two models indicates robustness in the

system and therefore greater likelihood that the same behavior

could be realized in the proposed biological system. The biological

system is generally much more difficult to construct, and therefore

investigating proposed networks in simpler systems is prudent.

Secondly, modeling with stochastic differential equations is

nontrivial compared to ordinary differential equations, so that

the addition of experimental measurements from a physical system

such as an analog circuit provides valuable verification. Thus the

circuit is an additional tool for investigating potentially interesting

biological networks in the presence of noise.

Here we use two repressors and constitutive promoters as our

model system for implementing logic functions. We begin with a

brief description of LSR, then we describe the synthetic gene

network model, and define what constitutes logic inputs and logic

outputs in this system. We then go on to present the electronic

analog of the system followed by a comparison of numerical

simulation and experimental measurement.

Methods

We begin with a short description of the general principle of

LSR. Consider a general nonlinear dynamic system, given by

dx

dt
~F (x)zIzDg(t) ð1Þ

where F (x) is a generic nonlinear function which has or nearly has

two distinct stable energy wells. I is a low amplitude input signal

and g(t) is an additive zero-mean Gaussian noise with unit

variance with D being the noise strength.

We achieve a logical input-output correspondence with such a

system by encoding N inputs in N square waves. Specifically, for

two logic inputs, we drive the system with a low amplitude signal I ,
taken to be the sum of two pulse trains: I1zI2, where I1 and I2

encode the two logic inputs. Now the logic inputs can be either 0

or 1, giving rise to 4 distinct logic input sets (I1,I2): (0,0), (0,1), (1,0)
and (1,1). Since the input sets (0,1) and (1,0) give rise to the same I ,

the input signal generated by adding two independent input

signals is a 3-level aperiodic waveform.

The output of the system is determined by its state. For instance,

for a bistable system with wells at x~x1 and x2, the output can be

considered a logical 1 if it is in the well at x1, and logical 0 if it is in

x2. If we consider the opposite assignment, namely logical 1 if the

state is in well x2 and logical 0 if the state is in well x1, we obtain a

complementary logic operation. Specifically we can have an

output determination threshold x�, located near the barrier

between the wells, and the logical outputs are then simply given

by the state being greater than or less than x�. It is possible that the
input I induces the appearance of the second energy well if it was

not already there.

Figure 1. Bifurcation diagram for state-variables x (solid) and y
(dashed). x and y are complementary outputs, when one is high the
other is low. Red (black) indicate stable (unstable) fixed points. System
is bistable for 0:937vb1v1:043. For b1~0:9, x is high and y is low.
Calculated for Eqs. (2)–(3) with n~2:4, ai~1:78, b2~1, Ii~0, gi~0, and
D~0.
doi:10.1371/journal.pone.0076032.g001

Figure 2. Circuit for single gene. Inhibitory input at Vin. Expressed
protein concentration is represented by Vout. Ri = 470 V for gene-y, 520
V for gene-x. Dual op-amp is LF412 supplied by +/25 V. The pnp
transistor is 2N3906. The input noise has a mean of 0 V (gnd) and
controllable standard deviation.
doi:10.1371/journal.pone.0076032.g002
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The central result of LSR is as follows: for a given set of inputs

(I1,I2), a logical output, in accordance with the truth tables of the

basic logic operations, is consistently obtained only in an optimal

window of noise. Namely, under very small or very large noise the

system does not yield reliable logic outputs, while in a band of

moderate noise it produces the desired output.

Synthetic Genetic Network Model and Logic Operation
We consider the previously used variation [15] of the genetic

toggle switch model comprised of two genes inhibiting each other

[22]. The concentrations of the two expressed proteins are x and

y, and their rates of change are:

dx

dt
0 ~

a1
1zyn

{b1xzg1zDg(t
0
) ð2Þ

dy

dt
0 ~

a2
1zxn

{b2yzg2zI1zI2zDj(t
0
) ð3Þ

where b1, b2 are the rates of decay of each expressed protein and n

is the Hill coefficient. The a1, a2 describe the maximum expression

rates in absence of inhibitor and they are used here as tunable

parameters. In the original model g1 and g2 represent the basal

synthesis rates of the promoters [23], however we use them as

constant bias. The additive noise has strength D and g and j are

chosen from unit variance zero mean Gaussian distributions. Such

an additive noise source alters the background repressor produc-

tion and represents the inherent stochasticity of biochemical

processes such as transcription and translation, and the fluctua-

tions in the concentration of a regulatory protein. I1 and I2 are two

low amplitude inputs providing independent parallel production

pathways of repressor y. The t
0
indicates dimensionless time.

The system above may have two stable configurations in the xy-

plane: one state has a high value of x (xu) and a low value of y (yl);

the other state has a low value of x (xl) and a high value of y (yu).

That is, the two dimensional potential underlying this system has

two wells, (xu,yl) and (xl,yu), in the xy-plane. Varying the

parameters changes the depth and position of these wells, and also

determines whether there are one or two wells. For example, Fig. 1

shows that for the case (gi,Ii,D)~0 the system in Eqs. (2)–(3) is

bistable and therefore has two stable wells only when b1 is close to
1.

Figure 3. Circuit for synthetic genetic network. Encoding inputs
are 0 to 5 V pulse trains creating transistor currents of 0:1 and 0 mA,
respectively, for RI~10kV. The x and y gene circuits are shown in Fig.
2. Each noise input is connected to its own noise circuit shown in Fig. 4.
doi:10.1371/journal.pone.0076032.g003

Figure 4. Noise circuit and its connection to resistor of gene circuit. Source of noise is the reverse-biased base-emitter junction of the
2N3904 npn transistor on left. OPA2228 dual op-amps supplied from +/212 V regulators. OPA2228 has gain-bandwidth product of 33 MHz.
doi:10.1371/journal.pone.0076032.g004

Figure 5. Measured frequency spectrum of noise. For 2-stage
noise amplifier shown in Fig. 4 with second stage gain 11|. Horizontal
scale is 500 kHz/Div, so cursor indicates 1.5 MHz as location of cut-off
frequency. From FFT function on Tektronix TDS 2024B oscilloscope.
doi:10.1371/journal.pone.0076032.g005
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Encoding inputs. Here the low amplitude input signal is

I~I1zI2, with I1=I2 equal to ION (IONw0) if the logic input is 1,
and I1=I2 being 0 if the logic input is 0. So we have:

(i) I1zI2~0 corresponds to logic input set (0,0).

(ii) I1zI2~ION corresponds to logic input sets (0,1)/(1,0).

(iii) I1zI2~2ION corresponds to logic input set (1,1).
Output. The outputs of the system are determined by the

level of the dynamical variables x(t) and y(t). For instance the

output can be considered a logical 1 if the state is at the high level,

and logical 0 if it is at the lower level. That is:

(i) If x v x�, then Logic Output is 0.

(ii) If x w x�, then Logic Output is 1.

Here x� is the output determination threshold that lies between the

two states, e.g., at the position of the barrier between the wells.

The results presented here are not sensitive to the specific value of

x�.
Specifically, in this work, we consider the logic output to be 1

when the state is close to the upper well, and 0 when the state is

close to the lower well, for both x and y variables. So when the

system switches wells, the output is ‘‘flipped’’ or ‘‘toggled’’.

The model in Eqs. (2)–(3) is based on the synthetic genetic toggle

switch previously expressed in E. coli [22]. Parameter values used

in [22] correspond here to ai~(15:6,156), n~(1,2:5), and bi~1
in Eqs. (2)–(3). By comparison, here we use ai~1:78, n~2:4,
b1~0:9, and b2~1. The bifurcation diagram in Fig. 1 indicates

that these parameter values, along with (gi,Ii,D)~0, result in a

system with a single stable well at x&1:8,y&0:35. A non-zero

input I can then ‘‘shift’’ the bifurcation diagram of Fig. 1 so that

there is a stable state with low-x, high-y for b1~0:9.

Circuit Realization
The circuit of a single inhibitory gene [24,25] is shown in Fig. 2.

The transistor current represents the rate of gene expression and

the voltage Vout represents the concentration of expressed protein.

Vin represents the concentration of repressor, and the Vcth adjusts

the affinity of the repressor binding to the gene’s DNA. The Hill

function inhibition in Eqs. (2)–(3) is accounted for by the

dependence of the transistor current on repressor concentration

voltage Vin. The synthetic genetic network shown in Fig. 3 is

comprised of two individual gene circuits connected in a loop,

each inhibiting the other. For the model in Eqs. (2)–(3), the

encoding inputs I1 and I2 add to production of y which is

accounted for in Fig. 3 by the two logic-driven transistors sourcing

current to Vy. Initially parameters g1 and g2 are taken to be zero.

The circuit equations are obtained by applying Kirchoff’s laws

to Vx and Vy, the voltages across the capacitors in Fig. 3 [24,25].

Multiplying both equations by Ry results in equations for Vx and

Vy;

RyC
dVx

dt
~{

Ry

Rx

Vxz
Ry

Rx

Vx noisezRyit ð4Þ

Figure 6. Time series for circuit measurements (upper graph)
and simulations (lower) for different noise strengths showing
AND/NAND LSR. Circuit shown in Fig. 3. Simulations are of Eqns. (2)–
(3). Upper red and green traces indicate logic states of the encoding
inputs I1,2 and lower traces show the complementary outputs x(yellow)
and y(blue). Panel (b) has noise level within the optimal range for
displaying AND/NAND characteristics. Noise strengths in simulation and
in circuit are: (a) D~0:043 and VNrms~200mV, (b) D~0:107 and
VNrms~500mV, (c) D~0:15 and VNrms~700mV. Voltages and times
for the circuit measurements have been converted to dimensionless
quantities as described in the text.
doi:10.1371/journal.pone.0076032.g006
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RyC
dVy

dt
~{VyzVy noisezRyitzRyi1zRyi2 ð5Þ

where it are the Fig. 2 transistor currents for each gene, and i1 and

i2 are currents from the logic train transistors in Fig. 3. A noise

generation circuit shown in Fig. 4 based on breakdown of a reverse

biased base-emitter junction produces noise Vnoise with zero mean

and variable amplitude. We use a well regulated supply for the

noise circuit to avoid adding AC signals from the building’s

electrical system into the noise. Two of these noise circuits are used

to supply noisy voltages to each individual gene at locations

indicated in Fig. 3.

The connections between model parameters (ai,bi,n,Ii,gi,D)

and circuit parameters are presented in this section using relevant

numerical values, with derivations of these connections given in

the next section. Readers may go directly to Results and Discussion

without loss of continuity. The connections are found by relating

circuit Eqs. (4)–(5) to the model Eqs. (2)–(3) and by adjusting the

dependence of the transistor current it on Vin in Fig. 2 to match

the Hill function inhibition. The dimensionless state-variables (x,y)
in Eqs. (2)–(3) are related to voltages Vx and Vy by:

x~
Vx

Vth
,y~

Vy

Vth

where Vth corresponds to the repressor’s half-maximal inhibition

binding constant Ki. The maximal expression rate is

a1~a2~
imaxR

Vth
~

1:35

0:76
~1:78 ð6Þ

where the voltage imaxR is (3mA)(0:45kV)~1:35V and

Vth~0:76V. Protein decay rates are b1~
Ry
Rx

~ 470
520

~0:90, and

b2~1. The Hill coefficient n comes from

na~1:17G1G{2 ð7Þ

where G1~{1:1 and G{2~{3:3 are closed loop gains of U1

and U2 in Fig. 2 resulting in n~(1:17)(1:1)(3:3)=1:78~2:4. The

characteristic time is RyC~(470W)(2|10{8f)~9:4ms, so the

dimensionless time is t
0
~ t

RyC
.

The high value ION of the encoding signals I1,I2 is given by

ION~
Ry|(1 volt)

RIVth
~

470

RI(0:76)
~

618

RI
ð8Þ

where ION is changed by varying RI in Fig. 3, i.e. RI~10kV gives

ION~0:062. A non-zero value of g2 in Eq. 3 is achieved in the

circuit by including a third current-sourcing transistor in Fig. 3 in

the same way as the two encoding signal transistors, but with the

emitter resistor labelled Rg and the input grounded so that the

transistor provides a constant current ig~(1volt)=Rg. g2 is

changed by varying Rg in the same way RI controls ION. The

non-zero g2 adds a term Ryig to Eq. 5, where

g2~
Ryig

Vth
~

470

Rg(0:76)
~

618

Rg
: ð9Þ

Rg~10kV gives g2~0:062.

The Vnoise terms in Eqs. (4)–(5) approximate white noise

voltages. Each Vnoise is characterized by its measured rms value

VNrms and bandwidth. VNrms is controlled by changing the gain

Figure 7. Accuracy a of the AND/NAND logic response for simulations (red) and circuit measurements (blue) as a function of noise
strength D and encoding amplitude ION. Noise strength VNrms for the circuit measurements has been converted to dimensionless strength D
using Eq. (10) with c~p=2.
doi:10.1371/journal.pone.0076032.g007

Figure 8. Bifurcation diagram for state-variables x (solid) and y
(dashed) configured for OR/NOR. x and y are complementary
outputs, when one is high the other is low. Red (black) indicate stable
(unstable) fixed points. System is bistable for 0:870vb1v0:980.
Calculated for Eqs. (2)–(3) with n~2:4, ai~1:78, b2~1, g1~0,
g2~0:062, Ii~0, and D~0.
doi:10.1371/journal.pone.0076032.g008
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via the potentiometer in Fig. 4. Noise strength D in Eqs. (2)–(3) is

given by

D~
VNrms

Vth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRCfc1

p ~
VNrms

0:76
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c(9:4ms)(1:5MHz)

p ð10Þ

where fc1~1:5 MHz is the cut-off frequency for the amplifier in

Fig. 4 and c decreases from p=2 at low gain to p=4 at high gain

(when the potentiometer is set to 20kV in Fig. 4).

Circuit Analysis and Simulation
Here we describe the circuit analysis and derive the connections

between the model parameters used in Eqs. (2)–(3) and the circuit

parameters. Further details are given in Refs. [24,25].

The single gene circuit in Fig. 2 is designed to reproduce the

Hill function inhibition in Eqs. (2)–(3). The op-amp U1 is

configured as a subtraction amplifier with gain

G1~{ 11
10
~{1:1. Replication of the Hill function behavior is

achieved by allowing saturation of the output of the op-amp U2

and by having different unsaturated gains Gz2 and G{2 for

VinwVcth and VinvVcth, respectively, due to the diodes in the

feedback for U2. G{2 is the gain of U2 when its output goes

negative, in which case the diodes are not conducting, and

therefore G{2~{ 3:3
1:0~{3:3. Gz2 is a diminishing gain when

the output of U2 becomes increasingly positive causing the diodes

to go into conduction. An increasing repressor concentration

corresponds to Vin surpassing Vcth which causes the unsaturated

output at U2 to change from a negative voltage of

G1G{2(Vin{Vcth) to a positive voltage G1Gz2(Vin{Vcth). The
increasing voltage at the output of U2 turns the transistor off

(it?0) which corresponds to complete inhibition of protein

expression. Maximal protein expression a1,2 in Eqs. (2)–(3)

corresponds to the maximum value of it, designated imax.

it~imax occurs when Vin~0 (no repressor) because the output

of U2 saturates at V{sat~{3:5 V (for the LF412 op-amp

supplied by +5 V), resulting in a 0.65 V drop across the 220W
and therefore imax~3 mA.

Circuit parameters for a and b are found by using Vth to

convert Eqs. (4)–(5) to a dimensionless form for comparison to Eqs.

(2)–(3). The 0:45kV used for R in Eq. (6) comes from the

Ry~470W being nearly in parallel with the resistance (10kV) at

the input to the subtraction amplifier U1 for gene-x. The relation
for Hill coefficient n is found by adjusting the dependence of it on
Vin to match the slope of the Hill function 1=(1zxn) at x~1
resulting in the relation [25]:

{fVthG1G{2

f (5{V{sat){0:6
~

{n

4
: ð11Þ

In Fig. 2 the voltage divider fraction f~0:4=2:6~0:154 and

V{sat~{3:5 V. Using Eq. (6) in Eq. (11) yields Eq. (7).

Parameter Vth’s correspondence to binding affinity of repressor

to DNA is seen by noting that Eqs. (2)–(3) are dimensionless,

Figure 9. Time series for circuit measurements (upper graph)
and simulations (lower) for different noise strengths showing
OR/NOR LSR. Panel (b) has noise level within the optimal range for
displaying OR/NOR characteristics. Noise strengths in simulation and in
circuit are: (a) D~0:043 and VNrms~200mV, (b) D~0:107 and
VNrms~500mV, (c) D~0:15 and VNrms~700mV. Voltages and times
for the circuit measurements have been converted to dimensionless
quantities as described in the text.
doi:10.1371/journal.pone.0076032.g009
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meaning that in the process of going from chemical kinetic

equations to Eqs. (2)–(3) the maximal expression rate a has been

scaled by the repressor’s inhibition binding constant Ki, and by a

mRNA degradation rate [21,25]. From Eq. (6) it follows that Vth is

proportional to Ki since a is inversely proportional to Ki due to the

scaling. To find the relation between Vcth in Fig. 2 and Vth we

note that the Hill function equals 0.5 when x~1. Therefore it
must be half its maximum value when Vin~Vth which gives [25]

it

imax
~

f (5{G1G{2(Vth{Vcth)){0:55

f (5{V{sat){0:6
~0:5:

Solving gives Vcth&Vthz
1

G1G{2
. Using n~2:4 and a~1:78 in

Eqs. (6)–(7) gives: G1G{2~3:65, satisfied by G1~{1:1 and

G{2~{3:3; Vth~1:35=1:78~0:76 V; and

Vcth~0:76z1=3:65~1:03 V.

Comparing Eqs. (3) and (5) shows that the encoding signals I1,I2
are related to the transistor currents i1,i2 by:

I1,2~
Ryi1,2

Vth
: ð12Þ

The encoding currents i1,2 take on two possible values

depending on whether their logic train input in Fig. 3 is high or

low. When the input is high (w4V) the transistor is off so the

current is zero. When the input is zero, the voltage divider

consisting of the 4:7kV and 2:2kV produces one volt across the RI

connected to the emitter of the pnp transistor creating current

i1,2~(1volt)=RI. Equation (12) then gives Eq. (8) for ION. Results

of an analysis for a non-zero value of parameter g2 are the same as

for encoding signals I1,I2 and currents i1,i2 because g2’s sourcing

transistor is set up in the same way as the transistors in Fig. 3 for

the encoding signals. Thus the non-zero value of g2 is Eq. (9).

Here we show how to use simulations to predict the circuit

results. In the process we find Eq. (10), the connection between

circuit parameters and the noise strength D in Eqs. (2)–(3). A

standard Euler-Maruyama simulation of Eq. (2) is

xiz1{xi~
a1

1zyni
{b1xizg1

� �
Dt

0
zD

ffiffiffiffiffiffiffi
Dt

0
p

gi 0,1ð Þ ð13Þ

where gi(0,1) is a unit variance zero mean normal random

distribution. The noise circuit in Fig. 4 produces a measurable rms

voltage VNrms consisting of contributions from all the frequency

components present in the noise. The variance of the noise is the

integral of its spectral density function SD(f ) over frequency, and
is obtained from a measurement of VNrms;

V2
Nrms~

ð
SD(f )df : ð14Þ

Idealized white noise assumed in Eqs. (2)–(3) has a SD(f ) which is

uniform over an infinite bandwidth. However for the real noise

from the 2-stage noise amplifier circuit in Fig. 4 each op-amp’s

gain-bandwidth product produces a high frequency cut-off, fc1 and

fc2. The resulting SD(f ) has the form

SD(f )~
SD0

1z f =fc1ð Þ2
� �

1z f =fc2ð Þ2
� � ð15Þ

where SD0 is a constant related to the strength of the noise. The

OPA228 op-amp has a gain-bandwidth product 33 MHz,

therefore the first stage in Fig. 4 with fixed gain 22| has cut-

off, fc1~33=22~1:5 MHz. The second stage’s cut-off fc2 varies

from 33 to 1:5 MHz depending on the gain setting determined by

the potentiometer in the feedback of the second stage op-amp.

The integration in Eqs. (14)–(15) gives

V2
Nrms~

ð?
0

SD0

1z f =fc1ð Þ2
� �

1z f =fc2ð Þ2
� � df

~
fc1fc2

fc1zfc2

p

2
SD0:

ð16Þ

There are two limiting cases for the integral: for small gain

fc2&33 MHz wwfc1 giving (p=2)fc1SD0; and for large gain

(potentiometer ?20kV in Fig. 4) fc2&fc1 giving (p=4)fc1SD0.

Thus the integral in Eq. (16) is cfc1SD0 where fc1~1:5MHz and c
varies from p=2 for small noise to p=4 for large noise. For

frequencies within the noise bandwidth (v1:5 MHz) the

amplitude spectral density ASD (units Volt Hz-1/2) has a constant

value given by

ASD0~
ffiffiffiffiffiffiffiffiffi
SD0

p
~

VNrmsffiffiffiffiffiffiffiffi
cfc1

p ð17Þ

ASD0 is a good approximation of the white noise strength

provided that the Fig. 3 genetic circuit’s characteristic response

rate 1=(RC) is much less than the noise bandwidth, meaning that

1=(RC)vv2pfc1. This condition is ensured since the RC used

here is (470W)(0:02mf)~9:4ms, and the bandwidth of the noise is

fc1&1:5 MHz.

Figure 5 shows the measured frequency content from the noise

circuit when the potentiometer at the second stage is set for gain

11| producing VNrms~0:90 V and fc2~33=11~3 MHz. In this

case fc2~2fc1 and c~p=3. Figure 5 shows that the frequency

content is relatively flat out to the cut-off near 1.5 MHz and

therefore is a good approximation to white noise for the genetic

network circuit. VNrms~0:90 V is on the high end of the noise

amplitudes used here.

The circuit Eqs. (4)–(5) which need to be simulated are of the

form

dV

dt
~

f (V )

RC
z

Vnoise

RC
ð18Þ

where Vnoise approximates a white noise voltage. Vnoise is

characterized by its measured rms value VNrms and bandwidth,

and Eq. (17) gives the noise’s amplitude spectral density. The

Euler-Maruyama simulation for Eq. (18) is

Viz1{Vi~
f (Vi)

RC
Dtz

ASD0

RC

ffiffiffiffiffi
Dt

p
gi 0,1ð Þ: ð19Þ

Using dimensionless time Dt
0
~Dt=(RC) and the measured noise
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amplitude VNrms gives

Viz1{Vi~f (Vi)Dt
0
z

VNrmsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cRCfc1

p ffiffiffiffiffiffiffi
Dt0

p
gi 0,1ð Þ ð20Þ

Normalizing by the voltage scale Vth puts Eq. (20) in the form of

Eq. (13) and gives the connection between circuit parameters and

dimensionless noise amplitude D shown in Eq. (10). For example,

using Vth~0:76V, RC~(470W)(0:02mf), c~p=2, and fc1~1:5
MHz gives D~0:28VNrms.

Results and Discussion

Figure 6 shows simulations and circuit measurements for three

values of noise using parameters n~2:4, a~1:78, b1~0:90,
b2~1, ION~0:067, and g1~g2~0. It is apparent that for an

optimal noise level (Fig. 6b) the circuit indeed performs the logic

AND/NAND function, and that for the smaller (Fig. 6a) and

larger (Fig. 6c) noise values faithful logic response is lost. At the low

noise (Fig. 6a) the outputs sometimes fail to respond to the 0 to 1

transition from the AND of I1,I2, and for the 1 to 0 transition the

outputs often wait until both inputs go low before responding

thereby causing a delayed response. In Fig. 6b the responses are

quick for both the up and down transition. Figure 6c shows that at

the high noise level the responses are again quick as in 6b, but the

outputs also make erroneous transitions. The circuit behavior is

seen to be in agreement with the simulations of Eqs. (2)–(3).

In order to investigate the range of noise strengths which

produce accurate logic response, and to find optimal values for the

amplitude ION of the small signal inputs I1,2 we define an accuracy

measure a,

a~aL|aH ð21Þ

where aL is the percent of time the x,y outputs are correct when

the AND operation of I1 and I2 is low, and aH is the percentage of

time correct when the AND operation is high. This definition has

the property that when the x,y outputs do not respond at all, then

a~0 since aH~0 even though aL~1. The expectation then is

that for no noise there should be no stochastic resonance response

so that a~0, and that for extreme noise each accuracy would

approach 50% so that a?0:25. If x,y respond immediately with

no mistakes then a~1. Figure 7 shows accuracy a for simulations

and circuit measurements as a function of noise strength for

different values of encoding amplitude ION.

Figure 7a shows that for a small value of encoding amplitude,

ION~0:051 the network is not able to give a faithful logic response
at any noise level. The response at low noise and at high noise are

as predicted, a~0 and a?0:25, respectively, but the peak of the

window of stochastic resonance response is well below 1. Figure 7b
shows a window of noise providing faithful response for

ION~0:067. The reason that the accuracy a is slightly below 1

in the window is that the x,y outputs do not respond immediately

to the AND/NAND transitions. This time lag causes the percent

of time with incorrect response to be non-zero and therefore aH
and aL are less than 1. In principle an allowance for a time lag

could be included in the calculation of a if it were deemed

necessary. However, such an added complication would not make

the noise window any more apparent than it already is in Fig. 7.

Figure 7c shows that at a high value, ION~0:10, the outputs

respond even with no noise, and the addition of noise only creates

more errors. The relative shift between the simulation and circuit

accuracies is due to assumptions made about the noise spectral

density function and the integration in Eq. (16) leading to Eq. (20)

which gives the connection between the measured noise amplitude

VNrms and dimensionless noise D. In the idealized case Eq. (16)

finds c ranges from p=2 to p=4 in Eq. (20), with p=2 being

appropriate for the noise levels used in Fig. 6. Adjusting the value

of c can eliminate the relative shift, but there is nothing to be

gained since the appearance of an optimal noise window for LSR

at an appropriate value of ION is already apparent.

One can also reconfigure the system to another set of logic

functions, namely the fundamental OR/NOR logic, by simply

including a non-zero value for g2. The parameter g2 effectively

changes the relative position and depth of the wells of the bistable

system, allowing the response to morph from AND/NAND to

OR/NOR. For instance changing g2 from 0 to 0:062 (with all

other parameters unchanged) changes the bifurcation diagram

from that in Fig. 1 to Fig. 8 showing that the system is now bistable

for b1~0:9. The result is that the system displays a clear OR and

the complementary NOR response as shown by the simulation

and circuit results in Fig. 9. The low noise case Fig. 9a shows that

at this low noise level the system usually fails to respond. Figure 9a

also shows the resting states are reversed from the g2~0 case in

Fig. 6a. Figure 9b shows the OR/NOR response at a noise value

within the window for LSR, and Fig. 6c shows errors when the

noise is too large.

In summary, our results show that the dynamics of the two

variables x and y with g2~0, mirror AND and the complemen-

tary NAND gate characteristics. Further, when g2=0, we obtain a

clearly defined OR/NOR gate. Since x is low when y is high and

vice-versa, the dynamics of the two variables always yield

complementary logical outputs, simultaneously. That is, if x(t)
operates as NAND/NOR, y(t) will give AND/OR.

These results extend the scope and indicate the generality of the

recently observed phenomena of Logical Stochastic Resonance

through experimental verifications. Further, these observations

may provide an understanding of the information processing

capacity of synthetic genetic networks, with noise aiding logic

patterns. It also may have potential applications in the design of

biologically inspired gates with added capacity of reconfigurability

of logic operations.

We have also demonstrated that the electronic circuit provides

an additional tool for investigating dynamics of proposed genetic

networks. The circuit measurements are complementary to

numerical simulations, thereby giving indication of the robustness

of a particular network design and potential for successful

realization in a biological system.

Thus the results presented in this work suggest new directions in

biomolecular computing, and indicate how robust computation

may be occurring at the scale of regulatory and signalling

pathways in individual cells. Design and engineering of such

biologically inspired computing systems not only present new

paradigms of computation, but can also potentially enhance our

ability to study and control biological systems [26].
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