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Abstract 

Changes in agricultural land use have important implications for environmental services. 

Previous studies of agricultural land use futures have been published indicating large uncertainty 10 

due to different model assumptions and methodologies. In this paper we present a first 

comprehensive comparison of global agro-economic models that have harmonized drivers of 

population, GDP and biophysical yields. The comparison allows us to ask two research 

questions: 1) How much cropland will be used under different socio-economic and climate 
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change scenarios? 2) How can differences in model results be explained? The comparison 15 

includes four partial and six general equilibrium models that differ in how they model land 

supply and amount of potentially available land. We analyze results of two different socio-

economic scenarios and three climate scenarios (one with constant climate). Most models (7 out 

of 10) project an increase of cropland of 10 to 25% by 2050 compared to 2005 (under constant 

climate), but one model projects a decrease. Pasture land expands in some models which increase 20 

the treat on natural vegetation further. Across all models most of the cropland expansion takes 

place in South America and Sub-Saharan Africa.  In general, the strongest differences in model 

results are related to differences in the costs of land expansion, the endogenous productivity 

responses and the assumptions about potential cropland.  
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1. Introduction 

Land use and surface cover is determined to a large extent by human intervention, primarily through 

conversion for crop cultivation (Vitousek et al., 1997). Cropland expansion was the main source of growth 

of agricultural production throughout preindustrial history. However, since the middle of the 20th century, 

intensification with land-saving technologies has been the main engine of growth globally (van Meijl and 35 

van Tongeren, 1999; Wik et al., 2008). Between 1955 and 2005, rable land increased by around 15% 

(HYDE; Klein Goldewijk et al., 2011) whereas agricultural production rose by more than 200% (FAO, 

2013). In the future, it is unclear how total cropland will respond to the anticipated increase in demand for 

agricultural products. The question has implications not only for food security, but also for biodiversity, 

terrestrial carbon stocks, and other ecosystem services (Houghton, 2003; Gorenflo and Brandon, 2005). 40 

Land use was traditionally not a focal area for research in global economic modeling. In the last couple of 

decades, however, it has evolved as a new research field. New spatially explicit models of land use have 

been developed, with a focus on the agricultural and forestry sectors as the main users of land, and 

modeling teams have explicitly introduced global land use into existing computable general equilibrium 

(CGE) and partial equilibrium (PE) models. These efforts are still in their infancy with large uncertainty 45 

about future land use. Models used in the IPCC fourth assessment report (AR4) project cropland changes 

from -18 to +69% by 2050 relative to 2000 (-123 to +1158 million hectares) and forest land changes range 

from -18 to +3% (-680 to +94 million hectares) by 2050 (Metz et al., 2007). Much of this huge range 

among models is related to the uncertainties in economic and demographic development. FAO projects an 

increase of cropland between 2005 and 2050 of 69 million ha (Alexandratos and Bruinsma, 2012) and the 50 

International Assessment of Agricultural Knowledge, Science and Technology for Development 

(IAASTD) around 180 million ha (van Vuuren et al., 2008). Within the UK Foresight Project, Smith et al. 

(2010) provided a review of studies on land-use projections of the past two decades, indicating a range 

between 90 and 470 million ha. They concluded that uncertainty about future land use is large and mainly 

associated with the use of different input data and assumptions about future economic and demographic 55 
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development. Popp et al. (2013) show that the land-use modules of 3 Integrated Assessment Models 

project very different global land cover conversion futures due to strong differences in their assumptions 

and definitions of land cover distribution in 2005 and structural features of the models. 

In this paper we go a step further by harmonizing key input data and assumptions across different models. 

Up to now, this has only been done on a small scale with a few models (e.g. Stehfest et al., 2013). For our 60 

purpose, we used the first comprehensive model inter-comparison in the field of agro-economic models 

organized within the AgMIP consortium20. It includes four partial and six general equilibrium models, all 

of which differ in the amount of potential land and in the way how they model land supply. In this paper 

we use the model scenarios to answer two research questions: 

1) How much cropland will be used in 2050 under different socio-economic and climate change 65 

scenarios? 

2) How do methods to model land supply and land expansion differ across models and how do methods 

differences explain differences in results? 

 

2. Models and Scenarios 70 

2.1 Model approaches and differences 

The comparison includes four partial (PE) and six general equilibrium models (GE). Two PE models, 

MAgPIE (Lotze-Campen et al., 2008; Popp et al. 2010; Schmitz et al., 2012) and GLOBIOM (Havlik et 

al., 2011; 2013) incorporate spatially explicit land use as part of the model solution. The other two PE 

models, GCAM (Thompson et al., 2011; Wise and Calvin, 2011) and IMPACT (Rosegrant et al., 2012),  75 

link to grid-based models. The six CGE models are all based on the GTAP database. The AIM (Fujimori 

et al., 2012), FARM (Sands et al., 2013a; 2013b) and GTEM (Pant, 2007) models determine land use 

based on agro-ecological zones (AEZ’s) (FAO, 1996). ENVISAGE (van der Mensbrugghe, 2013) and 
                                                
20 AgMIP: Agricultural Model Inter-comparison Project (www.agmip.org) 
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MAGNET (van Meijl et al., 2006; Eickhout et al., 2009) model land use at the national level with inputs 

from the grid-specific IMAGE model (Bouwman et al., 2006). EPPA (Melillo et al., 2009) is coupled with 80 

TEM (Felzer et al., 2004) to model future land use. The models differ substantially in how they model 

land supply and the amount of potential land. Table 1 gives an overview of key parameters for the 

modeling of land use and especially cropland expansion and how they are implemented in the different 

models. Table 2 provides information on the land types and how they are implemented. More details on 

the models can be found in the supplementary material and in von Lampe et al. (2013). 85 

Table 1 about here 

Table 2 about here 

Although the models are classified into two broad types (general or partial equilibrium), there is still 

considerable heterogeneity within the two groups (more so within PE than within GE models). In the 

following, those differences are presented along with several key features (see also Hertel et al., 2009). 90 

Those include: 

- Spatial dimension and data sources 

- Mobility of land across uses 

- Accessing new lands  

- Forest and bioenergy sector 95 

- Technological change 

Spatial dimension and data sources 

The spatial dimension is crucial in agro-economic modeling of land use. Several global land data bases 

have become available recently. For instance, Klein Goldewijk et al. (2011) provides data on historical 

land use with a 5arc minute resolution, Ramankutty et al., (2008) does so for the year 2000. Monfreda et 100 

al. (2008) provides harvested area and yields. The SPAM (Spatial Production Allocation Model) data set 

uses an entropy approach to allocate national and regional production statistics over higher resolution 
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space based on various suitability measures (You and Wood, 2006). The PE models GLOBIOM and 

MAgPIE, are constructed as grid-specific optimization models and can make use of those disaggregated 

data. The data for MAgPIE are taken from a consistent land-use database developed by Krause et al. 105 

(2009), which is based on Erb et al. (2007) and integrates crop suitability indicators (van Velthuizen et al., 

2007), intact and frontier forest types (Bryant et al., 1997; Potapov et al., 2008), and protected areas 

(UNEP-WCMC, 2006). The GLOBIOM spatial modeling is based on the concept of Homogeneous 

Response Units (HRU) delineated by geographically clustering 5 arc min pixels according to only those 

parameters of the landscape – elevation, slope, and soil – that generally do not change over time and are 110 

thus invariant with respect to land use and management or climate change. At the global scale, GLOBIOM 

includes five altitude classes, seven slope classes, and five soil classes. In a second step, the HRU layer is 

intersected with a 0.5° × 0.5° grid and country boundaries to delineate Simulation Units (SimU) (Skalský 

et al., 2008). For each SimU a number of cropland management options are simulated using the bio-

physical process model EPIC (Environmental Policy Integrated Climate Model; Izaurralde et al., 2006). 115 

Initial land cover and land-use distribution is based mainly on GLC2000 and harmonized when necessary 

to match with FAO and the crop distribution map of SPAM (You and Wood, 2006). 

In contrast, other PE models and the CGE models adopt a more aggregate level of resolution, which is 

more in line with the spatial resolution of economic statistics. IMPACT runs on 271 Food Production 

Units (FPU’s), but its climate induced shock originating from crop models are based on the 5arc minute 120 

resolution of the SPAM data. MAGNET, GTEM and ENVISAGE operate on a regional crop allocation; 

EPPA does so as well but runs in connection with the Terrestrial Ecosystem Model - TEM (Felzer et al., 

2004), which distributes EPPA´s land-use predictions by 0.5 degree grid cell level based on climate, soil 

and economic information. FARM, GCAM and AIM use the GTAP AEZ data and land use is aggregated 

to the level of Agro-Ecological Zones within countries (Monfreda et al., 2009). As most economic data are 125 

also available at the country level, FARM and AIM assume a single, national production function in 
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which land types from different AEZs substitute for one another. In GCAM, each AEZ within a region has 

its own land allocation tree. 

Mobility of land across uses and diversification of production 

Some of the CGE models (ENVISAGE, FARM, GTEM and MAGNET) assume land heterogeneity and 130 

employ a Constant Elasticity of Transformation (CET) function by which an aggregate endowment of land 

is transformed across alternate uses, subject to a transformation parameter that governs the responsiveness 

of land supply to changes in relative yields and prices. Other models like AIM and GCAM use logit 

functions rather than constant elasticities to model the competition between different land types. 

Exponents of these functions, which determine the degree of substitutability, are usually derived from 135 

literature-based estimates of elasticities, or assumed, and in the base year they are used for calibration. In 

the AIM model, these substitution elasticities vary over time; they are constant over time in GCAM (Wise 

and Calvin 2011). Both the CET and logit approaches have one important limitation; they are symmetric 

to all changes. For example, the ease of conversion from agricultural land to forest land is the same as 

from forest to agriculture (see Hertel et al., 2009 for a more detailed discussion).  140 

CGE models typically “nest” the land allocation functions (EPPA is an exception to this and is explained 

below). Producers first determine the allocation of crop land among crops. Then based on the average 

return to cropland, an allocation is made between crops and livestock or crops and forestland. All models 

use a different nesting structure and there is little evidence that favors one structure over another. An 

example for a basic nested logit structure of land used is presented for the AIM model in the 145 

supplementary material (Figure S1). In the first step agricultural, forest and other land types are 

differentiated. The agricultural land is then further divided between cropland and grassland. Grassland is 

then divided among primary grassland and pasture actively used for livestock production. Under the 

cropland node land is allocated to different crops. The individual design within each model is usually 

more detailed and differs from this example, but the basic structure is similar across the CGE models and 150 

GCAM. Identifying transformation elasticities remains a challenge in CGE modeling as good conclusive 
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empirical evidence does not exist. They are based on econometric studies and expert knowledge. The 

disadvantage is the missing spatial component to the supply decision. These models exaggerate the 

competition for land between very different uses – e.g., orange groves and sugar beet fields in the US, 

which are clearly in different biophysical zones. 155 

The IMPACT model specifies harvested area for each crop based on given own and cross price elasticities 

of supply. The problem with this and the CET approach is that the “transformation” of land from one use 

to another does not make it possible to track the allocation of hectares across agricultural activities. This 

can be done with the spatially explicit land rent methodology of GLOBIOM and MAgPIE. Here, the 

allocation of land to the different crops is based on the relative profitability of the crops, based on grid-160 

specific biophysical characteristics. The location of the crop area across calculation units can be clearly 

determined. MAgPIE differs slightly from GLOBIOM and GCAM, minimizing production costs instead 

of maximizing profitability.  

EPPA assumes that farmers can transform one land category to other if they are able to cover explicitly 

the costs of conversion. This approach allows tracking land area in a consistent way and implies that 165 

intensively managed land can be “produced” from less intensively or unmanaged land, as well as that 

farmland can be abandoned. Compared with the CET, this land transformation approach allows for longer 

term analysis where demand for some uses could expand substantially (as the case of biofuels in some 

countries), since the share-preserving nature of the CET functions limits radical land-use change. 

Accessing new lands 170 

A critical issue in modeling the long run supply of land to different activities in agriculture and forestry is 

the availability of new lands that might be brought into production. One way to handle this problem in 

large scale economic models is to construct a land supply schedule, based on detailed biophysical 

information, in which rising land rents cause additional land to be brought under cultivation. This is the 

approach adopted by Meijl et al. (2006) and Eickhout et al. (2009) in their specification of the MAGNET 175 

model, which is also used in the ENVISAGE model (for more details on this, see Hertel et al., 2009). 
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They capitalize on the detailed productivity information available in the IMAGE data base. Here, 

data from IMAGE 2.4 are used, where the productivity for seven food crops is calculated for each 

0.5 by 0.5 degree grid cell with the crop growth model of IMAGE (Leemans and Van den Born, 

1994). Another approach is the inclusion of AEZs. This is done by AIM and GCAM, which use the 18 180 

different AEZs specified in the GTAP database (Monfreda et al, 2009; Golub and Hertel, 2012). FARM 

does the same but aggregates the 18 AEZs into six land classes of each world region. The expansion of 

crop or other agricultural activities into forest and other land types is done within the CET or logit 

structure (see, the AIM model example in Figure S1). The conversion of natural vegetation in EPPA is 

limited by the observed land supply response in the last two decades. It mimics the increasing costs 185 

associated with larger deforestation in a single period. It also represents additional institutional costs, like 

environmental legislation and consumer pressures for conservation, contributing to slow down intense 

transformation of natural ecosystems. 

The PE models GLOBIOM and MAgPIE simulate the expansion of cropland into other land types at a 

high spatial resolution. GLOBIOM uses non-linear conversion costs in each region to convert non-190 

agricultural land to agricultural land or to short rotation plantations, as well as to switch between cropland 

and grassland. The conversion costs are exogenously determined and used for calibration. MAgPIE uses a 

similar approach. The conversion costs of non-agricultural land into cropland are for preparation of new 

land and investments into basic infrastructure. The values are determined by different case studies and 

range between 600 and 7500 US$/ha depending on topography, forest type, soil conditions, applied 195 

technology, and the governmental system (Schmitz, 2012). In the version of MAgPIE used in this study, it 

is only possible to expand cropland into intact and frontier forest and natural vegetation not defined as 

grazing land or forest (globally around 734 million ha). Pasture and other land categories are kept constant 

over time. In GCAM land allocation between different land types is modelled at the level of each AEZ 

within each geopolitical region, and is responsive to changes in land profit rates. While the specific 200 

characteristics of any technology (e.g., yield, cost) within any sub-regional AEZ are exogenous, 
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endogenous yield increases may nevertheless occur at larger spatial scales due to inter-regional shifting in 

production. In contrast to all other models, IMPACT focuses only on cropland changes. It bases its 

expansion potential on exogenous area growth rates, which have been determined by a combination of 

historical changes in land use and expert judgment on potential future regional dynamics (Delphi 205 

method)21. It also includes the possibility of agricultural area lost through processes not modeled, such as 

conversion to other land uses via government fiat or expansion of urban area. 

Incorporation of forestry and bioenergy  

Most models assume that forest area trends are driven almost exclusively by changes in agricultural area, 

and only deal superficially with driving forces such as global production, consumption and trade in forest 210 

products and conservation demands. A key problem is that it takes decades to grow a new forest and that 

the forest stock, as well as sequestration potential, depends critically on the type of forest and its vintage. 

The partial equilibrium models, GLOBIOM and MAgPIE, have or are about to incorporate explicit forest 

modules to capture the effects. The AIM, FARM and GCAM models treat forestry within the CET or logit 

structure. In ENVISAGE and MAGNET forest land is not modeled explicitly but it is part of the potential 215 

agricultural land within the land supply curve. In EPPA natural vegetation is incorporated explicitly as 

part of their “non-use” value in the utility function. More details on the challenges of incorporating the 

forest sector in CGE models can be found in Sohngen et al. (2009) 

The forestry sector is of particular importance in the study in the context of second generation bioenergy 

as an additional demand of land in the future. Second generation bioenergy feedstocks typically include 220 

crop and forest products grown in short-rotation plantations, and also residues from crop production or 

forestry. In this exercise, GLOBIOM, GCAM, and AIM account for second generation bioenergy and 

                                                
21 There is no constraint on land availability in IMPACT. The area equations have been calibrated with low price 
elasticities of land supply. We did not observe any dramatic changes in land expansion at the FPU level occurred and 
did not find any unrealistic cases where land used exceeded available arable land at the FPU level. In fact, the 
endogenous changes in aggregated land use were dominated by the exogenous trends in supply (by FPU and land 
type) rather than any endogenous effects. 
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account for an additional threat on cropland22. Additionally, all models (except ENVISAGE, FARM and 

GTEM) treat various first generation biofuels such as ethanol and biodiesel which are made from sugar, 

wheat, coarse grains and oilseeds, the demand figures differ quite substantially between models. The 225 

future demand of this category in all models in this study is based on policy mandates. For simplicity they 

are kept constant after 2030.  

Production technology and technological change 

Technological change (TC) is a critical driver of land use, and a critical assumption in the projection of 

land use. For example, Sands and Leimbach (2003) suggest that globally 800 million hectares of cropland 230 

expansion could be avoided with a 1.0% annual growth in crop yields. Popp et al. (2011) show that 

protecting natural forests does not decrease biomass availability for energy production, if the reduction in 

available agricultural land is compensated by higher rates of TC. The Millennium Ecosystem Assessment 

(MEA, 2005) scenarios project positive but declining crop productivity growth over time due primarily to 

diminishing marginal technical productivity gains and environmental degradation. For this study, most 235 

models have harmonized their exogenous TC rates to the assumed rates from the IMPACT model. The 

only exception is MAgPIE as the only model, which generates endogenous technological change rates 

(Dietrich et al., 2012, 2013). However, in addition to the exogenous given TC rates, the models have 

individual endogenous adjustments related to an improved allocation of crops or substituting capital and 

labour for land (see more details on the different implementations in Robinson et al. (2013)). 240 

Robinson et al. (2013) describe the specifications of the various production technologies used in the 

various models. They conclude that the elasticity of substitution between land and other production factors 

is crucial with regard to land use. The greater the substitutability, the easier it is to replace land by labour 

and capital if land prices increase as land gets scarcer. In this way the same production can be produced 

with less land inducing an endogenous yield effect. A concern is that in theory crops could be produced 245 

without an adequate amount of land, as the substitution between the various inputs (land, capital, and 
                                                
22 The land for second generation bioenergy is not reported under cropland in contrast to first generation bioenergy, 
which usually comes from cropped feedstocks. 
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labor) is not bounded by physical constraints. In practice AIM assumes low substitutability between land 

and other factors and most yield changes are from the exogenous yield assumptions. In MAGNET the 

elasticity of substitution is also low (0.05 for crops and 0.1 for livestock, based on Salhofer (2000)). 

ENVISAGE and GTEM assume a much higher elasticity of substitution between land and other factors of 250 

0.5, while this elasticity in FARM is 0.3. 

 

2.2 Scenario Description 

For this paper we selected four out of eight scenarios, which have been run for the AgMIP model 

comparison. The detailed description of the scenarios is provided in Von Lampe et al. (2013). Table 3 255 

gives an overview about the four scenarios. 

Table 3 about here 

We differentiate between two influencing factors – socio-economic developments and climate change 

affecting agricultural yields. The socio-economic scenarios consist of population and income projections 

from the shared socio-economic pathways (SSP) scenarios – SSP2 and SSP3 - developed for the IPCC 5th 260 

Assessment Report (Kriegler et al., 2012). Climate change is considered by using the HadGEM2-ES 

global circulation model using the representative greenhouse concentration pathway (RCP) with the 

highest radiative forcing among the four RCPs, of 8.5 W/m² (Meinshausen et al., 2011). The reference 

scenario (S1) assumes no climate change and a medium pathway of economic growth and population 

development (SSP2). The S2 scenario (“Fragmentation Scenario”), based on SSP3 generally assumes 265 

lower population growth in developed countries, but higher growth in developing countries. While growth 

in total GDP is assumed lower for all parts of the world, per capita GDP is higher in some countries, such 

as Canada.  S4 and S6 use the SSP2 population and GDP growth rates and include the impacts of climate 

change on crop yields. They differ according to the crop model used to project the yield changes. We use 

the vegetation and hydrology model LPJmL (Bondeau et al., 2007) and the crop growth model DSSAT 270 
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(Jones et al., 2003)23. The productivity shocks are implemented as land-embodied technical change. In all 

scenarios trade and forest protection policies remain the same. However, as Table 1 shows the models 

differ according to the implemented bioenergy demand.  

The main intention of the scenarios presented here is to shed light on the behavior of the different models 

regarding land-use change and to support the learning process of this comparison exercise. Hence, the 275 

chosen scenarios are rather extreme than plausible. On the one hand, S1 and S2 are optimistic in terms of 

climate change, since perfect mitigation is assumed with no climate shocks on crop yields. S4 and S6 

represent pessimistic scenarios with the climate change effect on yield based on a high growth rate in 

GHG concentrations and no additional CO2 fertilization effects (see Müller and Robertson (2013) for a 

discussion).  280 

 

3. Projected development of cropland 

Figure 1 shows the development of global and regional cropland area in the different models compared to 

historic development based on the HYDE dataset (Klein Goldewijk et al., 2011). The projected growth 

rates of cropped area of the different models are used with the HYDE data of the year 200524. The 285 

boxplots indicate the cropland expansion in the year 2050 compared to 2005 (HYDE data) in the four 

different scenarios. This is done in order to account for the different land-use modeling in the two model 

types. The key results are summarized in Table 4. 

Figure 1 about here 

                                                
23 For a detailed presentation and discussion on the results of the crop model runs, please see Müller and Robertson 
(2013). 
24All models have different base year quantities of cropland due to different definitions and crops covered in the 
models. We use the HYDE data base to harmonize the base year values and make the model results comparable, 
thereby assuming that the growth rates are independent of the base year values. Since HYDE reports physical area 
while IMPACT and GLOBIOM report harvested area, the results of these models are slightly overestimated in 
Figures 1 and 2. 
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In Figure 1, showing the development of global cropland area, most models indicate that the growth in 290 

global cropland continues in all scenarios. FARM is the exception with decreasing cropland use at the 

global level. For GTEM, IMPACT, EPPA, GLOBIOM and GCAM the rate of change is less than in the 

past 50 years as reported by HYDE25. MAgPIE and ENVISAGE indicate a continued trend of the historic 

growth while AIM and MAGNET projects a slightly increasing trend in global land use26. Compared to 

S1, the fragmentation scenario (S2) has lower global cropland area growth rates in most models. Strongest 295 

decreases can be observed for AIM, GTEM and MAGNET, whereas FARM has higher cropland reduction 

rates than in S1. For the climate change scenarios (S4 and S6), all models have increasing cropland 

compared to S1; however, the differences between the models are large. AIM, GCAM and MAGNET 

expect a relatively large increase in area. Other models indicate no huge cropland changes due to climate 

change.  300 

Figure 2 about here 

In ENVISAGE, FARM, GTEM, MAGNET and GLOBIOM, both pasture and crop area increase (Figure 

2). AIM, EPPA and GCAM have decreasing global pasture areas in 2050; in MAgPIE pasture is constant..  

Figure 3 about here 

Figure 3 highlights the results for the seven different regions considered in this analysis. Starting with the 305 

region Africa and Middle East (AME), cropland in EPPA increases by 120% and in AIM by almost 100%. 

In contrast, the area in FARM increases only marginally. AIM, ENVISAGE, GLOBIOM and GTEM 

show an increased growth rate in the second half of the projected period (2030-2050), whereas the growth 

rates in GCAM, IMPACT, MAgPIE and MAGNET are reduced. The fragmentation scenario influences 

EPPA and GTEM results, where cropland decreases by 27% and 16%, respectively (Table 4). The 310 

                                                
25 Due to the large uncertainty about the historic expansion of cropland among the various sources, the projected 
range of possible future developments of cropland is very much in line with the uncertainty range of the estimation 
of historical rates. 
26 Cropland expansion in Northern America (e.g. Canada) is probably overestimated in MAGNET due to the 
combination of a high and probably overestimated availability of potential agricultural land and an implied high 
elasticity in land supply. There is a high uncertainty in estimating the availability of potential agricultural land and 
there is on-going work to address this issue. Therefore also the global estimates have an upward bias. 
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influence of climate change is consistently low. In GLOBIOM, cropland area decreases slightly and in 

FARM in average around 17% more land is used for agriculture under climate change. 

The range of future cropland use in Australia and New Zealand (ANZ) is relatively large. AIM projects an 

increase by almost 60% while GTEM and GLOBIOM see a decrease of around 35% and 14%, 

respectively. The difference between AIM and GTEM in 2050 amounts to more than 40 million ha 315 

compared to total area of 53 million ha in 2005. The influence of fragmentation (decrease by 11% in 

GTEM) and climate change (average increase by 14% in MAGNET) is rather low.  

For Europe, the models indicate that the decline in cropland will continue, although MAgPIE and GCAM 

show some slight increase to 2030. The largest reductions are projected by EPPA with cropland area more 

than halved by 2050. GTEM, MAGNET and IMPACT follow largely the trend of the past decades. All 320 

models project an increase in 2050 cropland in scenarios with climate change, with AIM (+13%) and 

MAGNET (+10%) at highest. 

The Former Soviet Union (FSU) saw dramatic declines in cropland after the collapse of the USSR in the 

1990s. This trend has generally stabilized in the last decade, and in the future, the models have especially 

divergent trends for cropland in this region. The changes vary between a -36% decline (almost 125 million 325 

hectares) for FARM and a 23% increase (almost 250 million hectares) in GCAM. Six of the 10 models 

project a decrease of cropland in this region. In ENVISAGE, MAGNET and IMPACT are increases to 

2030 but decreases after that. The influence of increasing population and decreasing income (S2) 

generally has a negative impact on cropland use, with AIM, FARM and MAgPIE as exceptions. Climate 

change puts new pressures on cropland. The largest mean changes in 2050 compared to S1 are from 330 

GCAM (+16%) and MAGNET (+21%). 

While cropland was fairly stable in North America in the last 50 years at about 230 million hectares, 

MAGNET, ENVISAGE and AIM see an increase in 2050 to between 270 and 300 million hectares. Only 

GTEM, EPPA and IMPACT project lower cropped area in 2050 compared to 2005. Fragmentation and 

climate change seem to have huge impacts on cropland in North America. Under SSP3, cropland is mostly 335 
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reduced with the greatest declines in AIM (-21%) and ENVISAGE (-18%). An exception is EPPA with a 

13% increase in cropland. With climate change the opposite is projected with highest expansion rates from 

MAGNET (+43%) and AIM (27%). In MAGNET cropland expansion exceeds 200 million ha in 2050, 

mostly in Canada. 

In the past fifty years, Latin America (OAM) was the region with the greatest expansion of cropland, 340 

increasing from around 100 to 160 million hectares between 1960 and 2005 (HYDE). ENVISAGE, 

IMPACT and GLOBIOM continue this trend, to around 220 million hectares in 2050. FARM, GTEM and 

to a lesser extent GCAM and AIM observe a slowing down of expansion, whereas MAgPIE projects an 

accelerating trend to 280 million hectares. Climate change increases cropland area with rates ranging from 

5% to 25%. SSP3 has a low, but largely negative impact with highest reduction in ENVISAGE (-13%). 345 

The projections in South Asia (SAS) are similar to OAM in relative terms by having overall increasing 

rates of cropland use, except for FARM and EPPA. However, the rates are much lower with the maximum 

of 40% (AIM). The impact of the fragmentation scenario is mixed across the models, whereas climate 

change results in positive but low cropland development. 

Table 4 about here 350 

Table 5 summarizes the regional and global results for the reference scenario (S1) and the climate change 

scenarios (S4/S6) in physical units (Hectares), as well as the absolute difference and the percentage 

difference compared to 2005. By far the largest cropland expansion is projected in Africa (+121 million 

ha). Latin America and South Asia also see significant increases in land converted to agricultural use, 

driven by socioeconomic changes. The differences due to climate change are largest in North America 355 

(+34 million ha), which is mainly triggered by the high expansion in MAGNET, followed by Latin 

America (+27 million ha). These two regions account for around 15% of the initial cropland area in 2005. 

Globally, almost 200 million ha are converted in the S1 scenario (with no climate change) and 320 million 

ha under climate change (mean). 

Table 5 about here 360 
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4. Discussion of differences in model results 

One possibility is that model structure explains the differences in land use changes across the models. 

Figure 4 plots model types (CGE, PE or spatial PE) on the horizontal axis, land use modeling approach on 

the vertical positive axis and land data source on the vertical negative axis. 365 

Figure 4 about here 

From Figure 4 groups of models can be identified, which have at least a similar approach to modeling 

land-use change. FARM, GTEM, MAGNET and ENVISAGE use the CET approach to allocate land to 

the different uses. MAGNET and ENVISAGE use a land supply curve for modeling cropland expansion. 

While AIM is a CGE model and GCAM is a PE model, they both use a nested logit approach and rely on 370 

data from GTAP and FAO. They differ in how they nest crops within the AEZ structure. GCAM assumes 

that each crop is classified into 18 AEZs in a region and every production is described as a fixed-

coefficient production function, while AIM assumes that each crop sector in a region is defined by 

three aggregated AEZ lands nested by a logit function. 

MAgPIE and GLOBIOM are both spatially explicit land-use models, which base their expansion on the 375 

land rent approach, but use different data sources. EPPA has a similar land rent approach but embeds this 

in a general equilibrium framework with GTAP and the TEM model as the main data sources.  

In addition, we can differentiate two groups according to their trade assumptions. One group is the trade-

restrictive models, which use the Armington assumption (all CGE models) (Hertel et al., 2007) and 

MAgPIE as it uses the self-sufficiency approach with restrictive liberalisation assumptions. On the other 380 

hand, the other PE models (GCAM, GLOBIOM and IMPACT) are more trade responsive due to their 

integrated market representation. More about the differences in trade and the impact on the results is 

discussed in Ahammad et al. (2013) and Nelson et al. (2013b). 
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From the point of results, ENVISAGE and MAGNET are the closest group due to their similar 

implementation. MAGNET is usually a bit higher caused by the different available land pools. In addition, 385 

the elasticity of substitution between land and other factors is five times higher in ENVISAGE and equal 

to 0.5. This induces more substitution effects when the land price gets higher and subsequently the land 

expansion is less. In many cases the group of FARM and GTEM estimate future land use more 

conservative compared to other models. This can be partly explained by relatively low elasticities of 

transformation for allocating land. Furthermore, FARM is the only model that indicates a decrease in 390 

global cropland, and FARM is with AIM the only CGE model that includes forestry within a CET 

structure. In FARM, simulations of future land use are sensitive to two types of parameters: relative rates 

of land-augmenting technical change, and income elasticities of demand for forest products. Exogenous 

rates of yield improvement for managed forests are much lower than rates of yield improvement for crops. 

In contrast, the other CGE models are usually at the upper end, especially MAGNET and AIM and to a 395 

lower extent EPPA and ENVISAGE. The increasing trends in AIM and MAGNET are caused by the 

assumption that still a lot of additional land can be made available for agriculture. In MAGNET these 

potentials are based on the IMAGE 2.4 model which indicates that still a lot of land can be taken into 

production in Africa, South America and North America (especially Canada). There is a high uncertainty 

in estimating the availability of potential agricultural land, and how easily it can be taken into production, 400 

and there is ongoing work to address this issue. Therefore also the global estimates have an upward bias, 

especially for MAGNET, triggered by North America (Canada).  

In other words these countries are on the flat part of the supply curve where more land can be taken into 

production without much additional costs. Furthermore, their production trees imply that land has a low 

degree of substitutability with other factors such as capital and labour. In AIM there are especially limited 405 

substitution possibilities of land with other factors, as compared with the other models in this study (see, 

also Robinson, et al., 2013).  
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Except for Latin America, MAgPIE project only modest expansion of cropland area in the different 

regions. One reason is available land for conversion. In the version of MAgPIE used here, only natural 

vegetation and intact and frontier forest can be converted to cropland. Especially in Sub-Sahara Africa this 410 

makes a huge difference as compared to other models, since MAgPIE already uses the entire land 

potential in the S1 scenario (see also Table S1). In addition, MAgPIE considers land conversion costs (as 

explained in Chapter 2). The same holds for GLOBIOM, which mostly increases cropland in AME and 

OAM. For FSU, GLOBIOM sees considerable decreases due to low profitability of agriculture.   

Another source of uncertainty is the assumed bioenergy demand. Except ENVISAGE, FARM and GTEM, 415 

all models assume first generation bioenergy demand in the future. Whereas, GLOBIOM, MAgPIE and 

GCAM have harmonized their demand for future first generation bioenergy according to current policy 

mandates (constant after 2030), MAGNET, for instance, has relatively high first generation biofuel targets 

in countries like the United States and Brazil. This puts additional pressure on cropland in contrast to 

models with lower bioenergy demand. Land devoted to second generation bioenergy is not reported here, 420 

but still reduces the potential cropland pool for expansion.  

The fragmentation scenario (S2, SSP3) differs from the middle-of-the-road scenario (S1, SSP2) by a much 

higher population growth and a much lower GDP growth. The differences between the scenarios are 

especially large in developing countries. Significant decreasing global cropland is obtained for AIM, 

ENVISAGE, EPPA, GTEM and MAGNET (all CGE models). Hence, it seems that in the CGE models 425 

(except FARM) lower cropland demand due to lower GDP effects dominate the increase in demand for 

cropland due to a higher population. In S2, GDP is 32% lower than in S1 but population only 11% higher 

by 2050. Since most of the crops are consumed via processed products with relatively high income per 

capita demand elasticities, the demand in S2 is lower than in S1 (see Valin et al. (2013) for the differences 

in demand between SSP2 and SSP3 and the income elasticities). For FARM the results are opposite and 430 

there are largely positive effects of SSP3 indicating that population effects dominate GDP effects due 
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primarily to low income elasticities of demand for crops. The PE models are hardly affected by the 

different SSP assumptions. 

Climate change induces a relatively large increase in area in AIM, GCAM and MAGNET. The 

mechanism is similar to the baseline: large potential land availability and in case of MAGNET and AIM 435 

low endogenous yield effects. Other models indicate no or very little cropland change and assume that 

(almost) all negative effects in yield can be compensated by endogenous yield effects in their model. This 

is because land expansion is largely exogenous (IMPACT), adaptation through switches across production 

systems and also reallocation across the SimUs (GLOBIOM) or substitution possibilities (ENVISAGE, 

GTEM) are easy. Moreover, except for MAgPIE, the demand side adjusts due to the climate change 440 

pressure (see Valin et al., 2013) and international trade is rather flexible (especially for IMPACT and 

GLOBIOM with homogenous goods assumption, to a lesser extent for the CGE models with Armington 

assumptions). In MAgPIE, cropland even decreases due to climate change as it adjusts for climate change 

effect by investing in technological change (TC effects all crop groups to the same extent). A second 

reason is the different implementation of climate change induced yield shocks. In contrast to the other 445 

models, climate change impacts are not considered on FPU level, but on grid cell level (see Nelson et al. 

(2013a) for more details). This allows MAgPIE to consider the large heterogeneity of climate change 

within FPU’s and leads to more specialization and lower effects of climate change.  

Turning now to the analysis of the regional specific results, we obtain the largest cropland expansion in 

Africa and the Middle East (AME). EPPA and AIM increase cropland by around 100-120% due to the 450 

combination of a 2.5 fold population increase, economic growth and only 50% yield increase of other 

agriculture products which dominate in AME. Another reason for EPPA is the low land conversion and 

institutional costs in Africa, resulting in a large land supply response. ENVISAGE, GLOBIOM, 

MAGNET and GTEM get an increase in cropland use around 50%. The PE models MAgPIE and 

IMPACT observe a relatively moderate increase of about 15%. Key to this result is the land availability, 455 

or how easy it is to get new land into production. As explained, the potential cropland in MAgPIE in 
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Africa is limited (see also Table S1). In the fragmentation scenario (S2) we see for most models an 

increase in cropland and that differs from the global situation discussed above. Population effects 

dominate GDP impacts in AME. EPPA and GTEM, however, show the opposite with cropland decreases 

a lot in S2 relatively to S1. While cropland productivities are identical in S1 and S2, GTEM enables 460 

differential land productivity shocks across scenarios for livestock. Since a general negative productivity 

shock implied under S2 relative to S1 is distributed across inputs and sectors, including land used in the 

livestock sector, and since the demand for livestock products is relatively price insensitive (a feature of 

GTAP based CDE parameters) livestock sector uses more land per unit of output under S2 relative to S1. 

Consequently, land moves out of crops into pastoral activities displaying a relative decline in the cropping 465 

land. In the case of EPPA, GDP shocks are applied through labour productivity changes, nulling the effect 

of the population shock. The decrease in productivity to reach the prescribed GDP in EPPA is the largest 

in AME and the lowest in EUR, changing agriculture comparative advantage in favor of EUR. 

GLOBIOM and especially GTEM assume a strong reduction in cropland in Australia and New Zealand 

(ANZ) which is in contrast to the historical trend. In GTEM, this has two reasons: First, total agricultural 470 

land drops by 27% significantly over the projection period (In GTEM aggregate land supply for 

agriculture is exogenous at a regional level and based on a 20-year historical trend as described in Chapter 

2); Second, export driven growth in livestock sector raises land rental in livestock sector relative to crops 

sector such that land moves out of crops into pasture27. In addition, one has to consider the distribution of 

agricultural land in ANZ. 90% of agricultural land is used by the livestock sector, while only 10% is used 475 

by cropping sectors in total. Because of this relation, a small increase in the pastoral activity would mean a 

big drop in land used by the cropping sectors in a relative sense.  AIM on the other hand shows a strong 

increase till about 80 million hectares as it assumes that a lot of potential cropland is available. GTEM 

                                                
27 In GTEM, cropping productivity is governed by the crop model results whereas livestock productivity is governed 
by the economy-wide productivity growth implied by the exogenous GDP growth paths. Because GDP differs 
between S1 and S2 livestock productivity is also different. 
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expects also a decrease in cropland in the fragmentation scenario (S2) mainly due to the lower GDP 

growth rate and related demand. Climate change impacts are slightly positive for this region.  480 

In Europe, models agree on the downwards trend for Europe in S1. EPPA even projects a bisection of 

European cropland since in S1 EUR is losing competitiveness in crop production to regions with low costs 

of cropland conversion. In contrast, in S2 EPPA shows that EUR is gaining comparative advantage due to 

the lowest shock in labour productivity compared to other regions, leading to almost 20% more cropland 

use than in S1. Climate change impacts increase cropland use in all models in Europe. The impacts are 485 

highest for AIM and MAGNET as land is more abundant than in other models and the substitution 

elasticity is lower. 

In the region Former Soviet Union (FSU), most CGE models plus GLOBIOM28 see a decrease in area 

until 2050. Among the other models, especially GCAM allows for considerable cropland expansion. This 

expansion in GCAM occurs in part due to low base-year (2005) land profit rates for the dominant 490 

agricultural crops, which become substantially more profitable in the future due to the assumed baseline 

improvements in yields. This expansion also occurs because of a large amount of land that is potentially 

available for agricultural conversion - approximately 1,700 million ha, with about 200 in relatively 

productive AEZs. A bottleneck for this region is the future labour supply that will determine if these land 

will be exploited or not.  495 

In North America, the key difference between the models is the potential land that can be taken into 

production. IMAGE-based models, like MAGNET, show large potential in North America, especially in 

Canada, whereas other models see very limited potential. Hence, cropland expansion in North 

America is probably overestimated in MAGNET, due the combination of a high, and probably 

overestimated availability of potential agricultural land in Canada, and an implied high elasticity in land 500 

supply. The increase in ENVISAGE is much less as these models assume much higher substitution 

                                                
28 Likely due to the non-linear trade cost in GLOBIOM, which tend to maintain some inertia in the trade patterns. 
Hence, a fast crop yield growth, decreasing population and medium strong GDP growth may lead to further land 
abandonment. 
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elasticities between land and other production factors. Almost all models show decreasing land in the 

Fragmentation scenario (S2) as the lower demand effect to a lower GDP in NAM dominates the slightly 

lower population effects in NAM. Climate change impacts are very high in MAGNET and AIM as the 

lower yields lead directly to land expansion as possibilities are there and incentives for higher yields 505 

therefore are low.  

The results for South Asia (incl. China) show in average a moderate increase in cropland. Similarly to 

NAM, MAGNET shows the highest potential of cropland in SAS and EPPA is very restricted in terms of 

land expansion. 

The assumptions on land availability in Brazil and other countries containing a lot of natural vegetation 510 

determine the results in OAM. Another source of uncertainty is that those countries have recently seen a 

considerable slowdown in land clearing (Soares-Filho et al, 2010), indicating a beginning forest transition, 

as observed in countries like Thailand or Vietnam (Meyfroidt et al., 2010; Meyfroidt and Lambin (2011). 

The Fragmentation scenario lowers cropland use in OAM quite substantially in almost all models as the 

“exporter of the world” suffers more than the average from lower economic growth rates. In FARM, 515 

cropland expansion is slightly negative as forestry is more competitive and counterbalances the demand 

from agriculture. 

 

5. Conclusions 

The future of human influence on land is critical from environmental and climate perspectives. The 520 

expansion of cropped area threatens biodiversity, carbon stocks and ecosystem services. Projections of 

future land use have seen widely varying results. We analyze methodological differences among different 

agro-economic models on the basis of the results of a comprehensive agro-economic model 

intercomparison exercise. We harmonized key input data and assumptions across ten different models.   
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Global cropland without the impact of climate change increases on average across all models by almost 525 

200 million hectares between 2005 and 2050 (mean). The standard deviations are high with –40 and +110 

million hectares.  Pasture land area expands in most models that model pasture explicitly. Climate change 

further increases the pressure on land resources by increasing cropland expansion to more than 300 

million hectares in average. Most of the cropland expansion takes place in Africa, followed by Latin 

America due to their large potential of suitable cropland. The sensitivity to climate change in North 530 

America is mainly triggered by the largely uncertain land potential, especially in Canada. Together with 

Latin America most of the cropland is expanded due to climate change in those two regions. In contrast, in 

Sub-Saharan Africa climate change induced cropland expansion is moderate.   

With respect to methods used, all of the models approach land use change from an economic perspective. 

However, since the models come from different backgrounds, their individual focus is very different. 535 

Whereas the CGE models were initially built to analyze macro-economic and trade policy issues and have 

only recently entered the climate change and land use change research fields, most of the PE models 

approaches have a long history of application to agricultural sectors responses, although they do not 

always cover all production factor markets. A particular strength of spatial PEs lies in their fine resolution. 

It allows the models to consider the spatial heterogeneity of biophysical factors, like the soil quality or the 540 

impacts of climate change, which are critical when analyzing land use change. The same holds for the 

different land types, which are much better represented in the spatial PE models than in the stand-alone 

CGE models. In addition to the economic behavior, social, political and cultural factors have to be 

considered as well. Here, land-use modeling is still at the beginning of this trajectory. Modeling future 

technological change is decisive due to its direct link with land expansion. Endogenous approaches are 545 

emerging but still in its infancy. Data and empirical studies are the main challenges. A further big field of 

future research should be devoted to the interaction of cropland and pasture. Too little is known about the 

costs of converting one land type into the other and about the biophysical and socio-economic availability 

of pasture for cropland conversion. Another challenge is the interaction between cropland and managed 
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forest area, which seems to gain competitiveness as energy prices continue to rise. Here the different time 550 

scales of agriculture and forestry is a major challenge for modelers (see e.g. Sohngen et al., 2009). An 

important and critical need for modeling economic land-use change is the availability of data. Although 

the data basis on global land use has improved considerable (see Chapter 2), especially data on potential 

cropland and its suitability on a global level and data about the ease of converting this land into cropland 

is lacking. With the latter, we refer to land conversion costs and substitution elasticities. A lot of 555 

qualitative assumptions are taken in those fields, leading to biased results and a low replicability. 

Especially Africa and the northern countries, like Canada and Russia (due to climate change) leave us with 

high uncertainty concerning potential cropland. In Latin America, data availability is much better but high 

uncertainty exists concerning forest protection.  

During this first comprehensive agro-economic model intercomparison, it became clear that more 560 

emphasis has to be put on the underlying supply elasticities. Unfortunately, on the supply side, too many 

models are relying on complex nested structure for production function or and some are managing land 

use change through explicit conversion costs, without elasticity driven functions. Therefore, estimating 

these elasticities require specific controlled experiment to be performed by all models, which was not 

undertaken under this first round of comparison activities. Such technical investigations are however on 565 

the work plan of the next round of comparison which will start at the end of this year.  Finally, the need 

for validating agro-economic models is apparent. First attempts have been presented at the recent GTAP 

conference (e.g. Baldos and Hertel, 2013; Bonsch et al., 2013) trying to approach the question: How well 

are the approaches suited to describe past and current developments? Hind casting (model starts in the 

past) or back casting (model forecasts into history) would be options to validate the model outcome with 570 

observed data. It is only through such systematic research that it will be possible to eliminate the least 

promising approaches and focus on those that are worthy of further attention. 
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Tables 
 

+ Only land types that are able to change over time (please see also Table 2) 
++ Clusters of 5 arcmin pixels belonging to the same slope, soil, and altitude class, to the same country and to the 780 
same 30 arcmin pixel. 
+++ Terrestrial Ecosystem Model (Felzer et al., 2004) 
* FPU (food production unit) is a river basin with the political boundary of a region.  
** Total agricultural land (crop and pasture land) 
*** Through Delphi methods 785 
 

Table 1: Key parameters for modeling land use

Model 
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el

 T
yp

e 
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an

d 
us

e 
ty

pe
s+  

  

Spatial 
dimen-

sion 

(number 
of units) 

Data Method Bio-
energy 

assump-
tions 

Land use Potential  
cropland 
expansion 

 

Crop 
allo-

cation 

Cropland  
expansion 

AIM CGE 6 AEZ GTAP, 
FAO, 
IMAGE 

GTAP 
AEZ 

nested 
logit 

Within 
nested logit 

1st+ 

2ndgen 

ENVISAGE CGE 2 National 
(114) 

GTAP FAO CET 
function 

Land supply 
curve ** 

No 

EPPA CGE 5 National 
(114) 

GTAP / 
TEM +++ 

 TEM - Conversion 
costs 

1stgen 

FARM CGE 3 AEZ GTAP GTAP 
AEZ 

landrent/ 
market 
clearing 

competition 
with pasture 
+ forest 

No 

GCAM PE 8 AEZ GTAP, 
FAO, 
HYDE 

GTAP 
AEZ 

nested 
logit 

Within 
nested logit 

1st+ 

2ndgen 

GLOBIOM PE 7 SimU ++ 

(200,000) 
GLC2000, 
FAO, 
SPAM 

EPIC  land rent 
/profitabi
lity 

Conversion 
costs + land 
rent 

1st+ 

2ndgen 

GTEM CGE 2 National 
(114) 

GTAP based on 
historic 
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CET 
function 

Within CET No 

IMPACT PE 2 FPU's * 
(251) 

FAO, 
SPAM 

Expert 
opinion 
*** 

price 
elast. 

Exogenously 
given 

1stgen 

MAGNET CGE 3 National 
(114) 

GTAP, 
FAO, 
IMAGE 

IMAGE CET 
function 

Land supply 
curve ** 

1stgen 

MAgPIE PE 3 (5) 0.5°-Grid 
(59,199) 

own data 
base 

own data 
base 

land rent Conversion 
costs 

1stgen 
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* short rotation plantations as a separate land category 

** These land use types can be defined within or outside the land supply curve dependent on whether they can 790 
be transformed into agricultural land. Shifts are determined within IMAGE model.  

*** These dynamic land types in MAgPIE have been under revision for the time of the comparison and, 
therefore, have been put to static for this exercise. 
+ IMPACT differentiate between agricultural and non-agricultural land 

 795 
Table 2: Land Types represented in the different models (Dynamic means that the land can 

change over time, static means the amount of land stays constant and “-“ means that the 
land category is not existent in the model.) 
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AIM dyn dyn dyn dyn dyn - 

ENVISAGE dyn dyn - - - - 

EPPA dyn dyn static dyn dyn - 

FARM dyn dyn dyn static - - 

GCAM dyn dyn dyn dyn dyn static 

GLOBIOM * dyn dyn dyn dyn dyn static 

GTEM dyn dyn - - - - 

IMPACT+ dyn - - - - - 

MAGNET dyn dyn static** static** static** static** 

MAgPIE dyn static*** static*** dyn dyn static 
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 800 

Scenario Socio-Economic Pathway Climate Change 

Reference (S1) SSP2 constant climate 

Fragmentation (S2) SSP3 constant climate 

CC-LPJmL (S4) SSP2 HadGEM 8.5 with LPJmL 

CC-DSSAT (S6) SSP2 HadGEM 8.5 with DSSAT 

Table 3: Scenario Overview 
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-16 
+ 

+25 
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+ 
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o- 
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+23 
- 

+17 

+37 
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+ 
- 
+ 

+44 
- 

+10 
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- 
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+19 
- 
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- 
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+ 
+ 
+ 
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o+ 

+11 

+11  
o- 
+ 

+ 
- 
+ 

+ 
o- 
+ 

+18 
o+ 
+ 

+26 
- 

+18 
2050  cropland change in S1 between 2005 and 2050 
SSP3 cropland change in S2 compared to S1 in 2050  805 
CC cropland change in S4+S6 (average) compared to S1 in 2050  
+  cropland change between +1 and +9%  
o+   cropland change between 0% and +1% 
o-   cropland change between -1 and 0% 
-   cropland change between -9 and -1% 810 

 
Table 4: Change in cropland cropland over time in S1 (“2050”) and across scenarios 

compared to S1 (“SSP3” and “CC”) (in %) 
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Region Cropland expansion by 2050 Difference due to climate change 

in S1 

(106 ha) 

in S4/S6 

(106 ha) 

absolute 

(106 ha) 

as share of total 
cropland  

AME 145.6 168.5 22.9 7.7 % 

ANZ -0.4 3.1 3.5 6.7 % 

EUR -20.1 -13.3 6.8 5.3 % 

FSU -11.6 1.8 13.4 6.7 % 

NAM 8.1 41.8 33.7 14.8 % 

OAM 56.7 83.7 27.0 16.6 % 

SAS 27.6 51.0 23.4 5.0 % 

World 192.7 317.2 124.5 8.1% 

Table 5: Impacts of Climate Change on cropland expansion (mean of all models). Figure 1 
and 3 show the standard deviations and the outliers to the respective means. 815 
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Figures 820 
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Figure 1: Development of global cropland in S1 (cropland from the models is normalized to 835 
HYDE data from 2005) (left graph) and change in cropland between 2005 and 2050 in S1, 

S2, S4 and S6 (mean and standard deviation) (right graph). The boxplots display the 
median (black line), the upper and lower quartile (box), the minimum and maximum of the 

distribution (whiskers) and the outlier (dots). (Figure S5 in color) 

 840 
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 845 

Figure 2: Growth of global pasture area in 2050 (compared to 2005) for AIM, ENVISAGE, 
FARM, GCAM, GLOBIOM, GTEM and MAGNET (Figure S6 in color) 
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Figure 3: Development of cropland in in the 
each of the 7 regions in S1 (cropland from the 

models is normalized to HYDE data from 
2005) (left graph) and change in cropland 

between 2005 and 2050 in S1, S2, S4 and S6 
(mean and standard deviation) The boxplots 

display the median (black line), the upper 
and lower quartile (box), the minimum and 
maximum of the distribution (whiskers) and 

the outlier (dots). (Figure S7 in color) 
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Model approach 
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Figure 4: Structuring of models according to their used data and methods  
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