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Abstract. Climate extremes can trigger exceptional re-

sponses in terrestrial ecosystems, for instance by altering

growth or mortality rates. Such effects are often manifested

in reductions in net primary productivity (NPP). Investi-

gating a Europe-wide network of annual radial tree growth

records confirms this pattern: we find that 28 % of tree ring

width (TRW) indices are below two standard deviations

in years in which extremely low precipitation, high tem-

peratures or the combination of both noticeably affect tree

growth. Based on these findings, we investigate possibilities

for detecting climate-driven patterns in long-term TRW data

to evaluate state-of-the-art dynamic vegetation models such

as the Lund-Potsdam-Jena dynamic global vegetation model

for managed land (LPJmL). The major problem in this con-

text is that LPJmL simulates NPP but not explicitly the ra-

dial tree growth, and we need to develop a generic method

to allow for a comparison between simulated and observed

response patterns. We propose an analysis scheme that quan-

tifies the coincidence rate of climate extremes with some bi-

otic responses (here TRW or simulated NPP). We find a rel-

ative reduction of 34 % in simulated NPP during precipita-

tion, temperature and combined extremes. This reduction is

comparable to the TRW response patterns, but the model re-

sponds much more sensitively to drought stress. We identify

10 extreme years during the 20th century during which both

model and measurements indicate high coincidence rates

across Europe. However, we detect substantial regional dif-

ferences in simulated and observed responses to climatic ex-

treme events. One explanation for this discrepancy could be

the tendency of tree ring data to originate from climatically

stressed sites. The difference between model and observed

data is amplified by the fact that dynamic vegetation mod-

els are designed to simulate mean ecosystem responses on

landscape or regional scales. We find that both simulation re-

sults and measurements display carry-over effects from cli-

mate anomalies during the previous year. We conclude that

radial tree growth chronologies provide a suitable basis for

generic model benchmarks. The broad application of coinci-

dence analysis in generic model benchmarks along with an

increased availability of representative long-term measure-

ments and improved process-based models will refine pro-

jections of the long-term carbon balance in terrestrial ecosys-

tems.

1 Introduction

Extreme climate events are known to trigger exceptional re-

sponses in terrestrial ecosystems (Reyer et al., 2012; Smith,

2011; Zscheischler et al., 2014a, c). Understanding which
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ecosystem processes exceed their natural range of variabil-

ity in the wake of environmental extremes is crucial for an-

ticipating the fate of land ecosystems under climate change

scenarios (Cotrufo et al., 2011; Jentsch et al., 2011). For in-

stance, anomalous ecosystem responses induced by drought

events (Schwalm et al., 2012) may decrease the economic

returns from forest ecosystems (Hanewinkel et al., 2013) or

lead to substantial net CO2 emissions, amplifying climate

change (Reichstein et al., 2013). One prominent example is

the 2003 heat wave in Europe, when carbon emissions of

∼ 0.5 Pg C yr−1 were released from forests that usually act as

carbon sinks (Ciais et al., 2005; Janssen et al., 2003). How-

ever, it is important to note that extreme events may have

differential effects in different biomes, e.g. enhanced vegeta-

tion growth during the 2003 heat wave at high elevations in

the Alps (Jolly et al., 2005).

Water stress and high temperatures reduce evapotranspi-

ration and productivity in many mid- and low-latitude areas

(Granier et al., 2007). Yet, the general applicability of such

studies is challenged by the different climate responses of

forests across biomes and tree species (Babst et al., 2013b;

Granier et al., 2007; Lindner et al., 2010). Furthermore, the

extent to which increasing amounts of atmospheric CO2 may

serve as a buffer against drought by enhancing water use ef-

ficiency is being discussed (e.g. Andreu-Hayles et al., 2011;

Penuelas et al., 2011; Keenan et al., 2013). The magnitude

of these competing effects remains poorly constrained and

may differ among tree species or tree age classes (Gedalof

and Berg, 2010) and likewise depends on nutrient availabil-

ity (e.g. Norby et al., 2010). Another known, yet understud-

ied aspect of forest growth dynamics is the role of lagged

responses to the previous year’s climate extremes. These

can influence current forest productivity, e.g. via decreased

nonstructural carbohydrate reserves (e.g. Dietze et al., 2014;

Fritts, 1976; Richardson et al., 2013) or altered mortality

rates (Bréda et al., 2006; Moreno et al., 2013). Carbon se-

questered in the second half of the growing season is gener-

ally not used for radial growth but supports a combination of

cell-wall thickening and storage (Babst et al., 2014a).

The growing recognition of the role that climate extremes

play in land ecosystems (e.g. Williams et al., 2014; Zscheis-

chler et al., 2013) and the implications for global carbon

cycling requires developing new data analysis tools. While

there is a large body of literature on the quantification of

extremes in climate variables, we lack techniques to quan-

tify extremes in biospheric responses and most importantly a

solid framework for linking climatic and biospheric extreme

events (Smith, 2011). A suitable methodological approach

in this direction requires detecting both instantaneous and

lagged responses of a biospheric variable (e.g. tree ring width

index – TRW – and net primary productivity – NPP) to cli-

matic extremes (e.g. temperature, precipitation or the com-

bination of both). We therefore propose a generic method

to evaluate the impacts of climate extremes on biospheric

variables; this method quantifies the coincidence rates of

extremes in long climatic and biospheric time series (> 50

years). Thereby, we create a unit-free metric that enables us

to compare different measures of vegetation productivity. We

apply coincidence analysis, a method that was put forward by

Donges et al. (2011) in a different context. We exemplify our

approach by evaluating a set of European tree ring data and

the output from a dynamic vegetation model (LPJmL) model.

We focus on exploring the potential of annual radial

growth increments (tree ring chronologies) for model eval-

uation purposes. This data source is recognized as one of

the few opportunities for quantifying ecosystem responses

to multiple extreme events on long-term timescales (Babst

et al., 2012). Tree ring chronologies can, with certain re-

strictions, be regarded as proxies for the variability in stand-

scale productivity and offer a possibility to relate long-term

tree growth to climate fluctuations and extremes on regional

to continental scales (e.g. Babst et al., 2012; Battipaglia et

al., 2010). Likewise, tree rings show pronounced lagged ef-

fects and a positive relationship with previous fall’s climate

(Wettstein et al., 2011). Depending on their sign, climate

anomalies in this season may either enhance or mitigate the

impact of extremes on forest growth in the subsequent year

because they directly affect the growing season length and,

related to this, the replenishment of carbon storage (Kuptz et

al., 2011). Also, the interaction of carbon accumulation with

seed production (i.e. mast years) may sometimes lead to low-

growth anomalies regardless of climatic conditions. Such

masting events and non-climatic drivers of forest growth (e.g.

management or disturbances) may challenge the interpreta-

tion of biotic responses to climate extremes because they al-

ter carbon allocation patterns (Mund et al., 2010). Neverthe-

less, tree ring chronologies are widely regarded as robust and

very unique long-term indicators of biospheric responses to

climate anomalies (Babst et al., 2014b; Jones et al., 2009;

Pederson et al., 2014).

Despite extensive observational studies, the impacts of

extreme events under current and past environmental con-

ditions remain insufficiently documented. This is a natural

consequence of the low occurrence probability of the events

along with chronically scarce long-term observations (Innes,

1998; Smith, 2011). Hence, it is difficult to project the im-

pacts of expected changes in frequencies and intensities of

extreme events (Barriopedro et al., 2011; Field et al., 2012)

on the terrestrial carbon cycle (Reichstein et al., 2013). In

this context terrestrial biosphere models play a crucial role in

quantifying the impact of climate extremes on the terrestrial

carbon cycle and, most importantly, on NPP (Keenan et al.,

2012; Zscheischler et al., 2014b; Williams et al., 2014). One

prerequisite is, however, that models are well tested for their

capacity to reproduce the relevant signatures of extreme im-

pacts in the recent past. Year-to-year variation and impacts

of extreme events in these models are best reflected by simu-

lated NPP, and we analyse the impact of climate extremes on

simulated NPP within our coincidence framework, thereby

considering the role of lagged events.
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Our scale-free approach allows us to directly compare re-

sponse patterns identified in the observed tree rings with sim-

ulated productivity, which is a straightforward way of testing

models for their capacity to reproduce the relevant signatures

of extreme impacts in the recent past. Indeed, it has been rec-

ognized that it is essential for advanced modelling studies to

converge to suitable benchmarks for testing terrestrial bio-

sphere models (cf. Dalmonech and Zaehle, 2013; Kelley et

al., 2013; Luo et al., 2012).

For instance, Luo et al. (2012) conclude that suitable

model benchmarks are characterized by “objectivity, effec-

tiveness, and reliability for evaluating model performance”.

Hence, the goal has to be a suite of metrics that can em-

brace characteristic response functions. Along these lines,

our study evaluates the potential of the coincidence analysis

framework to become an element of a generic model bench-

marking system. We address this issue by working on the

following specific questions:

– do state-of-the-art dynamic vegetation models agree

with observed responses to climate extremes?

– how can long-term observations help us understanding

biotic responses to extreme events?

2 Materials and methods

2.1 Observed and modelled data

2.1.1 Measurements of tree ring widths

We compiled TRW chronologies from 606 sites across Eu-

rope and parts of northern Africa (10◦W–40◦ E, 30◦–70◦ N).

These data represent a subset of the European tree ring net-

work (Babst et al. 2013; see http://onlinelibrary.wiley.com/

doi/10.1111/geb.12023/suppinfo), which includes measure-

ments from 36 tree species. We grouped sites into three

categories: common needle-leaved species (e.g. Larix de-

cidua, Picea abies, Pinus Syvestris, Abies alba; 116 sites),

broadleaved species (e.g. Fagus silvatica, Quercus robur,

Quercus petraea; 378 sites) and other species (mainly

Mediterranean conifers; 112 sites). For the detection of

growth extremes, low frequency variability including the bi-

ological age/size trend characteristic of tree ring data was

removed from the constituent tree ring time series at each

site using a spline detrending with a 50 % frequency cut-

off response at 30 years (Babst et al., 2012). Prior to de-

trending, the variance of each time series was stabilized us-

ing an adaptive power transformation as described by Cook

and Peters (1997) and the mean tree ring chronologies were

corrected for changes in sample replication (Frank et al.,

2007) to reduce biases in the detection of growth extremes

induced by variance changes over time. The tree ring de-

trending and standardization procedure converts the tree ring

width data into dimensionless indices (so-called tree ring

width indices, TRWs) with a mean of approximately unity.

The tree ring data set spans most of terrestrial Europe, but is

not evenly distributed across the continent (see Babst et al.,

2013, and Fig. 3). Conifer sites are most frequent in Scandi-

navia, in the Alpine region and in the Mediterranean, while

broadleaved species are predominantly located in central Eu-

rope and northern Spain (Babst et al., 2013).

2.1.2 Climate data

We use the WATCH-ERA-Interim (European global atmo-

spheric Re-Analysis data from the Water and Global Change

EU-Project) daily climate data at 0.25 latitude/longitude res-

olution based on downscaled WATCH climate data (Wee-

don et al., 2011) for the years 1901–2001 and extended to

2010 using downscaled ERA-Interim climate data (Dee et

al., 2011). Daily temperature, precipitation and solar radia-

tion were used to drive the model runs. For the coincidence

analysis with TRW and simulated NPP, we calculate mean

annual temperature (T ) and annual precipitation sums (P )

over the growing season from the climate data set (see be-

low).

2.1.3 Simulated net primary productivity (NPP)

Simulations of monthly NPP are performed with the dynamic

global vegetation model LPJmL (Bondeau et al., 2007; Sitch

et al., 2003) with a fully coupled carbon and water cycle

(Gerten et al., 2004). The model is driven by temperature,

radiation, precipitation and atmospheric CO2 concentration.

The productivity of vegetation (GPP) for each plant func-

tional type (PFT) is simulated by a process-based photo-

synthesis scheme based on Farquhar (Farquhar et al., 1980)

that adjusts carboxylation capacity and leaf nitrogen season-

ally and within the canopy profile (Haxeltine and Prentice,

1996). Net primary production (NPP) is derived by subtract-

ing maintenance and growth respiration from GPP. LPJmL

simulates the allocation of accumulated carbon to the plant’s

compartments (leaves, stem, root and reproductive organs)

according to allometric constraints. Responses of the mod-

elled vegetation to climate extremes include the inhibition of

photosynthesis and increased maintenance respiration at high

temperatures and reduced stomatal conductance and thus re-

duced photosynthesis with water stress.

For the present study, we ran LPJmL in its natural veg-

etation mode not considering land management and land-

use change. Process-based simulation of fire is included by

the so-called SPITFIRE model, which is coupled to LPJmL

(Thonicke et al., 2010). Simulation runs were performed at

0.25◦× 0.25◦ spatial resolution based on the WATCH-ERA-

Interim daily climate data. A global value of annual atmo-

spheric CO2 concentration was prescribed for the 1901–2010

period based on data from the NOAA Earth System Research

Laboratory (NOAA ESRL, 2013). The transient runs from

1901 to 2010 were preceded by a spin-up of 1000 years using

www.biogeosciences.net/12/373/2015/ Biogeosciences, 12, 373–385, 2015
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30 years of the climate drivers in order to obtain equilibrium

carbon pools and fluxes and vegetation cover. Model param-

eterization and soil types followed Gerten et al. (2004) and

Sitch et al. (2003).

2.1.4 Determination of the growing season for TRW

and simulated NPP

To determine the length of the growing season (GSobs),

we use the fraction of photosynthetically absorbed radiation

(FAPAR) derived from remote sensing and interpolated to

daily values (from the Moderate-resolution Imaging Spectro-

radiometer (MODIS) Pinty et al., 2011) at each geographical

coordinate of a tree ring time series. The MODIS-TIP (two-

stream inversion package) provides broadband albedo values

resulting in time series that are comparable across vegetation

types. Given that there is no commonly accepted approach to

derive growing season length from remote sensing observa-

tions via a threshold approach (see, e.g., White et al., 2009),

we apply a mixture of absolute and relative heuristic criteria.

First, we flagged days as non-growing season when FAPAR

values drop below 0.12 or are below −0.8 standard devia-

tions of FAPAR. To ensure that the second criterion does not

affect evergreen sites, we reset all values > 0.43 to growing

season. Importantly, we considered only the longest phase of

points that follow these criteria to be GSobs, and we only al-

low for one single GSobs in Europe as we assume that double

growing seasons do not play a substantial role in the lati-

tudes under scrutiny. The dynamic definitions of the GSobs

derived from FAPAR allow deriving typical growing seasons

at each geographical point, thereby assuming that the aver-

age climate data for these days of the year are robust proxies

for the growing season throughout the entire observational

period.

To determine the length of the growing season for each

simulated grid cell (GSsim), we use the simulation results for

NPP. As GSsim we define here the longest period of subse-

quent months per year when the monthly NPP is greater than

0.

2.1.5 Preprocessing of climate data, TRW and

simulated NPP for coincidence analysis

The coincidence analysis requires pairing each point in the

TRW data set with local T and P variability. Accordingly,

each TRW site is associated with the site-specific (i.e. geo-

graphically encompassing) climate grid cell of the WATCH-

ERA-Interim data at 0.25◦× 0.25◦ spatial resolution. In this

way, we obtain 606 pairs of time series representing tree ring

growth and climatological data. Monthly temperature and

precipitation data are averaged and summed, respectively,

over the growing season (see Sect. 2.1.5). The maximum

temporal overlap between each pair of time series determines

the length of the period for coincidence analysis.

To obtain pairs of time series for the comparison of sim-

ulated NPP with P and T in a comparable way as for TRW,

we calculate the sum of simulated NPP over the growing sea-

son (see Sect. 2.1.5). Analogously to the coincidence analy-

sis between TRW and climate data, we compute the average

temperature and total precipitation over the growing season,

where NPP > 0. We obtain pairs of simulated NPP and cli-

mate drivers for each grid cell.

The TRW data set consists of 606 time series at selected

measurement sites throughout Europe. For comparison with

simulated NPP, we select the corresponding grid cell centres

nearest to the measurement sites.

2.2 Coincidence analysis and definition of extreme

events

For our analysis, we search for coincidences (Donges et al.,

2011) between specific percentiles in the pairs of biotic and

climate time series. In the case of TRW and NPP, values

smaller than the 10th percentiles were used (low-productivity

extremes). In the climate records, all values exceeding the

90th percentiles of mean growing season temperature (hot

extremes) and being less than the 10th percentile of the to-

tal growing season precipitation (dry extremes) were defined

as extreme events. This combination of climatic and biotic

extremes tests the link between extremely high temperature,

low precipitation or the combination of both in causing low-

growth responses at all sites. At alpine or boreal sites, partic-

ularly high temperatures may even lead to better growth con-

ditions (e.g. Jolly et al., 2005). Similarly, extremely low tem-

peratures during the growing season could cause low-growth

extremes, e.g. in the Alps or the boreal zone (e.g. Babst et al.,

2012). We therefore interpret our results carefully regarding

these issues.

To obtain the number of coincidences, K , between two

given time series, we count the number of extreme events that

both time series have in common simultaneously or allowing

for a predefined lag. For the determination ofK there are two

parameters in the coincidence analysis: (1)1t determines the

width of the time window (in years, y) in which a TRW or

NPP extreme can fall after a P , T or combined P and T

extreme. For 1t = 1 y, only coincidences between TRW or

NPP with P , T or combined P and T extremes during 1

year are counted. For 1t = 2 y, coincidences between TRW

or NPP with P , T or combined P and T extremes during a

time window of 2 years are counted; all coincidences falling

in this time window are counted as K = 1. (2) τ determines

the time lag between the TRW or NPP and the P , T or com-

bined P and T extreme. We distinguish between 1t = 1 y

and τ = 0 y (which account for coincidences occurring in the

same year, i.e. instantaneous growth responses) and between

1t = 1 y and τ = 1 y to investigate lagged effects, i.e. ex-

treme growth responses in the following year (Fig. 1; see also

Donges et al., 2011). We then normalize K by the total num-

ber of extreme events N in the climate time series of P , T

Biogeosciences, 12, 373–385, 2015 www.biogeosciences.net/12/373/2015/
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Figure 1. Example of coincidence analysis between a time series

of (a) precipitation (P ) and (b) tree ring width indices (TRW). The

dashed horizontal line represents the lower 10 % quantile. Events

in precipitation or tree ring width that fall below this threshold

are counted as extreme events, as indicated by the dotted vertical

lines for P (blue) and TRW (red). Grey bars indicate the coinci-

dence of extreme P and TRW events within a time window of 2

years (1t = 2) and are counted as one coincidence. In this exam-

ple, we count 11 climate extremes and 7 coincidences with TRW

for 1t = 2, resulting in a coincidence rate of r = 7/11= 0.64. Note

that if there are two TRW extremes coinciding with one P extreme

in the time window of 1t = 2, this would account for only one ex-

treme. The letters “I” and “L” indicate instantaneous and lagged

effects (i.e. carry-over effects), respectively. When setting the time

window to 1t = 1 and τ = 0, five coincidences are counted and for

1t = 1 and τ = 1, two coincidences are counted in this example.

or combined P and T to obtain the coincidence rate r with

0≤ r ≤ 1 (0 if no coincidences occur and 1 if the maximum

number of possible coincidences occurs).

2.3 Testing the significance of coincidences

Autocorrelations as well as the specific shape of the distribu-

tion of amplitudes in the considered climatological and biotic

time series can have a profound influence on the observed bi-

variate coincidence rates. To control for these effects and as-

sess the statistical significance of the computed coincidence

rates r , we create 1000 iAAFT (iterative Amplitude Adjusted

Fourier Transformation; Schreiber and Schmitz, 2000; Ven-

ema et al., 2006) surrogate time series for each site and grid

cell. The iAAFT surrogates are fully statistically indepen-

dent from the original time series but characterized by the

same amplitude distribution and, most importantly, the same

autocorrelation properties. Hence, we can investigate the co-

incidence rate of extremes that would be expected to arise

by chance between two time series of a given autocorrelation

structure. We calculate for each site and grid cell the distribu-

tion of the coincidence rates of the iAAFT surrogate time se-

ries. The coincidence rate r (calculated from climate and bi-

otic extremes) is assumed to be significant if it is higher than

the 90 % percentile of the surrogate distribution. In the fol-

lowing analysis, we only consider TRW sites and simulated

grid cells with a significant coincidence rate r . For brevity,

these locations are subsequently addressed as significant sites

or grid cells.

2.4 Detection of European-wide extreme years

To identify years with a pronounced European-wide forest

response to climate extremes, i.e. years that yield a high num-

ber of coincidences across the continent, we take the sum

over all coincidences at significant sites/grid cells occurring

during a specific year and divide it by the number of all sig-

nificant sites/grid cells, again yielding a number between 0

and 1 (0 if no coincidences occur at significant sites/grid cells

and 1 if all significant sites show a coincidence in the year

considered). As “European-wide extreme years” we define

all values one standard deviation above the average annual

significant coincidence rate.

2.5 Analysis of downregulation of forest growth by

extreme events

To estimate the potential downregulation of forest growth by

extreme events, we assume that years with coincidences of

extremes in P , T and combined P and T with TRW and NPP

represent extreme years for the ecosystem. For this analysis,

the TRW and NPP time series were rescaled to zero mean and

unit variance (z-scores) in order to guarantee comparability

in the summary statistics (note that the coincidence analysis

itself is scale free and does not require this preprocessing

step). We then select z-scored TRW and NPP values during

extreme years, i.e. during years with significant coincidences

between extreme response and extreme climate. We calculate

the proportion of z-scored NPP and TRW values during P ,

T and P and T extremes below two standard deviations in

relation to the total number of TRW and NPP extremes.

3 Results and Discussion

In this section we first discuss the general picture of the im-

pact of climate extremes on measured TRW and modelled

NPP and then focus on patterns of spatial and temporal coin-

cidence rates at significant sites/grid cells.

3.1 Downregulation of forest growth by extreme events

To estimate potential effects of extreme events on tree growth

and productivity, we quantified TRW and NPP anomalies

in years with extreme climate conditions. Generally carbon

losses are strongest during combined precipitation and tem-

perature extremes, particularly for TRW. A total of 815 TRW

extremes significantly coincide with P , T and P and T ex-

tremes. Thereby, 9, 6 and 13 % (34, 28 and 38 %) of the TRW

www.biogeosciences.net/12/373/2015/ Biogeosciences, 12, 373–385, 2015
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Figure 2. Histograms of deviations of growth responses of TRW (a, b, c) and NPP (d, e, f) during extreme years in units of standard deviations

(z-scores). The vertical dashed grey line marks two negative standard deviations. The numbers denote the proportion of coinciding events

below two standard deviations (see also Table S1 in the Supplement).
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Figure 3. Extreme years during the period 1901–2010 as detected by the coincidence analysis for TRW and NPP (only at TRW sites) with

precipitation (upper two rows), temperature (middle two rows) and combined precipitation and temperature (lower two rows) extremes. Black

bars indicate that extreme years were detected in both TRW and in NPP.
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values are below two (one) standard deviations in years with

extremely high temperatures, low precipitation and com-

bined temperature and precipitation extremes, respectively

(Fig. 2a, b, c, Table S1). At TRW sites, 1491 extremes in

simulated NPP are detected. The higher number of detected

NPP extremes may partially reflect the fact that the same cli-

mate forcing data are used to drive NPP simulations (result-

ing in a higher probability of coincidences between climate

and NPP extremes than coincidences between climate and

TRW extremes). Of the simulated NPP values at TRW sites,

20, 3 and 11 % (56, 10 and 27 %) are below two (one) stan-

dard deviations in years with P , T and combined P and T

extremes, respectively (Fig. 2d, e, f, Table S1). The strong re-

duction in simulated NPP during precipitation extremes may

be related to an overestimation of the modelled P sensitivity

of NPP (Babst et al., 2013; Beer et al., 2010). Our definition

focusses on extremes during the growing season and thereby

neglects any impacts of extreme events that occur outside the

growing season which could have significant impact on forest

productivity, such as respiratory carbon losses in autumn and

winter depleting carbon storage pools, and reduce growth in

the following year (e.g. Piao et al., 2008). Extremely warm

temperatures in winter may also increase the snow amount in

the boreal zone, leading to a delayed start of the next grow-

ing season (Helama et al., 2013). By contrast, warm win-

ter/spring temperatures are beneficial for an earlier start of

the next growing season (Polgar and Primack, 2011; Rossi et

al., 2014). Keeping this in mind, our results for growing sea-

son extremes (Fig. 2) suggest that TRW and simulated NPP

show subtle differences in their response to different climate

extremes and that the seasonality of climate anomalies may

be of vital importance in this respect. Hence, in the follow-

ing, we carry out an in-depth investigation as to how these

differences can be attributed.

3.2 Extreme years as determined from coincidences

across Europe

To analyse the responses of forest growth to drought and heat

extremes in models and observations, it is necessary to first

evaluate whether the timing of the climate-driven reductions

in TRW and simulated NPP events match reasonably well.

In this context, we determine European-wide extreme years

as described in Sect. 2.4. For both TRW and simulated NPP,

we identify the years 1911, 1921, 1945, 1947, 1976 and 2003

(Fig. 3, dark grey boxes) as dry extremes with substantial bi-

otic impacts. Extremely hot years are detected in 1934, 1945,

1947, 1949, 1950, 2002 and 2003 (Fig. 3). Coincidences of

combined P and T extremes with NPP and TRW are de-

tected in 1945, 1947, 1994 and 2003 (Fig. 3). These results

are in good agreement with earlier studies that identified ex-

treme events during these years. In their analysis, Babst et

al. (2012) show that 1947 had extremely low growth in south-

ern, southeastern and central Europe due to dry conditions.

Neuwirth et al. (2007) reveal 1921 as a negative extreme

Figure 4. Map of coincidence rates between extremes in simulated

NPP and precipitation for (a) broadleaved and (b) needle-leaved

trees. Coincidence rates between extremes in simulated NPP and

temperature for (c) broadleaved and (d) needle-leaved trees. Coinci-

dence rates for simulated NPP and combined precipitation and tem-

perature extremes for (e) broadleaved and (f) needle-leaved trees.

The colour bar gives the coincidence rate r for the coincidence anal-

ysis with 1t = 2. Only grid cells with significant coincidence rates

are coloured; nonsignificant grid cells are marked in grey. Note that

the significance level for each grid cell is determined separately.

year in the Rhône Valley, Jura, northern Bavaria and north-

ern Germany and 1947 as a negative extreme year in west-

ern Poland, northwestern Germany and Slovenia. Battipaglia

et al. (2010) reconstructed temperature extremes from tree

rings and found extremely warm conditions in 1911, 1921,

1964 and 2003. Extreme fire years are reported in 1947 and

1976 in Germany (Goldammer, 2001). In 1994, temperature

anomalies of up to 2◦ C in comparison to 1961–1990 were

recorded throughout Europe (Halpert et al., 1995). The ef-

fects of the extreme year 2003 in Europe are well known

(e.g. Ciais et al., 2005). This list demonstrates the capability

of our coincidence analysis to identify European-wide heat

and drought extremes.

3.3 Spatial distribution of responses to extreme events

In the next step, we focus on the regional patterns of bi-

otic responses revealed by coincidence analysis. The value
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Figure 5. Map of tree ring sites and coincidence rates at each site.

Coincidence rates between extremes in TRW and precipitation for

(a) broadleaved, (b) needle-leaved and (c) other tree species are

provided. In the middle row (d, e, f), coincidence rates between

extremes in TRW and temperature for the different tree species are

displayed. In the lower row (g, h, i), coincidence rates for extremes

in TRW and combined precipitation and temperature extremes are

given. Nonsignificant sites are marked with transparent dots. The

colour bar gives the coincidence rate r for the coincidence analysis

with 1t = 2.

of tree ring records as model benchmarks under climate ex-

tremes will depend crucially on the matches in these spatial

patterns. Figure 4 identifies areas where simulated NPP of

broadleaved and needle-leaved trees shows significant coin-

cidences with precipitation, temperature and combined tem-

perature and precipitation extremes, respectively. Figure 5

shows the analogue picture for TRW. Generally, we find

more significant grid cells with high coincidence rates be-

tween simulated NPP and precipitation (n= 259 in grid cells

at TRW site) than with temperature extremes (n= 74 in grid

cells at TRW site; Fig. 4 upper row) during the growing sea-

son. As mentioned before, this may be related to an overes-

timation of the modelled P sensitivity of NPP. It also shows

that water is an important driver at many sites particularly un-

der extreme conditions (Reichstein et al., 2013; Zscheischler

et al., 2014c). For the observed TRW values, we find almost

the same amount of significant sites for coincidences with P

(n= 189) as for coincidences with T (n= 139; Fig. 5). In

contrast to observed TRW, simulated NPP displays generally

low or insignificant coincidence rates with high -temperature

and low-precipitation extremes in mountainous areas (Figs. 4
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Figure 6. Significant coincidence rates of TRW (red dots) and sim-

ulated NPP at TRW sites (blue dots) with (a) precipitation, (b) tem-

perature, and (c) the combination of both, in climate space (as

given in 2.5◦ C temperature bins, x axis) averaged over all tree

species. Sites/ grid cells with significant coincidences are aggre-

gated in 2.5◦ C mean annual temperature bins. Error bars give the

standard deviation among sites/grid cells, and numbers in the plot

denote the n of significant sites/grid cells for each 2.5◦ C tempera-

ture bin (numbers for TRW in red and for simulated NPP in blue).

Note that for some bins, for TRW or site NPP only one value exists.

and 5). This may be due to the spatial resolution of the cli-

mate data, where grid cells cannot resolve climatic differ-

ences along steep altitudinal gradients in the Alps and the

related responses displayed by TRW (e.g. King et al., 2013).

Climate extremes (low precipitation, high temperatures) in

such areas may therefore not limit simulated NPP during the

growing season. This calls for higher-resolution long-term

climate data sets (or ideally a denser network of climate sta-

tions in complex terrain) to better capture site-level climate

extremes and improve their representation in simulated NPP

anomalies.

Drought conditions may not only result from a lack of

rainfall but also from high temperature, which drives vapour

pressure deficit in dry areas such as the Mediterranean region

(Williams et al., 2012). Therefore, we also show the coinci-

dence rates r for the combined P and T extremes (Figs. 4

and 5, lower row). A characteristic feature is that these coin-

cidence rates are generally lower because combined P and T

events are rare. However, we find a relatively high number of

significant grid cells with combined events (n= 243 in grid

cells at TRW site, n= 242 for TRW out of 606 TRW sites).

Zonal patterns become more obvious through binning

of the results (Fig. 6). For both, simulated and observed

growth responses, we find a ∼ 40 % probability that a cli-

matic extreme is associated with a biotic extreme, i.e. re-

duced growth response in the current or subsequent year. We

find a ∼ 10 and ∼ 20 % probability that combined tempera-

ture and precipitation extremes are associated with a biotic

extreme for TRW and NPP, respectively. The simulated NPP

at tree ring sites displays an increase in the coincidence rate

r along a mean annual temperature gradient with lower r
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Figure 7. Instantaneous (r calculated for 1t = 1 and τ = 0, x axis)

vs. lagged (r calculated for 1t = 1 and τ = 1, y axis) coincidences

of extreme events. The size of the dots is proportional to the amount

of significant coincidences, i.e. larger dots indicate a higher number

of sites/grid cells with significant coincidences. Note that the reg-

ular grid of coincidence rates results from consistent time series

length for simulated NPP, while the length of the time series for

TRW differs.

in low-temperature zones and higher r in high-temperature

zones (Fig. 6, blue dots). The coincidence rates between sim-

ulated NPP and P range from r ≈ 0.38 to 0.54 (Fig. 6a);

for NPP and T they scatter around ∼ 0.4 (Fig. 6b), whereas

for both NPP and TRW and combined T and P extremes, r

ranges between 0.1 and 0.2 (Fig. 6c). Again, the overestima-

tion of the P sensitivity of simulated NPP in comparison to

TRW is visible. TRW displays rather constant coincidence

rates of ∼ 0.4 with T (Fig. 6a, red dots) and P (Fig. 6b)

along the temperature gradient, whereas for combined ex-

tremes the increase in the coincidence rates is similar to that

of NPP (Fig. 6c). The lower coincidence rates in TRW may

be driven by adverse effects of extreme T , e.g. in mountain-

ous areas, where high temperatures during the growing sea-

son may even lead to increased growth (Jolly et al., 2005).

Also, the importance of nonstructural carbohydrates (NSCs)

should not be underestimated. NSCs can be stored for up to

10 years, used as resources during unfavourable growth con-

ditions, and thereby buffer the negative effects of extreme

events (e.g. Carbone et al., 2013; Richardson et al., 2013;

Klein et al., 2014). The low coincidence rates of NPP and

TRW with combined T and P extremes again result from

the rareness of these events (Fig. 6c).

3.4 Instantaneous and lagged responses to extreme

events

To further assess the growth responses to climate extremes

found in models and observations, it is necessary to analyse

their dynamics. Lagged biotic responses to extreme events

are of particular interest. We therefore compare the coinci-

dence rate r in the same year (i.e. instantaneous responses,

calculated with 1t = 1 and τ = 0) with the coincidence rate

in the year after the climate extreme (i.e. lagged responses,

calculated with1t = 1 and τ = 1; Fig. 7 and see also Fig. 1).

We find a high number of coincidences in the year after

the extreme compared to the instantaneous response, par-

ticularly during combined P and T extremes, indicating

lagged responses (Fig. 7e, f). Overall, negative precipita-

tion anomalies combined with positive temperature extremes

lead to reduced growth not only in the current, but also in

the following year. This is in line with other studies (e.g.

Babst et al., 2012; Franke et al., 2013) that have empha-

sized the importance of considering lagged effects in mea-

sured TRW. Babst et al. (2012) found that particularly late

growing season extremes lead to reduced growth in the fol-

lowing year. The pattern is less pronounced in simulated NPP

(Fig. 7e). In the model, lagged effects in NPP are simulated

when unfavourable climate conditions lead to low produc-

tivity and high respiration costs during the current year and

thus less accumulation of biomass. Constant or less accu-

mulated biomass then leads to reduced simulated NPP dur-

ing the following year. Because simulated NPP represents

a rather short-term measure of carbon use compared to ob-

served TRW, it responds more instantaneously to changes

in photosynthesis and respiration during extreme events. In

contrast, observed TRW integrates carbon accumulation and

growth over a whole growing season, relies in part on stored

carbohydrates, and may even be influenced by longer-term

responses to canopy and root architecture. These considera-

tions may explain some of the observed differences between

TRW and simulated NPP under extreme climate conditions.

4 Conclusions

We present a simple method for detecting impacts of ex-

treme events in time series of climate and forest growth that

is based on coincidence analysis. The coincidence metric is

viewed as a “unit-free”, neutral measure for biotic responses

to climate impacts. The method is general and independent of

units and does not require attempts to convert tree ring width

to NPP for comparison with model output; instead, we can

compare the results of the coincidence analysis to test for

possible causal relationships between extreme climate and

extreme growth responses.

Tree rings are long-term observational time series related

to forest productivity and are thus valuable archives for im-

proving our process understanding of forest responses to
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extreme events and, thus, for evaluating dynamic vegetation

models. Our study shows that low precipitation, high tem-

perature and combined extremes lead to substantial losses in

forest productivity, which is ∼ 30 % below two standard de-

viations during extreme years. We identified years with cli-

mate extremes which caused extreme ecosystem responses in

Europe for the 20th century, which are consistent with previ-

ously reported evidence.

Our study has shown the potential of standardized tree ring

data to be used for the evaluation of dynamic global vegeta-

tion models abilities to simulate growth responses to climate

extremes. Earlier model evaluation studies have lacked this

type of analysis. As climate extremes can have long-lasting

impacts, DGVMs need to be able to simulate such effects

and capture the processes that are responsible for multiyear

lagged effects. The combination of improved DGVMs and

the method of coincidence analysis can then be applied to

quantify the impacts of extreme events, e.g. on the long-term

fate of the global carbon balance.

The Supplement related to this article is available online

at doi:10.5194/bg-12-373-2015-supplement.
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