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Abstract
Complex network approaches have been recently developed as an alternative
framework to study the statistical features of time-series data. We perform a
visibility-graph analysis on both the daily and monthly sunspot series. Based on
the data, we propose two ways to construct the network: one is from the original
observable measurements and the other is from a negative-inverse-transformed
series. The degree distribution of the derived networks for the strong maxima
has clear non-Gaussian properties, while the degree distribution for minima is
bimodal. The long-term variation of the cycles is reflected by hubs in the network
that span relatively large time intervals. Based on standard network structural
measures, we propose to characterize the long-term correlations by waiting times
between two subsequent events. The persistence range of the solar cycles has
been identified over 15–1000 days by a power-law regime with scaling exponent
γ = 2.04 of the occurrence time of two subsequent strong minima. In contrast,
a persistent trend is not present in the maximal numbers, although maxima do
have significant deviations from an exponential form. Our results suggest some
new insights for evaluating existing models.
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1. Introduction

Solar-cycle prediction, i.e. forecasting the amplitude and/or the epoch of an upcoming
maximum, is of great importance as solar activity has a fundamental impact on the weather
conditions of the Earth, especially with increasing concern over the various climate change
scenarios. However, predictions have been notoriously wayward in the past [1, 2]. There are
basically two classes of methods for solar cycle predictions: empirical data-analysis-driven
methods and methods based on dynamo models. Most successful methods in this regard can
give reasonably accurate predictions only when a cycle is well advanced (e.g. 3 years after the
minimum) or with guidance from its past [3, 4]. Hence, these methods show very limited power
in forecasting a cycle which has not yet started. The theoretical reproduction of a sunspot series
by most current models shows convincingly the ‘illustrative nature’ of the existing record [5].
However, they generally failed to predict the slow start of the present cycle 24 [6]. One reason
cited for this is the emergence of prolonged periods of extremely low activity. The existence of
these periods of low activity brings a big challenge for solar-cycle prediction and reconstruction
by the two classes of methods described above, and hence prompted the development of special
ways to evaluate the appearance of these minima [7]. Moreover, there is increasing interest in
the minima since they are known to provide insight for predicting the next maximum [8].

Some earlier authors have both observed and made claims for the chaotic or fractal features
of the observed cycles, but the true origin of such features has not yet been fully resolved. For
instance, the Hurst exponent has been used as a measure of the long-term memory in time
series [9, 10]—an index of long-range dependence that can be often estimated by a rescaled
range analysis. The majority of Hurst exponents reported so far for the sunspot numbers are
well above 0.5, indicating some level of predictability in the data. Nonetheless, it is not clear
whether such characterization is due to an underlying chaotic mechanism or the presence of
correlated changes due to the quasi-11-year cycle [2, 11]. By removing the sinusoidal trend of
the time series by Fourier truncation in advance, the Hurst exponent is reduced to about 0.12,
demonstrating a rather different estimation for the multifractal nature of the fluctuations [12].
This argument should be carefully interpreted since a properly designed adaptive detrending
algorithm to remove the 11-year cycle in sunspots yields an estimation of the Hurst exponent to
be 0.74 [13]. Anyway, it is the irregularity (including the wide variations in both amplitudes and
cycle lengths) that makes the characterization of the possible multifractal features of the solar
activity an interesting, challenging and, as yet, unsolved issue. In contrast to the 11-year cycle
per se, we concentrate on the recently proposed hypothetical long-range memory mechanism
on time scales shorter than the quasi-periodic 11-year cycle [14].

In this work, we provide a distinct perspective on the temporal sunspots evolution (in par-
ticular the strong maximal activities and quiescent minima) by means of the so-called visibility
graph (VG) analysis (as explained in figure 1). Such graphs (mathematical graphs, in the sense
of networks) have recently emerged as one alternative to describe various statistical properties
of complex systems. In addition to applying the standard method, we generalize the technique
further—making it more suitable for studying the observational records of the solar cycles.

2. Data and network construction

Both the international sunspot number (ISN) and the sunspot area (SSA) series [15] are used in
this work, and we have obtained consistent conclusions in either case. The lengths of the data
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Figure 1. The procedure to construct a VG. Note that an enlargement of the particular
time span of the annual data is used here only for visualization purposes, while the
analysis performed throughout is based on both monthly and daily series. (A) Sunspot
numbers in gray bar plot, where two time points fulfilling the visibility condition are
connected by a line; (B) complex network representation, one network cluster usually
includes time points of two subsequent solar cycles and (C) degree sequences of the
original series x(ti ) (open circles) and the negatively inverted series −x(ti ) (filled
circles), respectively.

sets are summarized in table 1. We perform a VG analysis using both monthly and daily sunspot
series, which yields, respectively, month-to-month and day-to-day correlation patterns of the
sunspot activities. Note that we depict the annual numbers only for graphical visualization and
demonstration purposes (we use the annual numbers to demonstrate our method—the actual
analysis is performed in daily and monthly data). We discuss the results with the ISN (in
figures 2 and 3) in the main text and illustrate the results for the SSA (in figures 4 and 5)
with notes in the captions. Moreover, we compare our findings based on observational records
to the results obtained from data produced by simulations from computational models [16, 17].
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Table 1. Temporal resolution and the length of the data sets. Values in parentheses are
the number of points of each series. Note that the annual ISN is used only for graphical
visualization purposes and to provide a reference time interval for models.

ISN SSA

Day 1 January 1849–31 October 2011 1 May 1874–31 October 2011
(59473) (50222)

Month January 1849–October 2011 May 1874–October 2011
(1944) (1650)

Year 1700–2010 Not used
(311)
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Figure 2. Degree distribution p(k) of VGs from monthly (A), (C) and daily data (B),
(D). (A), (B) are for x(ti ) and (C), (D) for −x(ti ). Upper insets of all plots are p(k)
in linear scale, while the lower insets of (A), (B) show cumulative distribution F(k) in
double logarithmic scale, where a straight line is expected if F(k) followed a power law
∼ k−(γ−1). In (A), (B) γ could be suspected to be in the range [2.32, 2.64], while a fit to
the first part of p(k−x) yields that the slope of the dashed line in (C) is 1.79, and that in
(D) is 3.61, but all p-values are 0, rejecting the hypothetical power laws.

Recently a variety of methods has been proposed for studying time series from a complex
networks viewpoint, providing us with many new and distinct statistical properties [18–22].
In this work, we restrict ourselves to the concept of the VG, where individual observations are
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Figure 3. (A) Time points annotated by vertices with large degrees. Triangles (strong
maxima) correspond to the VG constructed from the original series x(ti ), while
circles (strong minima) are for the VG from −x(ti ). (B), (C) Cumulative probability
distribution of the time intervals between subsequent strong maxima (B) and minima
(C). A cumulative exponential distribution is plotted as a dashed line in (B), while the
dashed line in (C) is a linear fit with slope equal to γ − 1 = 1.04. The corresponding
p-value of (C) is 0.45, indicating that the power law is a plausible hypothesis for the
waiting times of strong minima.

considered as vertices and edges are introduced whenever vertices are visible. More specifically,
given a univariate time series x(ti)i=1,...,N , we construct the 0–1 binary adjacency matrix
AN×N of the network. The algorithm for deciding non-zero entries of Ai, j considers two time
points ti and t j as being mutually connected vertices of the associated VG if the following
criterion

x(ti) − x(tk)

tk − ti
>

x(ti) − x(t j)

t j − ti
(1)

is fulfilled for all time points tk with ti < tk < t j [23]. Therefore, the edges of the network take
into account the temporal information explicitly. By default, two consecutive observations are
connected and the graph forms a completely connected component without disjoint subgraphs.
Furthermore, the VG is not affected by choice of algorithmic parameters—most other methods
of constructing complex networks from time series data are dependent on the choice of some
parameters (e.g. the threshold ε of recurrence networks, see more details in [21]). While the
inclusion of these parameters makes these alternative schemes more complicated, they do gain
the power to reconstruct (with sufficient data) the underlying dynamical system. For the current
discussion, and with the limited data we consider here, we prefer the simplicity of the VG.
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Figure 4. For the SSA data. Degree distribution p(k) of VGs from monthly (A), (C)
and daily data (B), (D). (A), (B) are for x(ti ) and (C), (D) for −x(ti ). Upper insets
of all plots are p(k) in linear scale, while lower insets of (A), (B) show cumulative
distribution F(k) in double logarithmic scale, where a straight line is expected if F(k)
followed a power law ∼ k−(γ−1). In (C), (D), γ could be fitted by dashed lines (slopes:
C, 1.86; D, 3.73 respectively), but all p-values are 0 rejecting the hypothetical power
laws.

The VG approach is particularly interesting for certain stochastic processes where the statistical
properties of the resulting network can be directly related to the fractal properties of the time
series [24–28].

Figure 1 illustrates an example of how we construct a VG for the sunspot time series. It
is well known that the solar cycle has an approximately 11-year period, which shows that most
of the temporal points of the decreasing phase of one solar cycle are connected to those points
of the increasing phase of the next cycle (figure 1(A)). Therefore, the network is clustered into
communities, each of which mainly consists of the temporal information of two subsequent solar
cycles (figure 1(B)). When the sunspot number reaches a stronger but more infrequent extreme
maximum, we have inter-community connections, since they have better visibility contact with
more neighbors than other time points—hence, forming hubs in the graph. The inter-community
connections extend over several consecutive solar cycles encompassing the temporal cycle-to-
cycle information.
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Figure 5. For the SSA data. (A) Time points annotated by vertices with large degrees.
Triangles (strong maxima) correspond to the VG constructed from the original series
x(ti ), while circles (strong minima) are that of the VG from −x(ti ). (B), (C) Cumulative
probability distribution of the time intervals between subsequent strong maxima (B)
and minima (C). A cumulative exponential distribution is plotted as a dashed line in
(B), while the dashed line in (C) is a linear fit with slope equal to γ − 1 = 1.04. The
corresponding p-value of (C) is 0.78, indicating that the power law is a plausible
hypothesis for the waiting times of strong minima.

Depending on various notions of ‘importance’ of a vertex with respect to the entire
network, various centrality measures have been proposed to quantify the structural character-
istics of a network (cf [29]). Recent work on VGs has mainly concentrated on the properties
of the degree and its probability distribution p(k), where degree k measures the number of
direct connections that a randomly chosen vertex i has, namely, ki =

∑
j Ai, j . The degree

sequence reflects the maximal visibility of the corresponding observation in comparison with
its neighbors in the time series (figure 1(C)). Based on the variation of the degree sequence ki ,
we consider 1837, 1848, 1860 and 1870 as hubs of the network, which can be used to identify
the approximately 11-year cycle reasonably well (figure 1(B)).

Furthermore, in the case of sunspot time series, one is often required to investigate what
contributions local minimum values make to the network—something that has been largely
overlooked by the traditional VGs. One simple solution is to study the negatively inverted
counterpart of the original time series, namely, −x(ti), which quantifies the properties of
the local minima. We use k−x and p(k−x) to denote the case of −x(ti). Here, we remark
that this simple inversion of the time series allows us to create an entirely different complex
network—this is because the VG algorithm itself is extremely simple and does not attempt to
reconstruct an underlying dynamical system. As shown in figure 1(C), k−x captures the variation
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of the local minima rather well. We will use this technique later to understand the long-term
behavior of strong minima of the solar cycles.

The degree distribution p(k) is defined to be the fraction of nodes in the network with
degree k. Thus if there are N nodes in total in a network and nk of them have degree k, we
have p(k) = nk/N . For many networks from various origins, p(k) has been observed to exhibit
power-law behavior: p(k) ∼ k−γ . In the case of VGs, p(k) is related to the dynamical properties
of the underlying processes [23]. More specifically, for a periodic signal, p(k) consists of several
distinct degrees indicating the regular structure of the series; for white noise, p(k) has an
exponential form; for fractal processes, the resulting VGs often have power law distributions
p(k) ∼ k−γ with the exponent γ being related to the Hurst exponent H of the underlying time
series [24]. It is worth pointing out that when one seeks to estimate the exponent γ it is often
better to employ the cumulative probability distribution F(k) =

∑
k>k0

p(k) so as to have a more
robust statistical fit.

Estimating the exponent γ of the hypothetical power law model for the degree sequence
of VG can be done rather straightforwardly, but, the statistical uncertainties resulting from
the observability of sunspots are a challenge for reliable interpretation. Meanwhile, fitting a
power law to empirical data and assessing the accuracy of the exponent γ is a complicated
issue. In general, there are many examples which claimed to have power laws but turned
out not to be statistically justifiable. We apply the recipe of [30] to analyze the hypothetical
power-law distributed data, namely, (i) estimating the scaling parameter γ by the maximum
likelihood and (ii) generating a p-value that quantifies the plausibility of the hypothesis by the
Kolmogorov–Smirnov statistic.

Aside from the aforementioned degree ki and degree distribution p(k), in appendix A,
some alternative higher order network measures are suggested which may also be applied to
uncover deeper dynamical properties of the time series from the VG.

3. Results

Figures 2(A) and (B) show the degree distributions p(k) of the VGs derived from the ISN x(ti)

with heavy-tails corresponding to hubs of the graph, which clearly deviates from Gaussian
properties. In contrast, p(k−x) of the negatively inverted sunspot series −x(ti) shows a com-
pletely different distribution, consisting of a bimodal property (figures 2(C) and (D), extra large
degrees are at least two orders of magnitude larger than most of the vertices (figure 2(D)).

Since well-defined scaling regimes are absent in either p(k) or p(k−x) (nor do they appear
in the cumulative distributions as shown in the insets, see caption of figure 2 for details of the
statistical tests that we apply), we may reject the hypothetical power laws—in contrast to what
has been reported in other contexts [23, 24].

In the context of studying grand maxima/minima over (multi-)millennial timescale using
some particular indirect proxy time series, the main idea lies in an appropriately chosen
threshold, excursions above which are defined as grand maxima, respectively, below which are
defined as grand minima [31, 32]. In this work, we use a similar concept but here in terms of
degrees of the corresponding VG. We define a strong maximum if its degree k is larger than
100 (figures 2(A) and (B)), a strong minimum if its degree k−x is over 1000 (figures 2(C) and
(D)). Note that, in general, our definition of strong maxima/minima coincides neither with the
local maximal/minimal sunspot profiles, since degree k takes into account the longer term inter-
cycle variations, nor with those defined for an individual cycle. Our definition avoids the choice

8
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A

Figure 6. Time points annotated by vertices with strong minima, which are defined
by network degrees (k > 7000) of VGs reconstructed from negatively inverted series.
(A) ISN and (B) SSA. Cumulative probability distribution of the time intervals between
subsequent strong minima, (C) ISN and (D) SSA. The dashed lines in (C), (D) are linear
fits, which are obtained in the same way as shown in figures 3(C) and 5(C), respectively.

of maximum/minimum for one cycle, which suffers from moving-average effects (e.g. [1]).
In contrast, our results below are robust with respect to the choice of the threshold degrees,
especially in the case of the definition of strong minima, since large degrees are very well
separated from others. The gray line in figure 3(A) shows the sunspot numbers overlaid by the
maxima/minima identified by the large degrees. We find that the positions of strong maxima are
largely homogeneously distributed over the time domain, while that of the strong minima are
much more clustered in the time axis—although irregularly (figure 3(A)). We emphasize that
the clustering behavior of the strong minima on the time axis as shown in figures 3(A) and 5(A)
does not change if threshold degrees are varied in the interval of (200, 8000) to define strong
minima, i.e. k > 7000, as shown in figures 6(A) and (B). Therefore, the bimodality as observed
in figures 2(C) and (D) and 4(C) and (D) is not due to the finite size effects of time series.

The hidden regularity of the time positions of maxima/minima can be further characterized
by the waiting time distribution [32]: the interval between two successive events is called
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the waiting time. The statistical distribution of waiting-time intervals reflects the nature of
a process that produces the studied events. For instance, an exponential distribution is an
indicator of a random memoryless process, where the behavior of a system does not depend
on its preceding states on both short or long time scales. Any significant deviation from an
exponential law suggests that the underlying event occurrence process has a certain level of
temporal dependence. One representative of the large class of non-exponential distributions is
the power laws, which have been observed in many different contexts, ranging from the energy
accumulation and release property of earthquakes to social contacting patterns of humans [33].

In the framework of VGs, the possible long temporal correlations are captured by edges that
connect different communities (the increasing and decreasing phases of one solar cycle belong
to two temporal consecutive clusters). As shown in figure 3(B), the distribution of the waiting
time between two subsequent maxima sunspot deviates significantly from an exponential
function, although the tail part could be an indicator of an exponential form. In contrast, we
show in figure 3(C) that the waiting times between subsequent strong minima have a heavy-
tail distribution where the exponent γ ≈ 2.04 is estimated in the scaling regime. This suggests
that the process of the strong minima has a positive long term correlation, which might be well
developed over the time between 15 and 1000 days where a power-law fit is taken. Waiting time
intervals outside this range are due to either noise effects on shorter scales or the finite length
of observations on longer time scales. Again, the power law regimes identified by the waiting
time distributions are robust for various threshold degree values in the interval (200, 8000) (for
instance, the case of k > 7000 is shown in figures 6(C) and (D)).

4. Discussion

In contrast to the computations described above with observational data, we now demonstrate
the inadequacy of two models of solar cycles. By applying the VG methods to model simulations
we demonstrate that the observed data have, according to the complex network perspective,
features absent in the models. We first choose a rather simple yet stochastic model that describes
the temporal complexity of the problem, the Barnes model [16], consisting of an autoregressive
moving average ARMA(2, 2) model with a nonlinear transformation

zi = α1zi−1 + α2zi−2 + ai − β1ai−1 − β2ai−2, (2)

si = z2
i + γ (z2

i − z2
i−1)

2, (3)

where α1 = 1.906 93, α2 = −0.987 51, β1 = 0.785 12, β2 = −0.406 62, γ = 0.03 and ai are
identically independent distributed Gaussian random variables with zero mean and standard
deviation SD = 0.4. The second model is a stochastic relaxation Van der Pol oscillator, which
is obtained from a spatial truncation of the dynamo equations [17]. The equations read

ẋ = y, (4)

ẏ = −ω2x − µy[3(ξ0 + rξs)x2
− 1], (5)

where ω = 0.2993, µ = 0.2044, ξ = 0.0102, ξs is Gaussian noise with zero mean and SD = 1,
and r is adjustable but often chosen to be 0.02. The variable x is associated with the mean
toroidal magnetic field, and therefore the sunspot number is considered to be proportional to
x2, which prompts us to construct VGs from x2 (−x2 respectively). Both models reproduce the
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Figure 7. Degree distribution p(k) of VGs constructed from: (A), (B) x(ti ) and −x(ti )
of Barnes’ model and (C), (D) x2 and −x2 of Mininni’s model. All p(k) and p(k−x) are
estimated by an average over 10 000 independent realizations using a kernel smoother.
In (C), (D) r = 0.02 (filled circles) and r = 0.05 (open triangles).

rapid growth in the increasing phase and slow decay in the decreasing phase of the activity cycles
adequately. For the truncated model of the dynamo equations, a statistical significant correlation
between instantaneous amplitude and frequency has been established, while the Barnes model
shows virtually no correlation [34], which is generally termed the Waldmeier effect.

From both models, we generate 10 000 independent realizations, each of them has a
1 month temporal resolution and the same time span as we have for the observations (namely,
over 300 years). We then construct VGs from both xti and −xti from each realization in the
same way as we processed for the original observation. As shown in figure 7, p(k) can neither
mimic the heavy tails of the distributions we observed in figures 2(A) and (B), nor can p(k−x)

capture the bimodality of the large degrees for strong minima as we have observed in the
case of observational raw records in figures 2(C) and (D). This does not occur even if the
parameter r of the second model is adjusted (figures 7(C) and (D)). One reason for the absence
of any bimodality of p(k) in the nonlinear oscillator model is the fact that the model was
designed to reproduce smoothed sunspot number time series. The often-used 13-month running
average method in the literature is known to suppress the maximum/minimum amplitudes of
the series [1]. Therefore, the visibility condition for each time point is changed if the 13-month
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Figure 8. Degree distribution p(k) of VGs reconstructed from smoothed monthly ISN
data. (A) is for x(ti ) and (B) for x(ti ).

smoothing technique is applied to the original data. We show the degree distribution p(k) of
VGs reconstructed from smoothed ISN series in figure 8(B), where the bimodality is absent.

As shown in figure 7, strong maxima/minima are not well separated. Consequently we
are prevented from identifying unique waiting time sequences. The corresponding analysis then
depends significantly on the choice of threshold degrees.

Dynamo theory provides several hints that might explain the features observed in the
long-term evolution of the solar activity. The two theoretical models tested in this work can
reproduce the main qualitative features of the system reasonably well, however, within the
context performed in this study, cannot yield a complete and conclusive rendition of the
statistical properties of p(k). The power-law regimes obtained from waiting time sequences
suggest that the interaction patterns for two subsequent minima can be much more complicated
than has been previously described as the instantaneous amplitudes–frequencies correlation
using rather simple models [34, 35].

5. Conclusions

In this work, we apply a recently proposed network approach, namely the VG, to disclose
the intricate dynamical behavior of both strong maximal and minimal sunspot numbers with
observational records. More specifically, we show that:

(i) There is a power law regime of time scale of 15–1000 days in the occurrence of low-
activity episodes, observed as clusters of inactive days. The identified persistence time
scale of the strong minima agrees with the recently proposed hypothetical long range
memory on time scales shorter than the 11-year cycle [14].

(ii) The occurrence of high activity episodes appears nearly completely random—as
demonstrated by visual inspection of figures 3(A) and 5(A). In these figures the
positions of strong maxima appear homogeneously distributed in the time domain.
This suggests that the strong active regions appear more or less independently of
each other. The distinctive long-term correlations of the strong maxima and strong
minima are reflected by the structural asymmetries of the degree distributions p(k) of
the respective VGs.

12



New J. Phys. 16 (2014) 013051 Y Zou et al

(iii) There is no evidence for a long term inter-cycle memory. This is in agreement with the
present paradigm based on alternative methods (see e.g. reviews by Petrovay [5] and
Usoskin [36]), and provides an observational constraint for solar-activity models.

Therefore we propose that our results on the difference between maxima and minima could be
used for evaluating models for solar activity because they reflect important properties that are
not included in other measures reported in the literature.

From the methodological perspective, we are the first to propose a generalization for
the construction of VGs from the negatively inverted time series. This has been seen, via
our analysis of sunspot observations, to show complementary aspects of the original series.
Note that the negatively inverse transformation is crucial for understanding when asymmetry is
preserved in the time series. Therefore, from the methodological viewpoint, it is worth analyzing
the dependence of the resulted VGs on an arbitrary monotonic nonlinear transformation.
Furthermore, as presented in appendix B, a systematic investigation of the general conclusion
as to whether large sampled points correspond to hubs of VGs will be a subject of future
work—especially in the presence of cyclicity and asymmetry. On the other hand, one can
study the fluctuation properties of the sunspot series by using any de-trending techniques as
a preprocessing. Note that here we study the network properties of VGs from the original time
series, instead of constructing a network from local fluctuations. In the case of studying the
statistics of the fluctuations, it will be an interesting task to test the robustness of the network
approach with respect to different de-trending algorithms to the sunspot series [12, 13].

Note that we construct VGs directly based on the raw sunspot series without any
preprocessing. Many researchers prefer to base their studies on some kind of transformed series,
since most common methods of data analysis in the literature rely on the assumption that the
solar activity follows Gaussian statistics [2]. It is certain that the conclusions will then show
some deviations depending on the parameters chosen for the preprocessing. The pronounced
peaked and asymmetrical sunspot-cycle profiles prompt one to develop techniques such that the
possible bias due to the unavoidable choice of parameters should be minimized. The complex
network perspective offered by VG analysis has the clear advantage of being independent of
any a priori parameter selection.

The procedure for network analysis outlined here can be directly applied to other solar
activity indicators, for instance, the total solar irradiance and the solar-flare index. Some earlier
analysis has revealed that, on average, the duration, rise and decay times of temporal flares
show distinct asymmetric properties, which may vary either in phase or statistically show no
correlation with the solar cycles [37, 38]. Note that our results reported here mainly concern
the asymmetry between the maximal and minimal sunspots (from a VG perspective). We expect
that our network approach could be used to study more asymmetric properties of the temporal
sunspot series, e.g. to disclose the asymmetric distribution of sunspots between the northern
and southern hemispheres [4, 39]. We compared our results to two rather empirical models
and showed that the distinctive correlation patterns of maximal and minimal sunspots are
currently absent from these two models. Using our analysis for more refined dynamo-based
models (e.g. [40]) would be straightforward. Certainly, further work on this line of research will
examine any differences given by the particular quantity and strengthen the understanding of the
hypothetical long-range memory process of the solar activity from a much broader overview.
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A B

Figure A.1. Network representations of the VG constructed from the annual sunspot
numbers of the entire series. Highlighted visible nodes are: (A) large degrees (ki > 15)
and (B) high betweenness centrality (bi > 0.2).
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Appendix A. Graph visualization of degree ki and betweenness centrality b i

Besides the fact that the maximal sunspot numbers are identified as hubs of VGs by the degree
sequence ki , convincing links between further network-theoretic measures and distinct dynamic
properties can provide some additional interesting understanding for the time series [27]. In
this study, we provide a graphical visualization on the relationship between degree ki and node
betweenness centrality bi , which characterizes the node’s ability to transport information from
one place to another along the shortest path.

Using the annual ISN as a graphical illustration, here only the relationship between some
relatively large degrees (ki > 15) and betweenness centrality values (bi > 0.2) is highlighted in
figure A.1 for the entire series available. For instance, in the annual series, time points 1778,
1789, 1837, 1870, 1947, 1957 and 1989 are all identified simultaneously as large degrees and
high betweenness, indicating strong positive correlations.

Certainly many other measures can be directly applied to the sunspot numbers, however,
providing the appropriate (quantitative) interpretations of the results in terms of the particular
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Figure B.1. Scatter plot of the degree sequence ki – xi for VG constructed from ISN
series based on (A) monthly and (B) daily data respectively. Spearman ρ is indicated.
Panels (C), (D) are based on the VGs constructed from negatively inverted series −xi .

underlying geophysical mechanisms remains a challenging task and is largely open for future
work. Note that there is in general a strong interdependence between these different network
structural quantities.

Appendix B. Correlation between ki and xi

A general rule of understanding the scale-free property of the degree distribution of complex
networks is the effects of a very few hubs having a large number of connections. In the particular
case of VGs, hubs are related to maxima of the time series, since they have better visibility
contact with more vertices than other sampled points. However, this result cannot be generalized
to all situations, for instance, it is easy to generate a time series such that its maxima are not
always mapped to hubs in the VGs.

One simple way to better explore this correlation is to use scatter plots between the degree
sequence and the sunspot time series. As we show in figure B.1, the Spearman correlation
coefficients ρ are very small (still significantly larger than zero) in the case of VGs reconstructed
from the original time series. This provides an important cautionary note on the interpretation
of hubs of VGs by local maximal values of the sunspot numbers. In contrast, if the network
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Figure B.2. Scatter plot of the degree sequence ki – xi for VG constructed from SSA
series based on (A) monthly and (B) daily data respectively. Spearman ρ is indicated.
Panels (C), (D) are based on the VGs constructed from negatively inverted series −xi .

is reconstructed from −x , hubs of VGs could be better interpreted by local minimal values of
the sunspot data since the correlations become larger. These results hold for both the ISN and
SSA series (figure B.2). One reason for the lack of strong correlation between the degree ki and
xi is because of the (quasi-)cyclicity of the particular time series, which has a similar effect as
the Conway series [23]. It is this concave behavior over the time axis (although quasi-periodic
from cycle to cycle) that prevents the local maxima from having highly connected vertices. It
remains unclear how local maxima of a time series are mapped to hubs of VGs—we defer this
topic for future work especially in the presence of cyclicity. This situation becomes even more
challenging if some sort of asymmetric property is preserved in the data, as we have found for
the sunspot series.
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