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Abstract

Cardiovascular diseases are the main source of morbidity and mortality in the United States with costs of more than $170
billion. Repetitive respiratory disorders during sleep are assumed to be a major cause of these diseases. Therefore, the
understanding of the cardio-respiratory regulation during these events is of high public interest. One of the governing
mechanisms is the mutual influence of the cardiac and respiratory oscillations on their respective onsets, the cardio-
respiratory coordination (CRC). We analyze this mechanism based on nocturnal measurements of 27 males suffering from
obstructive sleep apnea syndrome. Here we find, by using an advanced analysis technique, the coordigram, not only that
the occurrence of CRC is significantly more frequent during respiratory sleep disturbances than in normal respiration (p-
value,10251) but also more frequent after these events (p-value,10215). Especially, the latter finding contradicts the
common assumption that spontaneous CRC can only be observed in epochs of relaxed conditions, while our newly
discovered epochs of CRC after disturbances are characterized by high autonomic stress. Our findings on the connection
between CRC and the appearance of sleep-disordered events require a substantial extension of the current understanding
of obstructive sleep apneas and hypopneas.
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Introduction

Frequent apneic and hypopneic events (AHE) during the night

increase the risk of metabolic disorders, e.g. diabetes type 2, and

cardiovascular diseases like hypertension and stroke [1]. As

cardiovascular diseases are the main source of morbidity and

mortality in the United States with costs of about $172 billion in

2010 [2], understanding the pathological regulatory mechanisms

in AHE is of high priority for public health.

AHE are defined by a reduced or disrupted ventilation which is

either caused by obstructions of the upper airways (obstructive

event) or a cessation of the respiratory motor output from the

brain stem (central event) for more than ten seconds [3,4]. They

are accompanied by oxygen desaturation and carbon dioxide

accumulation in the blood and autonomic stress at their ends

which is reflected by increasing heart rate, blood pressure and

respiratory effort. The role of these effects in the pathogenesis of

the co-morbidities is not fully understood yet, especially those of

the autonomous activation which prevents recuperative sleep.

A decreased interrelationship of heart rate and respiration is

used as an indicator of autonomic excitation. The most prominent

feature of this interrelationship is a modulation called respiratory

sinus-arrhythmia, i.e. the respective increase and decrease of the

heart rate during inspiration and expiration [5,6]. But there is also

a mutual influence of the cardiac and respiratory oscillations on

their respective onsets, in particular, leading to spontaneous

cardio-respiratory coordination (CRC), a tendency towards a

constant-time relationship between both onsets. Attention should

be paid to the strict distinction between CRC and the respiratory

sinus-arrhythmia. Because the first one is a triggering phenome-

non in both directions and the second one results from a

modulation of autonomic activity by respiration, traditional

methods for the investigation of respiratory sinus-arrhythmia,

such as the frequency analysis, are unable to quantify CRC.

Cardio-ventilatory coupling [7–11], the alignment of the inspira-

tory onset with the heart beat, and phase synchronisation [7,12–

16], i.e. the adjustment of heart beats at phases of the respiratory

cycles, are partial descriptions of this phenomenon and are mostly

observed during anaesthesia [8], rest [11,16], sleep [7,10,11,13,14]

and controlled breathing [17]. As an example of disturbing stress,

AHE [10,14] as well as mental stress [18] are assumed to strongly

reduce CRC.

However, the origin of CRC is still under discussion. The

analysis of disturbances of the cardio-respiratory system and of

their effects on CRC could help to answer this question. Examples

of such events are ectopic beats or the aforementioned AHE are

shown in Fig. 1. In this picture, the four most prominent

visualization tools for CRC, parallel horizontal lines indicate

CRC, are shown (from top to the bottom): the IR-plot indicating

the alignment of the cardiac onsets with the respiratory onset [7–

9,19,20]; the RI-plot indicating the alignment of the respiratory

onset with the cardiac cycles [8,9,19,20]; the traditional synchro-
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gam indicating cardiorespiratory phase synchronisation

[7,9,12,14,16]; and the synchrogram used by Raschke et al.

[10,11]. A comparison of the RI- and the IR plot displays a higher

ordering in the region of ectopic beats and central apnea,

respectively, indicating different directions of coupling between

heart rhythm and respiration. Both synchrograms hardly shows

such ordering because of the rapid change of the length of the

expiratory pause which influences the calculation of the respira-

tory phase. This problem is also reflected by the changing ratio of

heart beats to respiratory cycles. Especially the increase of

ordering for the central apnea is surprising since a reduction of

CRC is assumed in this case [10].

Therefore, the occurrence of CRC during AHE is analysed in

this study in order to evaluate the importance of CRC for AHE.

To overcome the limitations of the aforementioned standard tools,

we combine RI- and IR-plot to the so-called coordigram,

considering both directions of influence, from heart beat to

respiration and vice versa, simultaneously. Additionally, we

change the quantification of parallel lines from a histogram,

normally used to quantify the order in time plots, to a kernel

estimated distribution allowing for a more time resolved consid-

eration which is necessary to account for short sequences of CRC.

One reason to expect short sequences is a high noise level that

results from the errors in onset detection and the manual

determination of the AHE. Therefore, we need a robust means

to analyse the detected CRC events statistically.

Methods

Data and Pre-processing
We analyze nocturnal measurements of 27 males suffering from

obstructive sleep apnea syndrome. The study was approved by the

local ethics committee of the Charité in Berlin. Participants

provided their written informed consent to participate in this study

and the informed consent of all subjects was recorded in paper

form. A total of 10814 AHE, almost all obstructive ones, are

annotated according to the AASM manual [3,4] by trained

technicians on the basis of nasal airflow measure. The sleep stages

are scored according to the recommendations of the AASM

manual [4] and pooled to: awake - W, light sleep - LS, deep sleep -

DS, and rapid eye movement sleep - REM. From the electrocar-

diogram (sampling rate 2000 Hz) the peak of the QRS complexes

define the time of the cardiac onsets tCi (i = 1,…,NC the number of

heart beats; in Fig. 1 A,B for example), whereas the time of the

respiratory onsets tRj (j = 1,…,NR the number of respiratory cycles)

are defined via the local maxima of the abdominal movements

(sampling rate 10 Hz) as measured by respiratory belts (Fig. 1

A,B). The time points of the respiratory and the cardiac onsets as

well as the status of each respiratory onset (present sleep stage;

AHE yes/no) are provided by S1.zip. The abdominal signal is

used instead of recommended airflow, since abdominal movement

represents respiratory motor output even during full upper airway

obstruction. We group the onsets into three categories: during

Figure 1. Examples of detected cardio-respiratory coordination in the presences of cardio-respiratory disturbances. The disturbances
are an ectopic beat (left column - colour coded red) and a central apnea (right column). Panels A and B show epochs of the considered respiratory
curve (black line) with the selected onsets (asterisks) and the electrocardiogram with the characteristic R-peak (grey). The columns of points in the
plots below indicate the occurrence of these R-peaks: in the cycle after each respiratory onset set at 0s (C and D, IR-plot); in the cycle before each
respiratory onset set at 0s (E and F, RI-plot); and in relation with the respiratory cycles after each respiratory onset characterized by the interval (G and
H, synchrogram). In panel I and J the points represent the occurrence of the respiratory onset in relation to the including cardiac cycles. Blue stripes
highlight parallel horizontal structures indicating cardio-respiratory coordination. The framed epoch in panel E shows an example of fluctuation of
the number of heart beats per breath where the number of points in the columns varies between 4 and 5.
doi:10.1371/journal.pone.0093866.g001
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AHE (in AHE), in intervals from one to a specific number of onsets

after each AHE (after AHE) and normal onsets.

Detection of Cardiorespiratory Coordination
In order to detect CRC, we propose a new analysis tool, the

coordigram, which is a substantial extension of standard methods

[7,8] because it diminishes boundary effects and allows a

comparison of the direction of interactions. The coordigram is

generated by columns of points reflecting the temporal distance

between a respiratory onset and the cardiac onsets in the

preceding and following respiratory cycle (Fig. 2C). CRC is

indicated by parallel horizontal dotted lines. Lines only in the

negative range of Dt reflect the cardiac influence on the respiratory

onset, whereas lines only in the positive range show respiratory

control of the next cardiac onset. These parallel horizontal lines

are quantified by the point distribution in sliding.

windows (Fig. 2D for example). The point distribution of the i-th

respiratory onset is given by

fi(Dt)~
2p

w

XNai

l~1

K
Dt{ai

b

� �
ð1Þ

This kernel estimation is based on the values of Dt in the sliding

window around the i-th respiratory onset ai = {Dtk}k= i-w,…,i+w
where Dti = {tCi-tRj}j = 1,…,NC. The chosen window length w of

three respiratory cycles reflects the expectation that the status of

the CRC changes rapidly, especially at the end of the AHE. The

Gaussian kernel.

K(x)~
1ffiffiffiffiffiffi
2p

p exp {
x2

2

� �
ð2Þ

is used with a bandwidth b= 0.2s, twice the sampling time of the

respiratory signal, reflecting the assumed detection error of the

respiratory onsets) [21]. The distribution is normalized in order to

achieve a maximum value of the curve of 1, if the points lie on

exact lines. CRC is assumed if the power of the spectral

component of this estimation’s main oscillation is beyond a

threshold e, here e=0.0828, in the positive and/or the negative

range of Dt. This is visually reflected in regular changes of red and

blue stripes in the colour coded temporal evolution of the

distribution (Fig. 2 E,F).

For the ease of comparison, the well-known synchrogram [16] is

additionally calculated in our study. To create the synchrogam,

the positive values Dt are normalized by the length of the

corresponding respiratory cycle which conforms to the event based

determination of the phase [16]. It reflects the synchronisation

ratios n:m with m=1, the number of breaths in the considered

forcing cycle. A restriction which results from a test proposed by

Porta et al. 2004 [22]. In the synchrograms, the structures of

parallel horizontal lines are quantified as in the coordigram.

Because of the normalization, the bandwidth of the Gaussian

kernel has to be divided by the mean length of the breathing

cycles, which is about 4 seconds. This results in b= 0.05

corresponding to the bin size of 0.03 in the Toledo method for

detecting phase synchronisation [23].

Statistics
CRC and phase synchronization are quantified by the number

of respiratory onsets where the respective phenomenon is detected.

Of course the amount of detected instances depends on the choice

of the algorithm intrinsic parameters w, b, and e. So, a decrease of
w or e leads to an increase of the detection rate of CRC. In the

case of b, initially an increase of the value also increases the

detection rate. But for higher values (b.0.2) this rate dramatically

declines because of the increasing ratio of this value to the length

Figure 2. Scheme of the cardio-respiratory coordination detection. (A) Onsets of the cardiac cycles in the electrocardiogram (points). (B)
Onsets of the ventilation in the respiratory signal (squares). (C) Each column of the coordigram reflects the temporal relation between a respiratory
onset (zero) and the cardiac onsets in the two neighboured respiratory cycles. (D) From (C) an estimation of the point distribution in a sliding window
over three respiratory events is estimated by means of the Equ. 1 and 2. (E) the amplitude of each distribution is colour coded by (F) which highlights
the coordination patterns in C by red stripes (positive range of Dt: the heart triggers respiration; negative range of Dt: ventilation coordinates the
heart).
doi:10.1371/journal.pone.0093866.g002
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of the heart beat intervals. However, a small value of w, as used in

this analysis, increases detections of CRC by chance. Therefore we

only compare relative frequencies of detection. Assuming a

homogenous distribution of miss-detection, the number of

detected instances in specific classes, i.e., sleep stage (W, LS, DS,

REM) and/or respiratory status (normal, in AHE or after AHE),

would have to be proportional to the percentage of occurrence of

each class over the whole measurement. We compare the actual

detected amount with the expected one using 262 contingency

tables, where the class of normal respiratory status acts as a

reference. That means, the number of respiratory onsets are

counted for all possible combinations of characterized features:

coordination (no CRC, CRC), respiratory status, and sleep stage.

The 262 contingency tables are constructed by aggregating the

numbers of each of the coordinated and uncoordinated onsets for

a specific combination of respiratory status and sleep stage, and

contrasting them with the corresponding numbers of onsets for

normal respiratory status in the same sleep stage. Contingency x2
tests are used to decide if there is an interrelation between the

selected class and the occurrence of coordination (significance

level = 0.05). Additionally, each 262 contingency table provides

information about the influence of the selected feature combina-

tion on the occurrence of detected CRC. Because of the number of

comparisons and the resulting multiple testing problem, the p-

values are adjusted by the Bonferroni correction. We also

performed a sensitivity analysis of the test where the influence of

the detection parameters w, b and e on the decision is considered.

Results

The respiratory and cardiac onsets are extracted from the

electrocardiogram and the simultaneously recorded signal of the

abdominal movement, respectively. On that basis the new

coordigram plot is built (see Fig. 2) indicating CRC in about

51% of the breathing cycles. It not only exhibits a mutual

coordination of cardiac and respiratory onsets, but also one-way

influences (e.g. Fig. 3 A and B). We divide the respiratory onsets

into two groups: with and without CRC. Additionally, they are

also classified according to the current respiratory state (normal, in

AHE, and after AHE). The maximum number of respiratory

onsets after AHE was set to five because of the dominantly short

epochs between successive AHE (see Fig. 4). Further, the

respiratory onsets are divided into groups in respect of the sleep

stage (awake - W, light sleep - LS, deep sleep - DS, and rapid eye

movement - REM) where they occurred. Examples of the three

different classifications are illustrated in Fig. 3. Table 1 shows the

total number of respiratory onsets in each of the combined classes.

The frequencies depend on the algorithmic parameters. To

increase the independence of these parameters, we test the

proportion of CRC for the different groups of respiratory onsets in

relation to normal respiration by means of 262 contingency tables.

The null hypothesis of the following tests refers to a random

distribution of the detected CRC, whereas the alternative implies a

significant increase or decrease (see Table 1). The tests show a

higher number of occurrences of detected CRC when compared

to normal breaths:

(i) during AHE (p,10251), and,

(ii) after AHE (p,10215).

(A value of 10251 is the lowest computable significance level of

our statistical tool.) illustrated in Fig. 3. Testing both group

differentiated by means of the sleep stage leads to the results of an

increased occurrence of CRC (indicated by the symbols {) shown
in Table 1. Applying the quantification mechanism for phase
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synchronisation, we find, conversely, a significant decrease of

occurrences (indicated by the symbol *, Table 1).

Furthermore, Fig. 3 gives an example of the asymmetric order

of the coordigram in the presence of changing sleep stages which

indicates unidirectional coordination of heart rhythm and

respiration.

Variation of the detection parameters b, w, and e lead to

marginal changes in the testing outcome which are base on the

changes of the detection rate. So, growing values of e and w lead to

decreasing rates. In the case of b, there is an increase of the rate

until b = 0.15 after which the rates decrease. All these trends are

faster during disturbed respiration than during normal breaths

resulting in changes of the test’s outcome. The null hypothesis is

not rejected in the case of respiratory cycles after AHE during

REM sleep if w.3 or e$0.09. The same holds for respiratory

cycles in and after AHE during deep sleep for e#0.07; in AHE

during REM for w$11; and after AHE during LS for e=0.09. In

the last case, e=0.09 marks a change of the statistical outcome.

Lower values lead to a significantly higher detection rate while

larger ones lead to a significantly lower detection rate in the

respiratory onsets after AHE during LS in comparison to during

normal breaths in the same sleep stage.

Using our innovative combination of standard time domain

plots, and a time resolved analysis technique, we are able to show

for the first time that the number of respiratory cycles indicating

CRC during AHE is disproportionately large compare to normal

respiration. Moreover, CRC is also significantly increased under

forced autonomic stress after AHE (e.g. Fig. 3A) [24]. These

findings of our proposed approach differ greatly from past ones

that resulted from global considerations [10]. Therefore, CRC

seems to be an important mechanism for the development of

AHE. Finally, we demonstrate that the observed CRC is quite

different from cardio-respiratory synchronisation which decreases

during AHE.

Discussion

In summary, cardio-respiratory coordination has to be consid-

ered as a phenomenon which not only appears in resting

conditions but also under high autonomic stress at the end of

Figure 3. Examples of cardio-respiratory coordination during repetitive Apnea-Hypopnea-Events (AHE) and changes of sleep
stages. For the AHE (left column) and changes of sleep stages (right column), the coordigram (A and B), the corresponding cardiac beat-to-beat
intervals (C and D), the corresponding respiratory signal with the selected onsets (E and F), and marker of detected coordination (I and J) are plotted.
Panel G displays the classification of the respiratory cycles in relation to respiratory events. Panel H shows the scored sleep stages where the light
sleep LS was divided in S1 and S2 according to the AASM manual [14]. The frames in the panels A and B mark asymmetric structures which indicate
unidirectional influences.
doi:10.1371/journal.pone.0093866.g003

Figure 4. Distribution of the duration between successive
Apnea-Hypopnea-Events. The duration is quantified by the number
of respiratory cycles. The grey bar marks the selected threshold value
bounding the periods after AHE.
doi:10.1371/journal.pone.0093866.g004
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AHE. This contradicts past findings [11] and clearly shows the

advantage of the novel analytical tool, the coordigram. Raschke et

al. 1986 [10] propose increasing metabolic transport as a main

cause of diminished CRC during physical activity. Later, Bartsch

et al. 2012 [13] suggest a sympathetic dominance of the excitatory

branch as a reason for decreased cardiorespiratory synchronisa-

tion. Our results, however, show that CRC increases at the end of

AHE, in spite of increased sympathetic activity and the metabolic

transport. The underlying mechanism is unknown but it seems to

be independent of the respiratory sinus-arrhythmia because the

example in Fig. 3 shows a similar rate of CRC in cases with

different levels of respiratory modulation in the beat-to-beat

intervals. The most popular model of sequential apneas is based on

an instability of the chemical feedback control of blood which

leads to rhythmic changes of breath (e.g. central apnea) [25] or an

uneven distribution of the respiratory neural output to chest wall

and upper airway muscles (obstructive events) [26]. However, it

remains unclear why the occurrence of AHE, especially serial

ones, is concentrated in LS although there is a similar chemoreflex

responsiveness as in DS. Obviously, the significant differences

between both sleep stages in the occurrence of CRC after AHE

implies a necessary condition for serial AHE. Further on, this

importance is also indicated by the increased appearance of CRC

in AHE. Therefore, we hypothesize that CRC is important for the

development of AHE. This hypothesis could explain the observa-

tion of Wallois et al. 2008 [27] who describe the case of a neonate

where CRC was observed before a life-threatening cessation of

breath. Recent studies show the evidence of two generators of

spontaneous breathing patterns in the brainstem, the so-called pre-

Bötzinger complex (preBö) and parafacial respiratory group

(pFRG) [28,29]. The neurons of pFRG are associated with the

expiratory rhythm generator ‘‘vetoing’’ the inspiratory bursts of

preBö [29]. We hypothesize the importance of the pFRG for the

dominant part of the detected CRC where the start of the

inspiration aligns to the heart beats. This would require a

connection of the cardiovascular control with pFRG, perhaps

via the afferent baroreceptor activity [30]. But this still needs to be

investigated. Furthermore, the preBö is assumed to be the main

contributing factor of the cardiac alignment to respiration the

other part of CRC. We observed preBö’s dominance after AHE

which would explain the increasing prevalence of AHE in older

people because of increasing importance of preBö for the

respiratory rhythm during aging [28]. This dominance could be

a reason for the fast overshoot of the vagal activity after the AHE

resulting in a new event. In DS we see a drastic reduction in the

number of AHE and a significant decrease in CRC after AHE (see

Table 1). Similar to several studies which hypothesize that the

activity of preBö is depressed by opiates [28,29], it is possible that

DS could have a similar depressing effect on preBö as this

analgesic state.

The comparison of CRC and phase synchronisation illustrates

the need of a more differentiated characterization of the temporal

alignment of heart beats and breathing.

The main reason for reduced detection of phase synchronisation

using traditional means are complex fast changes of the whole-

numbered ratio of heart beats and breathing cycles described and

classified by Galletly et al. 1997 [8]. This phenomenon indicates a

need for a more extensive description of the self-organization in

networked relaxation oscillators. These oscillators, e.g. respiratory

neurons [28,29] and the cardiac pacemaker cells, are character-

ized by fast temporary discharges and longer threshold-depending

recovery times. As shown in computer models, relaxation

oscillators are capable of a rapid coordination [31] which is also

shown in our results, especially during and after AHE. In the

analyzed example, this coordination seems to influence rhythmic

changes of slower periods than the eigenfrequency of the coupled

oscillators, e.g. series of AHE [26]. So, the fast stepwise change of

the whole-numbered ratio of heart beats and breathing cycles is a

cascade of period lengthenings in both oscillators. This clearly

overshoots the range of both eigenfrequencies which then results in

a recovery period.

The example of CRC in the presence of changing sleep stages

(see Fig. 3) indicates two findings. First, AHE and ectopic beats are

not the only disturbances which can be used to analyze the

mechanisms behind the cardio-respiratory coordination. This

emphasizes not only the sensitivity of CRC to disturbances but

also its very fast recovery after these events.

Second, panels B and D elucidate the limitation of our

quantification where stripes start overlapping. Here, the parameter

b, the assumed detection error of the respiratory onset, is too large

in relation to the length of the beat-to-beat intervals (,600 ms).

Only a more precise determination of the respiratory onset could

counter this phenomenon and make the approach applicable for

diurnal studies where beat-to-beat intervals of a length of about

600 ms are common. The sensitivity analysis confirms this trend,

where higher values than b= 0.2 resulted in a strong reduction of

detection. Furthermore, the sensitivity analysis uncovered the

influence of the detection parameters on the testing results which

are caused by the faster decay of the detection rate in disturbed

respiration. An explanation could be a higher noise level in these

cases. Sources of this additional amount of noise could be a higher

body movement after AHE, and a worse detection of the

respiratory onset in AHE in comparison with normal respiration.

The higher noise level causes a stronger covering of the

coordination and earlier rejection if the requirements for

coordination become stricter. So, there is a trade-off between

detecting all existing coordination events (small values, especially

of e) and avoiding missed detections (high values, especially of e).
The chosen parameter values represent a compromise.

However, the consideration of CRC may lead to innovations in

various topics such as the obstructive sleep apnea syndrome [25],

the sudden infant death syndrome [27,28] as well as in the field of

central respiratory arrest in sleep [28]. The proposed analysis tool,

the coordigram, will definitely play a major role in these fields.

Supporting Information

Data S1 The time points of the respiratory and the
cardiac onsets as well as the status of each respiratory
onset (present sleep stage; AHE yes/no).
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16. Schäfer C, Rosenblum MG, Kurths J, Abel HH (1998) Heartbeat synchronized

with ventilation. Nature 392: 239–240.

17. Cysarz D, von Bonin D, Lackner H, Heusser P, Moser M, et al. (2004)

Oscillations of heart rate and respiration synchronize during poetry recitation.
Am J Physiol Heart Circ Physiol 287: H579–H587.

18. Niizeki K, Saitoh T (2012) Incoherent oscillations of respiratory sinus

arrhythmia during acute mental stress in humans. Am J Physiol Heart Circ
Physiol 302: H359–H367.

19. Moser M, Lehofer M, Hildebrandt G, Voica M, Egner S, et al. (1995) Phase-and
frequency coordination of cardiac and respiratory function. Biological Rhythm

Research 26: 100–111.

20. Pessenhofer H, Kenner T (1975) Zur Methodik der kontinuierlichen
Bestimmung der Phasenbeziehung zwischen Herzschlag und Atmung. Pflügers
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