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This paper presents an analytical study of synchronization in an array of output-coupled temporal Boolean
networks. A temporal Boolean network (TBN) is a logical dynamic system developed to model Boolean
networks with regulatory delays. Both state delay and output delay are considered, and these two delays are
assumed to be different. By referring to the algebraic representations of logical dynamics and using the
semi-tensor product of matrices, the output-coupled TBNs are firstly converted into a discrete-time
algebraic evolution system, and then the relationship between the states of coupled TBNs and the initial state
sequence is obtained. Then, some necessary and sufficient conditions are derived for the synchronization of
an array of TBNs with an arbitrary given initial state sequence. Two numerical examples including one
epigenetic model are finally given to illustrate the obtained results.

A
central focus of modern biology concerns understanding the function of a cell, the manner how a cell

performs its function and the ways in which cellular systems fail in disease. With the rapid development of
systems biology1,2, genetic regulatory networks have recently become a newly developing area and have

attracted much attention due to its close relationship with neural networks, protein webs and other biological
systems3–7. A genetic regulatory network contains a group of DNA elements in a cell which interact with others
directly or indirectly through their mRNA or protein products. Thus, a genetic regulatory network governs the
expression levels of the mRNA and the protein products. With time going, various types of genetic regulatory
networks have been proposed, such as Markov-type genetic networks8 and Boolean networks1. Each of these
models has its own advantages and limitations in terms of the following considerations: the accuracy of the
approach relate to the level of genetic, biological phenomenon being modelled; the experimental feasibility of
model construction; and the computational complexity of the model inference from the available data.

The concept of Boolean network (BN) was firstly proposed by Kauffman1 as a simplified model of the behavior
of large networks of randomly interconnected binary (on-off) genes. One of the main advantages of Boolean
networks is the comprehensibility owing to the simplicity of the representation. A BN can effectively model a
genetic regulatory network with its gene products (the outputs) and the substances from outside or the envir-
onment that can affect the gene (the inputs). In a BN, the state of each node has only two unique states: 1 (on) or 0
(off). For a gene, ‘‘on’’ corresponds to the gene being expressed; For inputs and outputs, ‘‘on’’ corresponds to the
relative substances being present. Moreover, each node evolves its state according to a Boolean function, which is
a logical function, at each discrete time point.

Since the BNs can provide a general description of the behavior of many living organisms, they have attracted
great attention from researchers in different fields. There are various examples of genetic regulatory networks
modeled using BNs, such as the yeast cell-cycle networks9; the control of the mammalian cell cycle10; the yeast
transcriptional networks11; the network predicting the expression of the segment polarity genes in the fly
Drosophila melanogaster12, and so on. Recently, a new method called semi-tensor product (STP) of matrices
has been firstly proposed by Cheng and his colleagues13,14. By using the method of STP, a Boolean function can be
uniquely expressed as an algebraic expression, and hence a BN can be expressed as a standard discrete-time
algebraic system. This method has been proved to be quite useful to study BNs concerning the topological
structure, such as the fixed points, cycles, basin of attractors and the transient time. Based on this approach,
many interesting results have been obtained in the last few years, such as stabilization of BNs with impulsive
effects15, optimal control of logical control networks16, etc.

A curious ability of some real-world systems is that they can evolve in perfect synchronization. In the past
decades, the phenomenon of collective behavior has inspired a large amount of research, such as synchronization
analysis and control of complex networks17–21, consensus in multi-agent systems22,23, synchronization of
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Kauffman networks24, and cooperation of networks25–27, etc. It was
demonstrated that the nodes in a second-order Kuramoto model
perform a cascade of transitions toward a synchronous macroscopic
state28. A time delay, which is a source of instability, exists in various
engineering systems such as chemical processes, or long transmis-
sion lines in pneumatic systems. Some interesting results have also
been obtained concerning the effect of time-delay on network syn-
chronization29–31. A processing coupling-delay is effectively used to
annihilate the quenching of oscillation in a network of coupled oscil-
lators by switching the stability of amplitude death32. Recently, inter-
ests have also been extended to synchronization of BNs, due to
their potential applications in biology, chemistry, as well as
engineering33,34.

Synchronization and controllability are structural properties of a
system, and they are fundamental concepts in control theory.
Recently, synchronization of two delay-free deterministic BNs and
synchronization in an array of coupled BNs have been respectively
studied in33,34 and the synchronization of multi-valued logical net-
works have been studied in35. In36, we investigated the synchroniza-
tion in an array of BNs with time delay. It is well known that time
delay is very common in real world and also is inevitable in biological
systems and engineering problems. Moreover, in many situations,
time delay can not be ignored in practice, since it may heavily affect
the dynamics of the networks37,38. One interesting kind of BNs, called
temporal Boolean networks (TBNs) were developed to model regu-
latory delays in39. TBNs own a more complex structure when the time
delays in Boolean variables are allowed to be different. TBNs can
approximate real cellular regulatory networks or genetic networks
better than BNs. Hence, it is desirable to study synchronization of
TBNs. In the past few years, many results about TBNs have been
obtained, such as output controllability of temporal Boolean control
networks (TBCNs) and complete synchronization of TBNs40.
However, there has been no results investigating synchronization
in an array of output-coupled TBNs, to the best of our knowledge.
In40, the authors studied the synchronization of two coupled TBNs in
a drive-response configuration. Sometimes, in the real world, we
need to judge whether an array of networks can be synchronized
or not. The output coupling phenomenon is ubiquitous in many
biological networks and physical systems. For instance, a cellular
system contains many different components to synthesis macromo-
lecular in cells. In an idealized model of a metabolic feed-back control
cycle, each unit component consists of three parts: a genetic locus, a
ribosome and a cellular locus. Each of these three parts interacts with
each other by its corresponding products, such as mRNA, protein
and metabolic species. Furthermore, different components interacts
with each other by its corresponding metabolic products, which is a
type of output coupling. Thus, investigating synchronization in an
array of output-coupled TBNs is meaningful and challenging, and
can be helpful to disclose the control mechanisms for macromole-
cular synthesis and the behavior of a cell.

Motivated by the above discussions, in this paper, we focus on
synchronization in an array of output-coupled TBNs. Our main
objective is to obtain a general analytical approach to study syn-
chronization in output-coupled TBNs. Both state delay and output
delay are considered in the output-coupled TBNs. The main results
are derived by using the method of semi-tensor product of matrices
which can convert a deterministic BN into a unique algebraic rep-
resentation. By using the algebraic representations of TBNs, we
derive some necessary and sufficient conditions for the synchroniza-
tion in an array of TBNs.

Some basic notations: The standard notations will be used in
this paper. Throughout this paper, the notation 1k denotes the k-
dimensional column vector with all entries equalling to 1. Denote the
set of two logical variables by D~ 1,0f g, where 1 , T means ‘‘true’’
and 0 , F means ‘‘false’’. A logical variable u will take a value
from D, which is expressed as u [ D. Define a delta set as

Dn : ~ di
n i~1,2, . . . ,nj

� �
, where di

n is the ith column of the identity
matrix In. We denote the ith column of matrix A by Coli(A) and
denote the set of columns of matrix A by Col(A). We also denote the
ith row of matrix A by Rowi(A) and denote the set of rows of matrix A
by Row(A). An n 3 m matrix L is called a logical matrix if the
columns of L, denoted by Col(L), are in the form of dk

n. That is to
say, Col Lð Þ(Dn. Denote the set of n 3 s logical matrices by Ln|s. If
L[Ln|s, it can be expressed as L~ di1

n ,di2
n , . . . ,dis

n

� �
. For simplicity, it

can be denoted as L 5 dn[i1, …, is]. We use 6
M
i~1Xi tð Þ to denote

X1 tð Þ6X2 tð Þ6 � � �6XM tð Þ, and use N
j~1yi tð Þ to denote

y1 tð Þ y2 tð Þ � � � yN tð Þ.

Results and Methods
In this paper, we study the following array of M output-coupled BNs,
with each one being an N-node system:

Xi
j tz1ð Þ~f i

j X1
j tð Þ, . . . ,XN

j tð Þ,X1
j t{1ð Þ, . . . ,XN

j t{1ð Þ, . . . ,
�

X1
j t{t1ð Þ, . . . ,XN

j t{t1ð Þ,y1 tð Þ, . . . ,yM tð Þ
�

,

i~1,2, . . . ,N

yj tð Þ~gj X1
j tð Þ, . . . ,XN

j tð Þ,X1
j t{1ð Þ, . . . ,XN

j t{1ð Þ, . . . ,
�

X1
j t{t2z1ð Þ, . . . ,XN

j t{t2z1ð Þ,X1
j t{t2ð Þ, . . . ,

XN
j t{t2ð Þ

�
,j~1,2, . . . ,M

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð1Þ

where Xi
j is the ith node of the jth TBN, yj is the binary output,

f i
j : 1,0f g t1z1ð ÞNzM? 1,0f g, gj : 1,0f g t2z1ð ÞN? 1,0f g are Boolean

functions, and t1, t2 are positive integers describing the state delay
and the output delay. In many biological networks and genetic
regulatory networks, time delay is ubiquitous due to finite signal
propagation time, finite chemical reaction times, memory effects,
and so on. The time delay t1 describes delay occurring between states,
while time delay t2 describes delay resulting from output. For
example, in a genetic regulatory networks, the level of a gene maybe
affected by its past m gene levels. Different genes interact by its cor-
responding gene products, which may cost time to be transmitted
from one gene to another one. Thus, model (1) can be an efficient
model to describe some biological networks or genetic regulatory
networks with state delay and output delay. We simply denote

Xj tð Þ~ X1
j tð Þ,X2

j tð Þ, . . . ,XN
j tð Þ

� �T
the states of the TBNs (1) at time

instant t. We observe that the state evolution of the output-coupled
TBN (1) depends on the initial state sequences, and there are two
cases as follows. Case (I): t1 $ t2, the initial state sequence is Xj(0),
Xj(21), …, Xj(2t1) for j 5 1, 2, …, M; case (II): t1 , t2, the initial
state sequence is Xj(0), Xj(21), …, Xj(2t2) for j 5 1, 2, …, M. Now,
we define complete synchronization in the array of TBNs (1) as
follows:

Definition 1 The array of TBNs are said to be synchronized if for
every initial state sequence, there exists a positive integer k, such that t
$ k implies Xi(t) 5 Xj(t) for every distinct 1 # i, j # M.

Remark 1 In this definition, the value of k depends on the initial

state sequences. Nevertheless, since the 1,0f g t1z1ð ÞN (or 1,0f g t2z1ð ÞN )
is a finite set, we can always choose a constant k large enough which is
independent of the initial states sequence.

In the following, we establish some necessary and sufficient cri-
teria for synchronization in an array of output-coupled TBNs. To
acquire a strict analysis, we ought to apply algebraic representations
of the TBNs according to the STP theory.

Let Xj tð Þ~X1
j tð Þ X2

j tð Þ � � � XN
j tð Þ for j 5 1, …, M and

y tð Þ~y1 tð Þ y2 tð Þ � � � yM tð Þ. Let Fi
j and Gj be the structure matrix
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of f i
j and gj. Then we can make Aj t,t2ð Þ~

Xj tð ÞXj t{1ð Þ � � �Xj t{t2ð Þ for j 5 1, 2, …, M to obtain the algebraic
representations of y(t). By equation (1) and the algebraic representa-
tions of Boolean functions, we have

yj tð Þ~GjXj tð ÞXj t{1ð Þ � � �Xj t{t2ð Þ~GjAj t,t2ð Þ: ð2Þ

Hence, we get y tð Þ~ 6
M
j~1Gj

� �
M
j~1Aj t,t2ð Þ ¼D G M

j~1Aj t,t2ð Þ,
where G~6

M
j~1Gj. To obtain the accurate algebraic expressions of

M
j~1Aj t,t2ð Þ, we also make Mj t,t2ð Þ~Xj t{1ð Þ � � �Xj t{t2ð Þ to facil-

itate the expression. Then we have
M
j~1Aj tð Þ~X1 tð ÞX1 t{1ð Þ � � �X1 t{t2ð ÞX2 tð Þ � � �X2 t{t2ð Þ

� � �XM tð Þ � � �XM t{t2ð Þ

~X1 tð ÞM1 t,t2ð ÞX2 tð ÞM2 t,t2ð ÞX3 tð ÞM3 t,t2ð Þ

� � �XM tð ÞMM t,t2ð Þ

~X1 tð ÞW 2N ,2t2N½ �X2 tð ÞM1 t,t2ð ÞM2 t,t2ð ÞX3 tð Þ

M3 t,t2ð Þ � � �XM tð ÞMM t,t2ð Þ

~ I2N6W 2N ,2t2N½ �
� 	

X1 tð ÞX2 tð ÞM1 t,t2ð ÞM2 t,t2ð Þ

X3 tð ÞM3 t,t2ð Þ � � �XM tð ÞMM t,t2ð Þ

..

.

~ M{1
i~1 I2i N6W 2N ,2it2N½ �

� 	
M
j~1Xj tð Þ

� �
M1 t,t2ð Þ

M2 t,t2ð Þ � � �MM t,t2ð Þ

¼D W0
M
j~1Xj tð Þ

� �
M1 t,t2ð ÞM2 t,t2ð Þ � � �MM t,t2ð Þ

~W0
M
j~1Xj tð Þ

� �
X1 t{1ð Þ � � �X1 t{t2ð Þ � � �XM t{1ð Þ

� � �XM t{t2ð Þ,

ð3Þ

where W0~
M{1
i~1 I2i N6W 2N ,2it2N½ �

� 	
. By induction, we yield

M
j~1Aj t,t2ð Þ ¼D bW1

M
j~1Xj tð Þ M

j~1Xj t{1ð Þ � � � M
j~1 Xj t{t2ð Þ, ð4Þ

where bW1~W0
t2{1
j~1 I2j N M6Wj
� 	

, Wj~
M{1
i~1 I2i N6W

2N ,2iN t2{jð Þ
� �
 �

, j

5 1, …, t2 2 1. Hence, we have y tð Þ~G bW1
M
j~1Xj tð Þ M

j~1

Xj t{1ð Þ � � � M
j~1 Xj t{t2ð Þ.

Now, we try to obtain the algebraic representations of the states
Xj(t 1 1). By equation (1) and algebraic representations of Boolean
functions, we have Xi

j tz1ð Þ~Fi
j Xj tð ÞXj t{1ð Þ � � �Xj t{t1ð Þy tð Þ. By

denoting C t,t1ð Þ~Xj tð ÞXj t{1ð Þ � � �Xj t{t1ð Þy tð Þ for simplicity, we
then get

Xj tz1ð Þ~F1
j C t,t1ð ÞF2

j C t,t1ð Þ � � � FN
j C t,t1ð Þ

~F1
j I

2 t1z1ð ÞNzM6F2
j

� �
W t1z1ð ÞNzMC t,t1ð Þ � � � FN

j C t,t1ð Þ

¼D FjC t,t1ð Þ~FjXj tð ÞXj t{1ð Þ � � �Xj t{t1ð Þy tð Þ:

ð5Þ

where Fj~F1
j

N
j~2 I

2 t1z1ð ÞNzM6Fi
j

� �
W t1z1ð ÞNzM

n o
.

That is to say, we have obtained the following equivalent algebraic
representations of output-coupled TBNs (1):

Xj tz1ð Þ~FjXj tð ÞXj t{1ð Þ � � �Xj t{t1ð Þy tð Þ
y tð Þ~G bW1

M
j~1Xj tð Þ M

j~1Xj t{1ð Þ � � � M
j~1 Xj t{t2ð Þ

(
ð6Þ

where Fj is an 2N|2 t1z1ð ÞNzM matrix, G is an 2M|2 t2z1ð ÞN M

matrix and bW1 is an 2 t2z1ð ÞN M|2 t2z1ð ÞN M matrix.
From equation (6), it is easy to see that the state of each TBN is

determined by its delayed states and the output y(t), which means
these TBNs are coupled through the output y(t). Let

M
j~1Xj tð Þ~X1 tð Þ X2 tð Þ � � � XM tð Þ, using equation (6) and math-

ematical iteration, we can derive the relationship between M
j~1Xj tð Þ

and corresponding initial state sequence.
Before we derive the necessary and sufficient conditions for syn-

chronization, we need the following proposition. From this proposi-
tion, we can acquire the relationship between the state Xj(t) at time t
and the initial state sequence which will be employed to obtain the
criteria for synchronization of TBNs.

Proposition 1 Let F~6
M
j~1Fj, W~W

2M ,2 t1z1ð ÞN
� � M

i~2

I2M6W
2M ,2i t1z1ð ÞN
� �
 �

WM

� 
and bW2~W’0

t1{1
j~1 I2j M N6W’j

� 	
,

where W’j~ M{1
i~1 I2i N6W

2N ,2i t1{jð ÞN
� �
 �

, j 5 0, 1, …, t1 2 1.

Then we have

M
j~1Xj tz1ð Þ~FWG bW1 I

2 t2z1ð ÞN M6 bW2

� �
M
j~1Xj tð Þ M

j~1Xj t{1ð Þ

� � � M
j~1 Xj t{t2ð Þ M

j~1Xj tð Þ M
j~1Xj t{1ð Þ

� � � M
j~1 Xj t{t1ð Þ:

ð7Þ

Remark 2 According to equation (7), we need to know whether t1 is
larger than t2 or not by considering these two cases: Case (I): t1 $ t2,
which means that the initial state sequence is Xj(0), …, Xj(2t1) for j 5

1, 2, …, M; Case (II): t1 , t2, which implies the initial state sequence is
Xj(0), …, Xj(2t2) for j 5 1, 2, …, M. In the following sequel, according
to different case, we derive some necessary and sufficient conditions for
synchronization in an array of output-coupled TBNs. We firstly con-
sider Case (I), and then Case (II).

Case I: t1 $ t2. Now let us first consider Case (I): t1 $ t2, with the
initial state Xj(0), …, Xj(2t1) for j 5 1, 2, …, M. Since t1 and t2

describe the state delay and the output delay, in this case, it means the
state delay is not smaller than the output delay. In a cellular system, it
means the delay caused during the processes of the transcription of a
gene is not smaller than that caused during the processes of the
translation of a gene. Based on Proposition 1, we obtain the
following proposition, which is derived to show the explicit
relationship between the state Xj(t) and the initial states Xj(0), …,
Xj(2t1).

Proposition 2 Let H1~FWG bW1 I
2 t2z1ð ÞN M6 bW2

� �
W t2z1ð ÞN M and

J1~H1W
2t1N M ,2 t1z1ð ÞN M
� �Wt1N M , then we have

M
j~1Xj tz1ð Þ~H1

M
j~1Xj tð Þ M

j~1Xj t{1ð Þ � � � M
j~1 Xj t{t1ð Þ ð8Þ

and

M
j~1Xj tð Þ~ I2N M 61T

2t1 N M

� 	
Jt

1
M
j~1Xj 0ð Þ M

j~1Xj {1ð Þ � � � M
j~1 Xj {t1ð Þ

n o
: ð9Þ

In the first case, i.e. t1 $ t2, which means the state delay is larger than
the output delay, we can observe the value of states at time t 1 1
depends on its past t1 1 1 states. Then, using mathematical analysis
and STP, we can obtain that the value of states at time t has a specific
connection with the initial sequence, M

j~1Xj 0ð Þ, M
j~1Xj {1ð Þ, . . . ,

M
j~1Xj {t1ð Þ. The left side of equation (9) is the STP of state of each

TBN at the discrete time point t, while the right side is product of
several matrices and the initial state sequences. Since (I2M N61T

2t1N M )
and J1 are constant matrices, we can present our necessary and
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sufficient criterion for synchronization in the array of output-
coupled TBNs as following.

Theorem 1 Let equation (6) be the algebraic representations of the
array of TBNs (1). Then synchronization occurs iff there exists a
positive integer k satisfying 1 # k # k0 such that

Col I2N M 61T
2t1 N M

� 	
Jk

1

� �
( dli

2M N : li~1z
i{1ð Þ 2M N{1ð Þ

2N{1
,i~1,2, . . . ,2N

� 
ð10Þ

where

k0~min i§1 : I2N M61T
2t1N M

� 	
Ji

1~ I2N M61T
2t1N M

� 	
J

j
1,jwi

n o
: ð11Þ

Remark 3 In equation (11) in Theorem 1, we can use

k’0~min i§1 : Ji
1~J

j
1,jwi

n o
to simplify it but meanwhile the

restriction is strengthened. By k’0~min iw1 : Ji
1~J

j
1,jwi

n o
, there

must exist an integer jwk’0 such that Jk’0
1 ~J

j
1. Then we have

I2N M61T
2t1 N M

� 	
Jk’0

1 ~ I2N M61T
2t1 N M

� 	
J

j
1. Hence, we can conclude

that k0ƒk’0. Equation (10) implies that after finite time steps, i.e. k0

steps, we can judge whether the array of TBNs can be synchronized or
not. If this array of TBNs can not be synchronized before the k0-th
steps, then it can not be synchronized at any time. Thus, Theorem 1
provides an efficient criterion for synchronization in an array of out-
put-coupled TBNs.

Remark 4 If the coupled TBNs can be synchronized after certain
times k, then we have Xi

j tð Þ~Xi’
j’ tð Þ for 1 # j ? j9 # M, 1 # i ? i9 # N

and t $ k. Since the set of state values is a finite set, i.e.

d1
2N ,d2

2N , . . . ,d2N

2N

n o
, we can suppose each synchronous state to be

Xi
j~di

2N , 1 # j # M, 1 # i # N. Because of the definition of
M
j~1Xj tð Þ~X1 tð Þ � � � XM tð Þ, we can obtain the synchronous set of

M
j~1Xj tð Þ, which is dli

2M N :li~1z
i{1ð Þ 2M N{1ð Þ

2N{1
,i~1,2, . . . ,2N

� 
.

According to equation (9), if we have an initial sequence, i.e.
M
j~1Xj 0ð Þ M

j~1Xj {1ð Þ � � � M
j~1 Xj {t1ð Þ~di

2N M t1z1ð Þ , we can obtain
M
j~1Xj tð Þ~Coli I2N M61T

2t1 N M

� 	
Jt

1

� �
. Thus, Col I2N M61T

2t1 N M

� 	
Jt

1

� �
is the total possible state value of M

j~1Xj tð Þ. In order to judge whether
the coupled TBNs can be synchronized or not, we just need to calculate
whether there exists a positive integer k such that all possible state value
of M

j~1Xj kð Þ are in the synchronous set

dli
2M N : li~1z

i{1ð Þ 2M N{1ð Þ
2N{1

,i~1,2, . . . ,2N

� 
.

As we know, J1 is a logical matrix and so is the matrix of
I2M N61T

2t1 N M . Moreover, if (J1)ij 5 1, then we have
I2N M61T

2t1 N M

� 	
Colj J1ð Þ~Coli I2N M61T

2t1 N M

� 	
which means taking

the ith column of matrix I2N M61T
2t1 N M . Then, we can easily derive the

following simplified criterion for synchronization in an array of out-
put-coupled TBNs.

Corollary 1 LetV1~ li{1ð Þ2
t1 N M

zj : li~1z
i{1ð Þ 2N M{1ð Þ

2N{1
,

�
i~1,2, . . . ,2N ,j~1, . . . ,2t1 N Mg. Then the array of output-coupled
TBNs (1) can be synchronized iff there exists a positive integer k such

that Rowi Jk
1

� 	
~ 0,0, . . . ,0ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

2 t1z1ð ÞN M

, i[ 1,2, . . . ,2 t1z1ð ÞN M
n o.

V1.

In Proposition 2, we use the variable substitution
Z1 tð Þ~ M

j~1Xj tð Þ � � � M
j~1 Xj t{t1ð Þ to analyze the problem of syn-

chronization in an array of output-coupled TBNs. Based on the
variable substitution, we derive the necessary and sufficient criterion
for synchronization, i.e. Theorem 1. In the following sequel, we use
the mathematical induction without using the variable substitution

Z1 tð Þ~ M
j~1Xj tð Þ � � � M

j~1 Xj t{t1ð Þ to analyze the synchronization
problem. According to equation (8), we obtain another form of rela-
tionship between the state Xj(t) and the initial state sequence Xj(0),
Xj(21), …, Xj(2t1) by mathematical induction.

Proposition 3 Let H1 defined as the same as in Lemma 2, then we
get that

M
j~1Xj tð Þ~Ht

1LH1
t

M
j~1Xj 0ð Þ M

j~1Xj {1ð Þ � � � M
j~1 Xj {t1ð Þ ð12Þ

where

LH1
t ~

I
2 t1z1ð ÞN M , t~1,

LH1
1 W

2t1 N M ,2 t1z1ð Þ N M
� �Wt1 N M , t~2,

LH1
t{1

1
j~t{2 I

2 t1z1ð ÞN M6 H
j
1LH1

j

� �h i
W t1z1ð ÞN M

n o
W

2 t1z2{tð ÞN M ,2 t1z1ð ÞN M
� �W t1z2{tð ÞN M , 3ƒtƒt1z1,

LH1
t{1

t{1{t1
j~t{2 I

2 t1z1ð ÞN M6 H
j
1LH1

j

� �h i
W t1z1ð ÞN M

n o
, t§t1z2:

8>>>>>>>>>><>>>>>>>>>>:
ð13Þ

By Proposition 3, we then present another necessary and sufficient syn-
chronization criterion for the array of TBNs.

Theorem 2 The array of TBNs can be synchronized iff there exists a
positive integer k such that

Col Hk
1LH1

k

� �
( dli

2M N : li~1z
i{1ð Þ 2M N{1ð Þ

2N{1
,i~1,2, . . . ,2N

� 
ð14Þ

where LH1
k is defined in Proposition 3.

Remark 5 According to equation (12), if we have an initial sequence,
i.e. M

j~1Xj 0ð Þ M
j~1Xj {1ð Þ � � � M

j~1 Xj {t1ð Þ~di
2N M t1z1ð Þ , we can

obtain that the value of states at time k is Coli Hk
1LH1

k

h i
. Therefore,

Col Hk
1LH1

k

h i
is the total possible state values at time t. In order to judge

whether the coupled TBNs can be synchronized or not, we just need to
know whether there exists a positive integer k such that the possible
state values are in the synchronous set

dli

2M N : li~1z
i{1ð Þ 2M N{1ð Þ

2N{1
,i~1,2, . . . ,2N

� 
.

Case II: t1 , t2. Now we turn to case (II): t1 , t2, where the initial
state sequence is Xj(0), Xj(21), …, Xj(2t2) for j 5 1, 2, …, M. In this
case, it means the state delay is smaller than the output delay. The
following proposition is firstly presented to explicitly express the
relationship between the current state and the initial state sequence.

Proposition4 LetH2~FWGcW1 I
2 t2z1ð ÞN M6cW2

� �
W

2 t1z1ð ÞN M ,2 t2z1ð ÞN M
� �

W t1z 1ð ÞN M and J2 ~H2W
2t2 N M ,2 t2z1ð ÞN M
� �, then we have

M
j~1Xj tz1ð Þ~H2

M
j~1Xj tð Þ M

j~1Xj t{1ð Þ � � � M
j~1 Xj t{t2ð Þ ð15Þ

and

M
j~1Xj tð Þ~ I2N M 61T

t2 N M

� �
Jt

2
M
j~1Xj 0ð Þ M

j~1Xj {1ð Þ � � � M
j~1 Xj {t2ð Þ

n o
: ð16Þ

In this case (t1 , t2), the initial state sequence is Xj(0), …, Xj(2t2) for j
5 1, 2, …, M. Thus, the STP of state of each TBN is determined by the
initial state sequence and a transition matrix I2M N61T

2t2 N M

� 	
Jt

2. Now
we can present the following synchronization criterion which is similar
with Theorem 1.

Theorem 3 Let equation (6) be the algebraic representations of the
array of TBNs (1). Then synchronization occurs iff there exists a
positive integer k satisfying 1 # k # k0 such that

Col I2N M 61T
2t2 N M

� 	
Jk

2

� �
( dli

2M N : li~1z
i{1ð Þ 2M N{1ð Þ

2N{1
,i~1,2, . . . ,2N

� 
ð17Þ

where
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k0~min i : i§1, I2N M 61T
2t2 N M

� 	
Ji

2~ I2N M 61T
2t2 N M

� 	
J

j
2 for some jwi

n o
: ð18Þ

Similar to Theorem 1, we can also obtain the same synchronous set,

which is dli

2M N : li~1z
i{1ð Þ 2M N{1ð Þ

2N{1
,i~1,2, . . . ,2N

� 
.

According to equation (16), we can obtain the total possible state
values as Col I2N M61T

2t2 N M

� 	
Jk

2

� �
. As long as there exists a positive

integer k such that the possible state values at time k are in the
synchronous set, then we can draw a conclusion that the coupled
TBNs can be synchronized.

Remark 6 In equation (18) in Theorem 3, we can also use

k’0~min i§1 : Ji
2~J

j
2,jwi

n o
to simplify it but meanwhile the

restriction is strengthened. And we can also get k0ƒk’0. Equation
(17) implies that after finite time steps, i.e. k0 steps, we can judge
whether the array of TBNs can be synchronized or not. If after k0

steps, this array of TBNs still can not be synchronized, then it can
not be synchronized at any time. Thus, Theorem 3 also provides an
efficient criterion for synchronization in an array of output-coupled
TBNs.

Since I2N M61T
2t2 N M

� 	
and J2 are logical matrices, we can derive

the following simplified criterion for synchronization in an array of
output-coupled TBNs.

Corollary 2 Let V2~ li{1ð Þ2t2 N Mzj : li~1z
i{1ð Þ 2N M{1

� 	
2N{1

,

�
i~1,2, . . . ,2N ,j~1, . . . ,2t1 N Mg. Then the array of temporal Boolean
networks can be synchronized iff there exists a positive integer k such

that Rowi Jk
2

� 	
~ 0,0, . . . ,0ð Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

2 t2z1ð Þ N M

, i[ 1,2, . . . ,2 t2z1ð Þ N M
n o.

V2.

Similar to Proposition 3, we can also use mathematical induction
to obtain following proposition which implies the relationship
between the current state and the initial state sequence by using
Proposition 4.

Proposition 5 Let H2 be defined the same as in Proposition 4, then
we can obtain that

M
j~1Xj tð Þ~Ht

2LH2
t

M
j~1Xj 0ð Þ M

j~1Xj {1ð Þ . . . M
j~1 Xj {t2ð Þ ð19Þ

where

LH2
t ~

I
2 t2z1ð ÞN M , t~1,

LH2
1 W

2t2 N M ,2 t2z1ð Þ N M
� �Wt2 N M , t~2,

LH2
t{1

1
j~t{2 I

2 t2z1ð ÞN M6 H
j
2LH2

j

� �h i
W t2z1ð ÞN M

n o
W

2 t2z2{tð ÞN M ,2 t2z1ð ÞN M
� �W t2z2{tð ÞN M , 3ƒtƒt2z1,

LH2
t{1

t{1{t2
j~t{2 I

2 t2z1ð ÞN M6H
j
2LH2

j

� �h i
W t2z1ð ÞN M

n o
, t§t2z2:

8>>>>>>>>>><>>>>>>>>>>:
ð20Þ

According to Proposition 5, we can obtain following synchronization
criterion to judge the array of output-coupled TBNs can be synchro-
nized or not, which is similar to Theorem 2.

Theorem 4 The array of TBNs can be synchronized iff there exists a
positive integer k such that

Col Hk
2LH2

k

� �
( dli

2M N : li~1z
i{1ð Þ 2M N{1ð Þ

2N{1
,i~1,2, . . . ,2N

� 
ð21Þ

where LH2
k is defined in Proposition 5.

According to equation (19), we obtain the total possible state

values are Col Hk
2LH2

k

� �
. Following similar discussions in Remark

5, the coupled TBNs can be synchronized if and only if there exists
an integer k such that the possible state values are in the synchron-
ization set.

Numerical Simulation
In this section, we present two numerical examples to illustrate our
main theoretical results, which include a practical epigenetic
example.

Example 1 Let us first consider the BN which is used to model a
molecular biological system41. It is an epigenetic model proposed by
Goodwin42 of control mechanisms for the macromolecular synthesis in
cells including: genetic locus Li, cellular structure Ri (ribosome) and
cellular locus Ci, i 5 1, 2. As is shown in Fig. 1, Li synthesises mRNA
(Xi) to the cellular structure Ri, where its activity results in the syn-
thesis of a protein, denoted by Yi. The protein then travels to some
cellular locus Ci. A fraction of a metabolic species Mi generated by the
protein returns to the genetic locus Li. Moreover, a reciprocal inter-
action occurs from L2 to L1. Based on the analysis in41, the variables
and Boolean functions of the model are given in Table I.

Let f1~ f 1
1 ,f 2

1 ,f 3
1

� 	
~ :x3

1^y2,x1
1,x2

1Þ
�

, f2~ f 1
2 ,f 2

2 ,f 3
2

� 	
~:x2

2^y1,x1
2,x2

2Þ
�

,
g1~:x3

1, g2~:x3
2. During the process of synthesis in cells, several envir-

onmental conditions such as temperature, growth rate or concentration of
nutrition, may cause a time delay of state and output. Thus, it is reasonable
to use TBNs in form (1) to model the network. Meanwhile, we can use the
following case to illustrate the impacts of time delay occurred in the process
of synthesis in cells towards the synchronization problem. Put
xj tð Þ~x1

j tð Þ x2
j tð Þ x3

j tð Þ for j 5 1, 2, and y tð Þ~y1 tð Þ y2 tð Þ. In the
TBNs, we let the initial state sequences be x1(21) 5 (1, 1, 1), x2(21) 5 (0,
0, 0), x1(0) 5 (0, 0, 0), x2(0) 5 (1, 1, 1).

Consider: t1 5 t2 5 1 which means that the state time delay is equal
to the output time delay.

Figure 1 | Boolean model of a coupled macromolecular synthesis in a cell with each unit consisting of a genetic locus (L1 or L2), a cellular structure (R1 or
R2) and a cellular locus (C1 or C2). Arrows correspond to positive interactions, circles to negative ones.

Table I | Boolean functions of the Boolean model of coupled macro-
molecular synthesis in cells

variable Boolean function

x1
1~genetic locus L1 :x3

1^y2

x2
1~ribosome R1 x1

1

x3
1~cellular locus C1 x2

1

x1
2~genetic locus L2 :x3

2^y1

x2
2~ribosome R2 x1

2

x3
2~cellular locus C2 x2

1
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By using the STP of matrices, we also obtain the following algebraic
representation:

x1 tz1ð Þ~Fx1 t{1ð Þy2 tð Þ
x2 tz1ð Þ~Fx2 t{1ð Þy1 tð Þ
y1 tð Þ~Gx1 t{1ð Þ
y2 tð Þ~Gx2 t{1ð Þ

8>>><>>>: ð22Þ

where F 5 d8[5, 5, 1, 5, 6, 6, 2, 6, 7, 7, 3, 7, 8, 8, 4, 8] and G 5 d8[2, 1, 2,
1, 2, 1, 2, 1].

In order to see whether these two TBNs can be synchronized or not,
we should calculate Jt

1 according to Theorem 1. Direct computation
gives that J5

1~J17
1 , then we have k’0~5. According to Remark 3, we

have k0ƒk’0~5. Moreover, we obtain that I2661T
26

� 	
J5

1(
di

64 i~1,10,19,28,37,46,55,64j
� �

. Hence, the TBNs can be synchro-

nized by Theorem 1. Define the total synchronization error:

E tð Þ~
X3

i~1
xi

1 tð Þ{xi
2 tð Þ

�� ��. Fig. 2(a) shows the time evolution of

the TBNs and Fig. 2(b) shows the total synchronization error E(t).
By Proposition 2, we also get J1. Due to the complexity of this matrix,
we just present the indexes of the first 50 columns as follows:

J1~d212 2305, 2305, 2369, 2369, 2433, 2433, 2497, 2497,½

65, 2433, 129, 2497, 193, 2817, 2817, 2881, 2881,

2945, 2945, 3009, 3009, 2817, 513, 2881, 577, 2945,

641, 3009, 705, 3329, 3329, 3393, 3393, 3457, 3457,

3521, 3521, 3329, 1025, 3393, 1089, 3457, 1153,

3521, 1217, 3841, 3841, . . .�

ð23Þ
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Figure 2 | (a): Time evolution of TBNs (22) with the given initial state sequences. The black solid line presents the state evolution of x1, while the red dash
line presents the state evolution of x2. (b): Total synchronization error E(t) of the coupled BNs (22) with the given initial state sequences.
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Figure 3 | (a): The whole row indexes of each column of matrix J1. (b): The whole row indexes of each column of matrix I2661T
26

� 	
J5

1. Each point
corresponds to the row index of each column, which implies the position of 1.
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and Fig. 3(a) shows the whole row indexes of each column of matrix
J1, Fig. 3(b) shows the row indexes of each column of matrix

I2661T
26

� 	
J5

1.
Example 2 In Fig. 4, we have a system consisting of two coupled

TBNs with delay t1 5 t2 5 1, each TBN with two nodes. And its
dynamics is described as follows:

x1
1 tz1ð Þ~ x2

1 tð Þ ^ x1
1 tð Þ

� �
?y2 tð Þ,

x2
1 tz1ð Þ~ x1

1 tð Þ<x2
1 tð Þ

� �
,

y1 tð Þ~x1
1 tð Þ _ x2

1 t{1ð Þ:

8>><>>:
x1

2 tz1ð Þ~x1
2 t{1ð Þ<y1 tð Þ,

x2
2 tz1ð Þ~x2

2 tð Þ ^ x2
2 t{1ð Þ,

y2 tð Þ~x2
2 t{1ð Þ:

8>><>>:
ð24Þ

Denote xj tð Þ~x1
j tð Þ x2

j tð Þ for j 5 1, 2 and y tð Þ~y1 tð Þ y2 tð Þ, then we
can express the system into its algebraic form by using the STP of
matrices as follows:

x1
1 tz1ð Þ~F1

1 x1 tð Þx1 t{1ð Þy tð Þ

x2
1 tz1ð Þ~F2

1 x1 tð Þx1 t{1ð Þy tð Þ

y1 tð Þ~G1x1 tð Þx1 t{1ð Þ

8>><>>: ð25Þ

and

x1
2 tz1ð Þ~F1

2 x2 tð Þx2 t{1ð Þy tð Þ

x2
2 tz1ð Þ~F2

2 x2 tð Þx2 t{1ð Þy tð Þ

y2 tð Þ~G2x2 tð Þx2 t{1ð Þ

8>><>>: ð26Þ

We obtain the explicit expression of the matrices F1
1 , F2

1 , F1
2 , F2

2 , G1 and
G2, by using STP. Here, we omit the procedure of computation for
simplicity.

As we can see this system belongs to case (I). By Proposition 2, we
obtain the matrixJ1 and Fig. 5 shows the row indexes of each columns
of matrix J1. In order to judge whether these two coupled TBNs can be
synchronized or not, we should calculate Jt

1 according to Theorem 1.
Direct computation shows that I2461T

24

� 	
J8

1~ I246IT
24

� 	
J13

1 by using

Figure 4 | Two coupled BNs with each network consisting of two nodes and one output. Arrows correspond to interactions between nodes and outputs.
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Figure 5 | The whole row indexes of each column of matrix J1 obtained in system (24). Each point corresponds to the row index of each column, which

implies the position of 1.
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the equation (11), then we have k0 5 8. However, we get thatJ9
1~J14

1 ,

while J8
1=J13

1 . By using k’0~min i§1 : Ji
1~J

j
1,jwi

n o
, we have

k’0~9 which verifies Remark 3. It is easy to verify that
Col I2461T

24

� 	
Jt

1

� �
6( di

24 : i~1,6,11,16
� �

for 1 # t # 8. In Fig. 6
to Fig. 9, we plot the whole row index of columns of each matrix

I2461T
24

� 	
Ji

1, i 5 1, 2, …, 8. From these figures, we can also draw
the conclusion that Col I2461T

24

� 	
Jt

1

� �
6( di

24 : i~1,6,11,16
� �

for 1 #

t # 8. Hence, this output-coupled TBNs can not be synchronized
according to Theorem 1.

In the following, we can also define the total synchronization error
of the output-coupled TBNs: E tð Þ~ x1

1 tð Þ{x1
2 tð Þ

�� ��z x2
1 tð Þ{x2

2 tð Þ
�� ��.

Fig. 10(a) shows the time evolution of the state x1(t) and x2(t) of the
array of TBNs (24), and Fig. 10(b) shows the totaly synchronization
error E(t) of the TBNs (24). From the state evolution and the total
synchronization error of the TBNs (24), we can draw the conclusion

that the TBNs can not synchronized. Our analytical results are well
illustrated by this example.

Remark 7 Due to the complexity of computation, Fig. 10(a) and
Fig. 10(b) just plot time evolution and the total synchronization error
of the TBNs with time up to t 5 100. To some extent, Fig. 10(a) and
Fig. 10(b) can illustrate that the coupled TBNs can not be synchro-
nized. In fact, we have already made the computation of these TBNs
with time up to t 5 10000, observing that these TBNs can not be
synchronized. Since the simulation result can not be well expressed
in the figures with time t 5 10000, we just plot Fig. 10(a) and Fig. 10(b)
till time t 5 100 only.

Conclusions
In this paper, we have studied synchronization in an array of output-
coupled TBNs. Both a state delay t1 and an output delay t2 are
considered in the model. In a genetic regulatory network, state corre-
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Figure 6 | (a): The whole row index of each column of matrix I2461T
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� 	
J1 obtained in system (24). (b): The whole row index of each column of matrix
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1. Each point corresponds to the row index of each column, which implies the position of 1.
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Figure 7 | (a): The whole row index of each column of matrix I2461T
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� 	
J3

1 obtained in system (24). (b): The whole row index of each column of matrix
I2461T
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� 	
J4

1. Each point corresponds to the row index of each column, which implies the position of 1.
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sponds to the level of gene, while the output corresponds to gene
products. In real world, many evolutionary processes may experience
external or internal changes. These changes maybe due to the envir-
onmental disturbances or the interconnections of other genes, which
can heavily affect the evolutional processes of genes, such as the
transcription process or the translation process. By using the semi-
tensor product of matrices, we first convert the TBNs into an unique
discrete time algebraic system. Based on the equivalent algebraic
representations of TBNs, we then study the coupled TBNs by con-
sidering the two cases: t1 $ t2 and t1 , t2. For each case, we derive
necessary and sufficient synchronization criteria for the array of out-
put-coupled TBNs. Different types of criteria are derived from dif-
ferent aspects. These criteria provide efficient ways to judge whether
an array of output-coupled TBNs can be synchronized or not. And

they also implies that if the array of TBNs can not be synchronized
among the upper bound time, then they can not be synchronized at
any time, which means we only need to judge finite time steps.
Finally, two illustrative examples including a practical epigenetic
example are given to show the validity of our theoretical results.
One interesting topic in the near future is to design logical controllers
to make coupled TBNs synchronized.

This mechanism is expected to be applicable to a wide range of
biological systems, because synchronization phenomenon is very
commonly in biological systems. Moreover, it is expected to help
to understand the nature of cellular function, the behavior of genes
and the manner in which cells execute and control a large number of
operations which are required for normal function and the ways in
which cellular systems fail in disease.
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Figure 8 | (a): The whole row index of each column of matrix I2461T
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1 obtained in system (24). (b): The whole row index of each column of matrix
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Figure 9 | (a): The whole row index of each column of matrix I2461T
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J5

1 obtained in system (24). (b): The whole row index of each column of matrix
I2461T
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J6

1. Each point corresponds to the row index of each column, which implies the position of 1.
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4. Kürten, K. Correspondence between neural threshold networks and Kauffman
Boolean cellular automata. J. Phys. A: Math. Gen. 21, L615–L619 (1988).

5. Huang, C., Ho, D. W. C. & Lu, J. Q. Partial-information-based distributed filtering
in two-targets tracking sensor network. IEEE Trans. Circuits Syst. I, Reg. Papers 59,
820–832 (2012).
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Figure 10 | (a): Time evolution of the TBNs (24) with initial state sequences x1(21) 5 (0, 0), x2(21) 5 (1, 1), x1(0) 5 (1, 0), x2(0) 5 (0, 1). The red solid line
presents the state evolution of x1, while the green solid line presents the state evolution of x2. (b): Total synchronization error E(t) of the TBNs (24). Fig. (a)
shows states x1
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1 and x2
2 can not reach synchronization till time to 100, while Fig. (b) shows the total synchronization error fluctuates between

value 2 and value 0. Both Fig. (a) and Fig. (b) imply that the coupled TBNs can not be synchronized.
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