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Low-dimensional behavior of large systems of globally coupled oscillators has been intensively investigated
since the introduction of the Ott-Antonsen ansatz. In this report, we generalize the Ott-Antonsen ansatz to
second-order Kuramoto models in complex networks. With an additional inertia term, we find a
low-dimensional behavior similar to the first-order Kuramoto model, derive a self-consistent equation and
seek the time-dependent derivation of the order parameter. Numerical simulations are also conducted to
verify our analytical results.

S
ynchronization phenomena in large ensembles of coupled systems play a prominent role in many branches
of natural and social sciences as well as in engineering1,2. The study of collective synchronization has many
applications including the modeling of the flashing of groups of fireflies3, the collective oscillations of

pancreatic beta cells4, the human cardiorespiratory system5, and the pedestrian induced oscillations in bridges6.
A fundamental contribution to the mathematical aspects of collective synchronization was given by Kuramoto7. In
1975 Kuramoto proposed a model to describe the behaviour of a population of coupled non-linear oscillators,
employing three key simplifying assumptions7, i.e., (i) the coupling strength was chosen to be homogeneous for all
pairs of coupled oscillators; (ii) the coupling strength and the natural frequency become finite; and (iii) the number
of oscillators was considered to be infinite. Diversity in the oscillators properties is usually incorporated by taking
natural frequencies from a given probability distribution function. The phase transition to synchronization occurs
when the coupling strength exceeds a threshold, which depends on this probability density function.

In 2008, Ott and Antonsen8 introduced an ansatz for studying the behaviour of globally coupled oscillators. The
Ott-Antonsen ansatz has been considered to investigate continuously time-dependent collective behavior9 and
for the study of delay heterogeneity10. In addition, such ansatz has enabled to find nonuniversal transitions to
synchrony in the model with a phase lag for certain unimodal frequency distributions11.

Although these works have provided important contributions to synchronization theory, only oscillators with
global coupling have been taken into account9–13. Thus, a natural extension of these works can investigate how
these results change when different coupling schemes are introduced. Barlev et al.14 studied the dynamics of
coupled phase oscillators, but such approach involved integrating N ordinary differential equations. To overcome
this limitation, in this report we generalize the Ott-Antonsen ansatz to complex networks in the continuum limit
to investigate a time-dependent phase transition to synchronization. We reduce the dimension of the system of
equations from N to the number of possible degrees in the network.

Motivated by the results of the first-order Kuramoto model, we substantially extend the theory to the second-
order Kuramoto model. The Kuramoto model with inertia has been widely used for deepening the understanding
of power grids15–18, superconducting Josephson Junctions16 and many other applications16,19. Therefore a theory
that investigates the low-dimensional character of such systems giving access to their time-dependent behavior
can bring important new insights into the study of the second-order Kuramoto model. We substantially address
this problem for what is perhaps the simplest choice of inertia term. In this case, the Fourier series expansion, the
key approach of the Ott-Antonsen ansatz, no longer applies directly. Thus, a generalized framework for the
second derivative needs to be developed, as already pointed out in recent studies13,20. In order to fill this gap, we
derive self-consistent equations and seek the time evolution of the order parameter. Comparison of analytical and
simulation results shows a good agreement. Our results shed light on the impact of the topology on the global
dynamics.
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Results
We consider the first-order Kuramoto model on an unweighted and
undirected complex network. The state of oscillator i is denoted by its
phase hi i~1, 2, � � � , Nð Þ, and the governing equation of the model7 is

dhi

dt
~VizK

XN

j~1

Aij sin hj{hi

� �
, ð1Þ

where Vi stands for the natural frequency of oscillator i, which is
distributed according to some probability density g(V), K specifies
the homogeneous coupling strength between interconnected nodes,
and Aij is the element of the adjacency matrix A, i.e., Aij 5 1 if nodes i
and j are connected or Aij 5 0, otherwise.

In uncorrelated networks, if N approaches infinity (in thermodyn-
amic limit), the probability of selecting an edge connected to a node
with degree k, natural frequency V, and phase h at time t is kP(k)r(k;
V, h, t), where we define P(k) as the degree distribution and r(k; V, h,
t)/k as the probability distribution function of nodes with degree k
that have natural frequency V and phase h at time t15,21,22 and k the
average degree.

To characterize the macroscopic behavior of the oscillators, in the
continuum limit, we consider the order parameter (see Methods for
details)

reiy~

ð
dk
ð

dV
ð

dhP kð Þkr k;V, h, tð Þeih

�ð
dkP kð Þk

~

ð
dkP kð Þkrkeiyk

�ð
dkP kð Þk,

ð2Þ

where rk quantifies the local synchrony of oscillators with degree k

rkeiyk~

ð
dV
ð

dhr k;V, h, tð Þeih: ð3Þ

For simplicity, we assume that the natural frequencies Vi are distrib-
uted according to an unimodal and symmetric Cauchy-Lorentz dis-
tribution (g(V)) (see Methods for details) with zero mean. We set y
5 yk 5 0 without loss of generality23. The coupling term in Eq. (1)

can be written as
XN

j~1
Aij sin hj{hi

� �
~kirIm ey{hi

� �
15,21,22. Thus

the governing Eq. (1) can be rewritten as

dh

dt
~VzK kr

e{ih{eih

2i
, ð4Þ

which shows that the oscillators are coupled via the mean-field order
parameter r. The restoring force tends to bring each oscillator
towards equilibrium and the amount of forcing is proportional to
its degree k.

The evolution of r(k; V, h, t) is governed by the continuity equa-

tion, i.e.,
Lr

Lt
z

Lrv
Lh

~0, where v k;V, h, tð Þ~ dh

dt
. We use the Ott-

Antonsen ansatz8 and expand the density function in a Fourier series,
i.e.,

r k;V, h, tð Þ~ g Vð Þ
2p

1z
X?
n~1

a k;V, tð Þ½ �neinhzc:c:

" #( )
: ð5Þ

where c.c stands for the complex conjugate. Substituting the expan-
sion into Eqs. (3) and in the continuity equation, we get that rk 5 a(k)
and rk evolve according to

drk

dt
~{rkz

K kr
2

1{r2
k

� �
for k [ kmin,kmax½ � ð6Þ

where kmin and kmax are the minimum and the maximum degree,
respectively. This method works efficiently compared to the ref-
erence 24 especially when the power law behavior has some cutoff25.
a(k) therein allows a clear physical interpretation as measuring the
internal synchrony of the nodes with the same degree k. The global
order parameter r is a sum of different rk multiplied by their degree
and degree distribution (see Eq. (2)).

To verify the accuracy of the time evolution of the order parameter
rk (see Eq. (6)), we compare the time evolution of the order parameter
r with numerical simulations. Fig. 1 shows the results. Initially, the
values of oscillators are selected at random from p to 2p, which
implies that the initial value of each rk(0) tends to zero. In our
simulations, we set rk(0) 5 0.001. As we can see in Fig. 1, the results
obtained through the solution of the reduced system in Eq. 6 are in
good agreement with the numerical simulations.

The analysis above shows the remarkable usefulness of the Ott-
Antonsen ansatz of the first-order Kuramoto model in complex net-

Figure 1 | The order parameter as a function of time. Numerical simulations of the Kuramoto model are conducted on a scale-free network (see Methods

for details). The coupling strength K 5 2.5 and h are randomly selected from 2p to p at t 5 0.
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works, but what happens when we consider the Kuramoto model
with inertia? The simplest and most straightforward way is to include
one unity inertia term. This leads to the mean-field character of the
second-order Kuramoto model15–18

d2hi

dt2
~{

dhi

dt
zVizK kr sin {hið Þ, ð7Þ

where k varies from the minimal to the maximal degree.
As shown in Eq. (5), the main idea of the Ott-Antonsen ansatz is to

expand the probability density r(k; V, h, t) in a Fourier series in h.
For the Kuramoto model with inertia, the probability density

r k;V,h, _h,t
� �

is also a function of the additional term _h. As _h varies

from 2‘ to ‘, it is not possible to follow the same procedure to
derive the nonlinear evolution of the order parameter r. Due to the
existence of the inertia term and the bistable area of the stability
diagram16, we rewrite Eq. (6) with two functions L(K k) and f(K k,
r) ; a(K k)brc and get

drk

dt
~{rkzL K kð Þ

r 1{r2
k

� �
2

zf K k, rkð Þ, ð8Þ

where L(K k) indicates the effective coupling strength and a, b and c
are constant. f(K k, r) is a high-order term and is used to adjust the
stationary solution. For the Kuramoto model without inertia, we get
L(K k) 5 K k and a 5 0.

In order to solve Eq. (8), we first investigate the nonlinear
dynamics on fully connected networks. In this case, we normalize
the coupling strength from K N to K. For the sake of convenience, we
change the time scale to t~

ffiffiffiffiffiffiffi
Krt
p

, which yields

d2hi

dt2
~{b

dhi

dt
zIizsin {hið Þ, ð9Þ

where b:1
. ffiffiffiffiffi

Kr
p

and Ii ; Vi/(Kr). Thus b is identical for all oscil-

lators and the diversity of Ii is due to its natural frequency. According
to the parameter space15,16, nodes are divided into three groups.

Melnikov’s method26 is used to show that oscillators are within a
stable fixed point area as b R 0 and I # 4b/p; only limit-cycle
oscillators exist for I . 1; limit cycles and stable fixed points coexist
otherwise.

Let us first investigate the stationary states of phases h and _h in
terms of the natural frequencies V separately. In Fig. 2, every single
point represents the state of one oscillator at time T T?1ð Þ using
simulations with N 5 10000 nodes and degree K 5 10. It is interest-
ing to find that instead of three different regions mentioned above,
the oscillators fall into either of the following two groups. (i) If the
natural frequencies of nodes are within the boundary of the phase

synchronization regime Vlower,Vupper

� �
: {4

ffiffiffiffiffi
Kr
p .

p, 4
ffiffiffiffiffi
Kr
p .

p
h i

which is the same as the above stable fixed points area, these nodes
converge to fixed points and the stationary state of phases are func-
tions of V, which are equal to arcsin(V/(Kr)). This boundary is
smaller than that of the Kuramoto model, in which oscillators are
in the locked state for all jVj # Kr23. (ii) In contrast, the oscillators

with Vj jw4
ffiffiffiffiffi
Kr
p .

p are drift. Thus, in networks, instead of three

different areas of single pendulum model, only two distinct areas
could exist: fixed point and limit cycle. Nodes with the same natural
frequency are either converging to single fixed points or oscillating
periodically; and nodes always return to previous states even after
large perturbations.

To investigate how the phase synchronization boundary changes
with different coupling strengths, we project the Fig. 2 on the I-b
parameter space and color the oscillators according to their station-
ary states in the parameter space. A comparison between the
dynamics with average degree 10 and that with 30 is shown in
Fig. 3. We can see that oscillators with the same coupling share the
same b axis and the diversity of I is due to the distribution of the
natural frequencies V. All synchronized nodes are inside the syn-
chronized area, which is at the right side of the line I 5 4b/p.

Therefore, after substituting the boundaries of the synchronized
natural frequencies [Vlower, Vupper] and the Cauchy-Lorentz distri-
bution into the definition of the order parameter r,

Figure 2 | Phases h and frequencies _h vs natural frequencies V, which shows that phase-locked oscillators only exist in red area but not in the
yellow area. The read area indicates parameter combination of stable fixed point. Stable fixed points and limit cycles coexist in the yellow area. The white

area represents the existence of limit cycles. The stationary value of the order parameter r could be calculated by simulations or Eq. (11). Thus nodes with

natural frequencies between {4
ffiffiffiffiffi
Kr
p .

p, 4
ffiffiffiffiffi
Kr
p .

p
h i

~ {3:57, 3:57½ � are synchronized. The boundary of bistable region are specified by |V | within

4
ffiffiffiffiffi
Kr
p .

p,Kr
h i

~ 3:57, 7:18½ �.
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r~
ðVupper

Vlower

cos hsð Þg Vð ÞdV, ð10Þ

where hs denotes the synchronized oscillator sin (hs) 5 I. Performing
some mathematical manipulations, we get

r~
2

pKr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z Krð Þ2

q
arctan

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Krz Krð Þ3

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pKrð Þ2{16Kr

q
0
B@

1
CA{arcsin

4

p
ffiffiffiffiffi
Kr
p


 �2
64

3
75: ð11Þ

Due to the difference of boundaries between the first-order Kura-
moto model (proportional to K) and the second-order Kuramoto

model (proportional to 4
ffiffiffiffi
K
p .

p), we set L Kð Þ~4
ffiffiffiffi
K
p .

p. When

_r~0,

f K, rð Þ~r{4
ffiffiffiffi
K
p

r 1{r2
� �.

2pð Þ, ð12Þ

and this stationary solution should be met by the self-consistent Eq.
(11). Here, we use numerical methods to calculate the values of a, b
and c. As shown in Fig. 4, after substituting the stationary solutions K
and r of Eq. (11) into Eq. (12), f(K, r) is colored in red and we get the
values a 5 0.389, b 5 1/4 and c 5 3. When r is small, f(K, r) is close to
0 and cannot influence the time evolution of the order parameter r(t),
or vary the stationary solution, otherwise.

Figure 3 | The definitions of three shaded areas are the same as that in Figure 2. Two boundaries are compared between coupling strengths 10 and 30. If

oscillators are in locked state with black color and with Chartreuse color otherwise. Increasing the coupling strength K further, the vertical line moves to

the left.

Figure 4 | f(K, r) as a function of stationary solution of self-consistent equation colored in red and the fitting curve colored in blue.
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Let us consider again the nonlinear evolution of the order para-
meter r in complex networks. From the above analysis, we get that

L K kð Þ~4
ffiffiffiffiffiffiffi
K k
p .

p. To check the validity of this assumption, we

compare the stationary solution with simulation results in Fig. 5.
The theoretical predictions (green lines derived from Eq. (8) with
effective coupling and f(K k, r)) are in agreement with red lines of
numerical simulations.

The nonlinear evolution of r(t) is illustrated in Fig. 6, for a selection
of coupling strengths K. Initial values of hi and _hi are the same as in
Fig. 5. For the order parameter formulation the initial value of r is set
to a small value (r 0ð Þvvv 1). The r formulation of Eq. (8) does not

only reproduce the stationary states in Fig. 5, but also matches the
transition to synchrony. The analytic results and simulation results
are in good agreement.

Conclusions
In conclusion, we proposed a generalization for the Ott-Antonsen
ansatz to complex networks with a Cauchy-Lorentz distribution of
the natural frequency for the Kuramoto model. Compared to the
ensemble approach14, the dimension of ordinary differential equa-
tions was reduced from N to the number of possible degrees in the
network. We have investigated the collective dynamics of the
Kuramoto model with inertia and found the synchronization bound-

Figure 5 | Order parameter r vs coupling strengths K in scale-free networks (see Methods for details). The red curves indicate the results from

simulations on the same network as in Figure 1. For each coupling, initial values of h randomly select from [2p, p] and we set _h~0. The green dots shows

analytic prediction of the stationary r(t) based on the self-consistent Eq. (8).

Figure 6 | Order parameter r(t) vs time t in scale-free networks (see Methods for details). The simulations are conducted on the same network

and the coupling strength K 5 1 and K 5 3. Blue and yellow dots are analytic results got from Eq. (8). In simulations, initial values of h are randomly

selected from 2p to p and that of _h close to 0.
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ary is [{4
ffiffiffiffiffi
Kr
p .

p, 4
ffiffiffiffiffi
Kr
p .

p] instead of [2Kr, Kr] as in the

Kurmoto model without inertia. Based on these results, we analyt-
ically derived self-consistent equations for the order parameter and
nonlinear time-dependent order parameter. The agreement between
the analytical and simulation results is excellent.

Methods
The networks. The model has been implemented on undirected and unweighted
scale-free networks with N 5 10000, P(k) / k23 and k $ 5.

Numerical integration. Eqs. (6) and (12) are solved by a 4th order Runge-Kutta
method with time step h 5 0.01 and with the Cauchy-Lorentz distribution

g Vð Þ~ 1

p 1zV2
� � .

Order parameter. In complex networks, in order to understand the dynamics of the

system, it is natural to use the definition of order parameter r21 as reiy~

P
i kieihiP

i ki

instead of the definition reiy~

P
i eihi

N
, which accounts for the mean-field in the fully

connected graph regime.
The magnitude r g [0, 1] quantifies the phase coherence, while y denotes the

average phase of the system. In particular, r^0, if the phases are randomly distributed
over [0, 2p] and all nodes oscillate at its natural frequency. On the other hand, if all
oscillators run as a giant component, r^1. The system is known to exhibit a phase
transition from the asynchronous state (r^0) to the synchronous one (r^1) at a
certain critical value lc characterizing the onset of partial synchronization and, for
unimodal and symmetric frequency distributions g(V), the transition is continuous. It

turns out that for uncorrelated networks, lc is given by lc~
2

pg Vð Þlmax

27, where lmax

is the maximal eigenvalue of the adjacency matrix.
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