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Abstract

Sleep disorders are a major risk factor for cardiovascular diseases. Sleep apnea is the most common sleep disturbance and
its detection relies on a polysomnography, i.e., a combination of several medical examinations performed during a
monitored sleep night. In order to detect occurrences of sleep apnea without the need of combined recordings, we focus
our efforts on extracting a quantifier related to the events of sleep apnea from a cardiovascular time series, namely systolic
blood pressure (SBP). Physiologic time series are generally highly nonstationary and entrap the application of conventional
tools that require a stationary condition. In our study, data nonstationarities are uncovered by a segmentation procedure
which splits the signal into stationary patches, providing local quantities such as mean and variance of the SBP signal in
each stationary patch, as well as its duration L. We analysed the data of 26 apneic diagnosed individuals, divided into
hypertensive and normotensive groups, and compared the results with those of a control group. From the segmentation
procedure, we identified that the average duration SLT, as well as the average variance Ss2T, are correlated to the apnea-
hypoapnea index (AHI), previously obtained by polysomnographic exams. Moreover, our results unveil an oscillatory pattern
in apneic subjects, whose amplitude S? is also correlated with AHI. All these quantities allow to separate apneic individuals,
with an accuracy of at least 79%. Therefore, they provide alternative criteria to detect sleep apnea based on a single time
series, the systolic blood pressure.
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Introduction

Sleep disturbances (e.g., sleep apnea, insomnia, restless legs

syndrome, sleep walking, sleep terror) deserve serious attention

since they constitute an important risk factor for cardiovascular

disorders such as hypertension, cardiac ischemia, sudden cardiac

death, and stroke [1–3]. Blood pressure, heart rate variability,

respiratory variability, and other cardiorespiratory data could be

useful to detect sleep disturbances, especially the most common

sleep apnea. Individuals who suffer from this kind of disorder

usually present daytime sleepiness, loud snoring and restless sleep.

A sleep apnea event is defined as a break in the airflow that lasts at

least 10 secs. If the air flow is less than 50% of normal, the

resulting airflow limitation is called hypopnea [4]. When there is

no inspiratory effort, then the event is classified as central. If

respiratory effort is made against an upper airway obstruction,

then the apnea event is classified as obstructive. Sleep apnea events

can also be of a mixed type.

In order to obtain a sleep profile, the common practice is to

combine records collected by means of different exams: electro-

encephalography (EEG), electromyography (EMG), and electro-

oculography (EOG). This set of tests produces a polysomnogra-

phy, from which a scoring of sleep stages is visually evaluated,

assigning to each stage the pattern found in consecutive 30-

second-long epochs of the EEG, EMG, and EOG recordings. The

resulting succession of discrete sleep stages is referred to as a

hypnogram and supports diagnostic decisions [5]. Signals of

airflow respiratory effort such as abdominal movement and

oxygen saturation of the blood are also used in diagnosis of sleep

apnea [6], which, as mentioned before, requires combined

records. Therefore, it would be desirable to evaluate sleeping

through an alternative procedure consisting of simpler data

recordings. This is the goal we pursue in the present work.

It is important to emphasize that cardiorespiratory time series

are highly nonstationary, which restricts the use of standard tools

of time series analysis. In this regard, Penzel et al. showed that

changes in heart rate variability in obstructive apneas were better

quantified by scaling analysis (using detrended fluctuation analysis)

than by spectral methods [7,8]. This is because, techniques such as

fast Fourier transformation require stationarity in order to give a

meaningful estimation of the spectral components of a time series

[9]. Hence, we apply a nonparametric segmentation procedure to
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yield patches where stationarity is verified. Within each of these

locally stationary data segments, the statistical moments of the

signal, such as mean and variance, remain constant. Segmentation

also provides the intrinsic time scales, through the duration of

segment lengths. Moreover, by finding the stationary regimes, one

might be able to identify changes in a time series, as those coming

from the apnea occurrence.

Materials and Methods

The study and the consent procedure for this research were

approved by the ethics committee, Charité - Universitätsmedizin,

in Berlin. Participants provided their written informed consent to

participate in this study and the informed consent of all subjects

was recorded in paper form. We analyzed data from 26 patients

suffering from apnea-hypopnea, that is with apnea-hypopnea

index (AHI, the average number of apnea events per hour) larger

than 15, including obstructive, central, and mixed sleep apnea

events. Most of the events are of the obstructive type, with only 4

subjects presenting a majority of central type events. The patients

are then divided into two groups, according to their diurnal

systolic blood pressure levels: 10 hypertensive subjects (HT) and 16

normotensive patients (NT). The mean values of the systolic blood

pressure were 142+4=93+8 mmHg in HT and 120+10=81+7
mmHg in NT. Hypertensive subjects were chosen for comparison,

due to the known association between sleep disordered breathing

events and autonomic reactions such as blood pressure increase

[10]. Moreover, we considered a control group (C) with 7 non-

apneic subjects. All three groups are age and sex matched, being

all males with mean age of 44:1+8:1 years (HT), 44:6+7:6 (NT),

and 44:8+6:7 (C). Excluding criteria to select the 26 patients were

heart rhythm disturbances, and other comorbid illnesses like

diabetes. The apnea-hypopnea indexes in the groups are 1:0+1:6
(C), 42:5+24:0 (NT) and 71:7+32:7 (HT). Regarding the

measurement system, the polysomnographic system Embla

N7000 was used. The ECG was recorded at 2 kHz. R peak

extraction was done automatically with an accuracy of 0.5 ms.

The beat-to-beat-intervals from the ECG as well as the systolic

blood pressure intervals were analyzed separately and filtered

adaptively to exclude misclassifications and artifacts, e.g., prema-

ture beats [11]. The intervals between successive heartbeats (beat-

to-beat intervals) were extracted from the electrocardiogram

records [12]. All measurements were monitored during one night

sleep. Blood pressure was "continuously" monitored (at a sampling

rate of 200 Hz) with a finger cuff sensor (Portapres Model2, BMI-

TNO). From the continuous blood pressure signal, the maximum

value in each beat-to-beat interval was extracted, producing the

time series of systolic blood pressure (SBP) on a beat-to-beat basis.

Analogous procedure was followed by using minimum blood

pressure values to extract the beat-to-beat diastolic blood pressure

(DBP) [13–15]. Beat-to-beat intervals from blood pressure (BBI-

BP) records and from electrocardiograms (BBI-EKG) were also

analyzed. We observed similar results for SBP and DBP series, but

SBP presents slightly better evaluation. We will concentrate on

SBP in the further description.

We first dealt with the nonstationarity of the series performing a

segmentation of the signal into stationary-like patches. The

segmentation procedure used, which is based on the Kolmo-

gorov-Smirnov (KS) statistics, is explained in Ref. [16]. Succinctly,

this KS-segmentation is done through the following steps: given

the time series, all points of the signal are considered as a potential

cutting point, and we compute the Kolmogorov-Smirnov distance

D:DKS(1=nLz1=nR){1=2, between the cumulative distributions

of the points belonging to the two segments placed at the left and

the right sides of the cutting point, with lengths nL and nR,

respectively. Thus, there will be one value of D corresponding to a

hypothetical cut at each point of the signal, and we determine the

position imax where D is maximal. Once we know the position imax

of the maximal distance D, Dmax, the statistical significance of this

cut (at a desired significance level a~1{P0) is verified by

comparing Dmax with the result that would be obtained by chance,

given by the empirical curve Dmax
crit (n)~a( ln n{b)c, and (a,b,c) =

(1:52, 1:80, 0:14) for P0~0:95, with n~nRznL. The signal is

then split into two segments if Dmax exceeds its critical value for

the selected significance level, Dmax
crit (n). The procedure is then

applied to each one of the segments, starting from the full series

fxi, 1ƒiƒNg, where N is the total number of data points, until

no segmentable patches are left. (See Refs. [16,17] for further

details). We performed the KS-segmentation with ‘0~30, the

minimal segment length, and P0~0:95. The choice of ‘0~30 is

based on its correspondence to the higher edge frequency of the

very low frequency band of the heart rate with 0.03 Hz [18].

Fig. 1 shows the time series of SBP (black lines) for typical

members of hypertensive (upper panel), normotensive (middle

panel), and control (lower panel) groups, with the first and second

patients suffering from sleep apnea-hypopnea. The local mean

value of the signal in each data segment produced by the KS-

segmentation procedure, m, is also represented (light orange lines)

in order to enable the reader to identify the stationary patches. For

comparison, the sleep apnea events detected via polysomnography

are also represented (light gray vertical lines).

Results

The statistics of segment lengths and of the statistical moments

of the signal within each stationary segment provide a segmen-

tation portrait of a given time series. We show in Fig. 2 the

complementary cumulative distributions of segment lengths L,

1{P(L), for SBP time series. The panels in the figure correspond

to the hypertensive (HT), normotensive (NT) and control (C)

groups. For each group, we show the length distribution taking

into account the segments from each time series only (color

symbols) and from all the time series of the same group (solid black

lines).

Drawn for comparison, the thin line in panels HT and NT

reproduces the curve in panel C corresponding to the control

group accumulated data. A significant difference exists between

the distribution of each apneic group and that of the control group

(thick and thin black lines, respectively, in panels HT and NT),

both cases yielding pv10{4 in the two-sample KS test. Moreover,

we considered the set of values of SLT for each group (one value

for each individual) and carried out the two-sample KS test to

compare each apneic group with the control one. The p-values

obtained ( p~2:1|10{2 and p~4|10{3, for the NT vs C and

HT vs C, respectively) allow to reject the null hypothesis of equal

distributions at a confidence level above 95% in both cases. This

result points to SLT as a candidate to allow separation of apneic

and control groups. In order to inspect a possible correspondence

between the typical duration of stationary segments and degree of

apnea, we plot in Fig. 3 the mean segment length SLT vs AHI, for

each patient. As a matter of fact, a positive correlation between

SLT and AHI comes out (quantitatively, the Pearson coefficient is

r~0:77). Moreover, one can set a threshold allowing to separate

most apneic individuals. The threshold was chosen by minimizing

the fractions of false negative and false positive results by means of

ROC (receive operating characteristic) analysis [19]. This

threshold allows to identify 69% of apneic subjects. Even so, we
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will investigate other quantities that might provide a similar or

better separation.

Let us investigate the statistics of the SBP signal in stationary

segments. Since there is a tendency that apneic patients typically

have larger variance on average, then the mean variance is a

natural candidate for separation. In Fig. 4, we depict the local

variance s2 (variance of each patch) for one individual of each

group. Notice that apnea epochs have a strong influence on the

variability of the SBP signal, with higher dispersion (variance) in

the gray areas, when compared to the scored apnea, both for the

hypertensive and normotensive cases.

Like in the case of SLT, we performed the two-sample KS test

to compare the sets of values of the average local variance Ss2T for

each group. The p-values obtained ( p~1:7|10{1 and

p~1:7|10{2, for NT vs C and HT vs C, respectively) do not

Figure 1. Systolic blood pressure (SBP) time series (black line) and its local mean values from segmentation (light orange line) for
typical hypertensive (upper panel), normotensive (middle panel) and control (lower panel) subjects. Apnea events, detected via a
polysomnography examination, are represented by the light gray vertical lines.
doi:10.1371/journal.pone.0107581.g001

Figure 2. Complementary cumulative distribution of segment lengths for each individual (color) and accumulated data of all
subjects in the same group (black solid line), for the hypertensive (HT), normotensive (NT) and control (C) groups. Drawn for
comparison, the thin line in the first two panels (HT and NT) reproduces the accumulated data curve for the control group (C).
doi:10.1371/journal.pone.0107581.g002
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allow to reject the null hypothesis in the first case. We further

computed the quartiles (the three points that define the four

equiprobable intervals) of Ss2T, shown in Fig. 5. Although the

control group presents a lower variability, there is too much

overlap for a clear group separation. This is reinforced by the

observation of a relatively weak correlation between the mean

Figure 3. Mean length of the segments SLT versus AHI for each
subject. The dashed horizontal line represents the threshold value
obtained by a ROC analysis.
doi:10.1371/journal.pone.0107581.g003

Figure 4. Local variance (black lines) provided by the segmentation of SBP and the standard apnea detection represented by the
light gray lines, for the same examples of Fig. 1.
doi:10.1371/journal.pone.0107581.g004

Figure 5. Quartiles of the distribution of the average variance
Ss2T and of the average mean, SmT, within each group. The
horizontal lines limit the quartiles, the thicker one indicates the median.
doi:10.1371/journal.pone.0107581.g005
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variance and AHI, as exhibited in Fig. 6 (with r~0:62). However,

the ROC threshold allows to separate 69% of apneic subjects.

The average local mean SmT is less efficient (with stronger

overlap) than the average variance for separability purposes (see

Fig. 5). In fact, by means of the two-sample KS-test, we compared

the sets of values of SmT of each apneic group vs the control group,

yielding pw0:8 in both cases. Then, the null hypothesis of equal

distributions can not be rejected at reasonable confidence levels.

Similarly, when considering higher order moments, no significant

differences amongst groups were detected.

The same analysis for the beat-to-beat series, BBI-BP and BBI-

EKG, displayed weak correlations between the average length

SLT and AHI, with Pearson coefficient r~ 0.11 and 0.05,

respectively. Also a weak correlation between the mean variance

Ss2T and AHI was observed, with r~ 0.05 and 0.03, respectively.

This is why we concentrated on blood pressure, as a potential

candidate for sleep apnea diagnosis.

The next step is to look at time series autocorrelations. In order

to obtain a signal that can be analyzed through standard spectral

methods, we subtracted the local mean m (the mean value of each

data segment) from the values of the time series in the

corresponding patch, yielding a filtered signal, shown with black

lines in Fig. 7. The removal of the local average does not

guarantee stationarity, because variance (e.g., Fig. 7) and higher-

order moments may still change. However, it furnishes a

detrended signal more stationary than the original one.

Then we look at the behavior of the autocorrelation function of

the filtered signal for each individual of each group, shown in

Fig. 8. The autocorrelation function displays a remarkable

behavior with oscillatory patterns, which are more pronounced

in patients with sleep apnea, while it rapidly vanishes for the

control group.

According to the apnea score, the hypertensive subjects are in

apnea on average during 28% of the records, while the

normotensive ones are in apnea for 17%, on average. Thus, if

one considers the whole times series, the effects of sleep apnea may

be attenuated, particularly in the case of correlations. Then, we

look at the autocorrelation function for two fragments of the SBP

time series: 2000 points during sleep apnea epochs and 2000

points in a non-apnea epoch, in order to compare the effects of

apnea in the same patient. Fig. 9 shows the autocorrelation

function for the original and filtered (local mean subtracted)

signals. Clearly, oscillations are related to apnea epochs. From the

autocorrelation analysis, we conclude that the smaller amplitude of

the oscillations observed in normotensive apneic subjects is not due

to normal pressure but to a lower fraction of apnea epochs, then

pointing apnea as the source of the oscillations regardless of the

blood pressure condition.

In order to properly characterize the oscillations, we proceed to

obtain the spectral density of the filtered signal. To compute the

spectral density we used Octave software, with pwelch function

[20]. As illustrated in Fig. 10, the power spectrum manifests a

main peak localized at a frequency about 0.02 in units of inverse

interval number. In fact, the peak is typically more pronounced in

apneic subjects. Then, according to the discussion in the precedent

paragraph concerning the lower amplitude of the oscillations in

normotensive subjects, we define the relative amplitude S?, which

is the maximum value of the amplitude normalized by the integral

of the spectrum in the interval ½0:0,0:1�. In Fig. 11, we represent

S? against the apnea index, exhibiting the correlation between

both quantities (r~0:74).

Spectral analysis of interbeat interval increments has been

previously carried out [21,22]. In that case, the relative percentage

of the very low frequency-component was taken as quantifier.

However a ROC curve analysis presented a worse classification

than in our case.

The ROC curves for the three quantities here considered as

potential quantifiers, namely (S?,SLT,Ss2T), are displayed in

Fig. 12. The respective thresholds were extracted from those

curves. The accuracy (the sum of true positive and true negative

subjects divided by the total sample size) of the optimal thresholds

(S?,SLT,Ss2T)~(21:4,112,39) was 88, 82 and 79%, respectively.

The two quantities displaying higher Pearson coefficient, r, with

respect to the apnea index AHI are S? and SLT. Then we

combine them to obtain the diagram shown in Fig. 13. We

observe a neat separation of non-apneic subjects in the low S? and

low SLT region.

Discussion

Given the relevance of the diagnosis of sleep disturbances,

particularly of sleep apnea, we look for an alternative procedure

for detecting sleep apnea from simpler recordings than those

composing a polysomnography, that yet must be performed in

specialized sleep centers. For that purpose, we chose cardiovas-

cular data as good candidates to furnish diagnosis elements.

However, the nonstationary behavior of cardiovascular time series

hampers the use of standard techniques that require stationarity.

To deal with the nonstationarities, we applied a recently developed

segmentation procedure [16], which allows the identification of

patches of stationary behavior. Hence, for each patch, local

quantities such as the statistical moments can be obtained. Let us

also remark that a similar approach could be applied to other

physiological signals, where nonstationarity is common. We

analyzed the distribution of the length of stationary segments, as

well as the SBP average mean and variance in such segments. Our

results on the complementary cumulative distribution of segment

lengths (Fig. 2) show that in the control group long patches are less

probable, which reflects a more active blood pressure regulation in

a healthy person. We found that the mean segment length SLT is

correlated to AHI. Although weaker, there is also a correlation of

Figure 6. Mean variance of the segments Ss2T versus AHI for
each subject. The dashed horizontal line represents the ROC
threshold.
doi:10.1371/journal.pone.0107581.g006
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Figure 7. Systolic blood pressure time series, filtered by subtracting the local mean m (black lines), and standard apnea detection
(light gray vertical lines).
doi:10.1371/journal.pone.0107581.g007

Figure 8. Autocorrelation of the filtered SBP time series, computed for all the individuals of each group.
doi:10.1371/journal.pone.0107581.g008
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the average local variance Ss2T with AHI, where apnea epochs

have a strong influence on the variability of the SBP signal. By

subtracting the local mean m, one obtains a modified signal which

is more suitable than the original one, for instance, for spectral

analysis. The autocorrelation function of the filtered signal displays

a noticeable behavior, with oscillatory patterns, which are more

pronounced in subjects with sleep apnea, while rapidly vanish for

the control group.

Through segmentation, we detected features of the SBP signal

that are correlated with apnea events. The main features are the

relative intensity S? of the dominant oscillations in the autocor-

relation function, the mean segment length SLT, and, in a less

Figure 9. Left panels: Patches during non-apnea and apnea epochs (recognizable by the absence/presence of gray vertical lines),
for hypertensive and normotensive subjects. Right panels: the corresponding autocorrelation function for the original and filtered (local mean
m subtracted) signals.
doi:10.1371/journal.pone.0107581.g009

Figure 10. Power spectrum of the filtered SBP signal, for a typical individual of each group. Frequency corresponds to inverse interval
number.
doi:10.1371/journal.pone.0107581.g010
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extent, the average variance Ss2T. These quantities furnish criteria

for the detection of apnea from SBP time series. According to the

ROC curves, each of these quantities already shows a better

performance than previous proposals based on heart rate

increments where the sensitivity was lower than 75% [21,22].

Particularly, the combination of two quantities, such as the mean

segment length and the intensity of the oscillations, as shown in

Fig. 13, allow a better evaluation.

As we have shown in a previous work [17], congestive heart

failure is associated with a decreased variance of the segments in

the time series of RR-intervals. In the present study, patients with

such kind of diseases were not included, meaning that all the 26

patients considered did not suffer from heart rhythm disturbances.

However, in future work we intend to evaluate how the presence

of this cardiovascular disorder would affect the sleep-apnea

oscillatory patterns and thresholds.

Our data comprise obstructive, central, and mixed sleep apnea

events, with a majority of the events of obstructive type, except

four subjects, that present a predominance of central type events.

Our method was not designed to identify different types of apnea

events. Even so, we carefully examined whether the type of apnea

would be responsible for a particular regroupment in the diagrams

as a function of AHI, but the four subjects are randomly

distributed in all the diagrams. Then, another future direction

would be to investigate the possibility of distinguishing different

types of sleep apnea, such as central and obstructive types, by

analyzing cardiovascular data.

Another relevant perspective would be to improve the

thresholds by using larger samples and different sets of patients.

However, we believe that the present results already give a

valuable contribution in revealing measurable quantities that are

correlated with AHI and in furnishing a novel criterion for

diagnosis. Although improvements are welcome, our results

furnish threshold values that can be used for diagnosis purposes.

Once given a SBP time series, it can be handled by means of a

code for segmentation, providing a diagnosis and its accuracy

level.

Taking into account that a polysomnography is a labor intensive

procedure, that involves many signals obtained under controlled

settings in a sleep center, additionally requiring a visual analysis of

all recorded signals by trained sleep experts, then an automated

procedure as the one proposed here would be helpful.

Figure 11. Normalized maximum S? of the power spectrum
versus AHI, for each individual. The dashed horizontal line
represents the ROC threshold.
doi:10.1371/journal.pone.0107581.g011

Figure 12. ROC curves for S?, SLT and Ss2T, obtained to
identify patients with apnea. Threshold values (21.4, 112 and 39,
respectively) shown in previous figures were obtained from the optimal
classification corresponding to the lowest distance to the upper left
corner.
doi:10.1371/journal.pone.0107581.g012

Figure 13. Normalized maximum of the spectral density S? vs
mean segment length SLT, for each individual. Dashed lines
represent threshold values.
doi:10.1371/journal.pone.0107581.g013
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