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Abstract: Excitability and coherence resonance are studied in a semicon-
ductor quantum dot laser under short optical self-feedback. For low pump
levels, these are observed close to a homoclinic bifurcation, which is in
correspondence with earlier observations in quantum well lasers. However,
for high pump levels, we find excitability close to a boundary crisis of
a chaotic attractor. We demonstrate that in contrast to the homoclinic
bifurcation the crisis and thus the excitable regime is highly sensitive to the
pump current. The excitability threshold increases with the pump current,
which permits to adjust the sensitivity of the excitable unit to noise as well
as to shift the optimal noise strength, at which maximum coherence is
observed. The shift adds up to more than one order of magnitude, which
strongly facilitates experimental realizations.
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64. T. Heil, I. Fischer, W. Elsäßer, and A. Gavrielides, “Dynamics of semiconductor lasers subject to delayed optical

feedback: The short cavity regime,” Phys. Rev. Lett. 87, 243901 (2001).
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1. Introduction

Semiconductor quantum dot (QD) lasers [1, 2] are promising candidates for optical communi-
cation applications and high-speed data transmission, since they are singled out by a narrow
linewidth [1] due to small phase-amplitude coupling [3–5], and by strongly suppressed relax-
ation oscillations. The latter can be attributed to the special carrier scattering dynamics of QD
lasers [6, 7]. It results in an higher dynamical stability of these lasers with respect to perturba-
tion, e.g., external optical injection [8] or optical feedback [9]. This results in simpler bifurca-
tion scenarios and therefore in a better observability of nonlinear effects in experiments, which
will be crucial for the noise induced dynamics discussed in this paper.

Understanding noise-induced effects, e.g., due to spontaneous emission noise, is indispens-
able for a variety of semiconductor devices, to name just a few: the performance of QD optical
amplifiers [10], the polarization dynamics of surface emitting lasers [11] or the synchroniza-
tion properties of coupled laser systems [12, 13]. A special situation emerges for devices that
can be operated as excitable systems, i.e., systems that rest in a stable steady state, but can be
excited to emit a spike by a super-threshold perturbation (e.g. noise). Well-known examples
for excitable systems are spiking neurons [14], cardiac dynamics [15], and nonlinear chemical
reactions [16]. Excitability in laser systems received considerable interest in the last years. It
was observed experimentally [17–20] and studied theoretically [21–24] in lasers with optical
injection. Furthermore, excitability was found in lasers with short optical feedback [25, 26] as
well as in lasers with a long external cavity [27], and it was investigated theoretically in lasers
with saturable absorbers [28, 29].

Recently, it has been demonstrated that an excitable optical unit may be used as an optical
tongue wrench permitting to sense single perturbation events [30]. Data transmission systems
based on excitable optical units confer a high degree of robustness due to their inherent sig-
nal reshaping capabilities. Therefore, it has been suggested to use an excitable optical unit as
optical switch for all-optical-signal processing where it only reacts on sufficiently high opti-
cal input signals [31] or for noise reduction in optical telecommunication applications [32]: a
noisy input pulse triggers a “clean” output pulse. Generation of nanosecond pulses by an ex-
citable semiconductor laser in an integrated optoelectronic circuits was already experimentally
demonstrated [33]. However, in the conventional setup of a quantum well (QW) semiconductor
laser under long external optical feedback bifurcation points lie very dense. This makes it hard
to experimentally address the small regions of excitability, which occur only close to certain
bifurcation points. Instead, the QD laser with short optical feedback studied in this paper is
dynamically more stable, and showing a simpler bifurcation scenario, it is thus more promising
for this kind of application.

The counter-intuitive effect that an increase of the noise can lead to an increase of correlation,
i.e., to an increase of the regularity of the spikes observed in the excitable regime, is known as
coherence resonance [34–36]. In contrast to stochastic resonance (see [37] for a review) the
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effect occurs without periodic forcing of the system. Coherence resonance is already an inten-
sively studied effect and was shown theoretically in quantum well (QW) lasers with saturable
absorber [28], in QD lasers under optical injection [38], in lasers subject to long optical feed-
back [32, 39], in laser systems with polarization instabilities [40, 41], in semiconductor super-
lattices [42], as well as in non-excitable systems below a subcritical Hopf-bifurcation [43–45].

In this paper, excitability and coherence resonance close to a boundary crisis bifurcation
found in a QD laser subject to short optical feedback are studied. It is known that coherence
resonance can be controlled by delayed feedback, e.g. for neural systems in the framework of
the FitzHugh-Nagumo model (type-II excitability) [46–48], for systems close to a saddle-node
infinite period bifurcation (type-I excitability), and close to a subcritical Hopf-bifurcation [49],
however so far it has not been investigated close to a boundary crises. Using a sophisticated
microscopically motivated rate equation approach, we show that the interesting effect of tunable
regularity of emitted spikes strongly depends on the operating pump current and is thus easily
accessible in experiments.

The paper is structured as follows: At first, in Sec. 2 a dimensionless version of the dynamic
equations is introduced and the structure of the basic continuous wave (cw) solutions is dis-
cussed. Next, in Sec. 3 the bifurcation structure of the deterministic system is analyzed and its
dynamics in the bistable regimes close to the loci of the bifurcation points, which render the
system excitable, is studied in detail. Then, in Sec. 4 coherence resonance of the system subject
to Gaussian white spontaneous emission noise is discussed in dependence of the pump current,
before concluding in Sec. 4. Eventually, in Appendix A the dimensionless version of the model
equations is derived.

2. Quantum dot laser model

The microscopically based rate equation model for the QD laser under optical feedback was
previously discussed in [9, 50, 51]. Here a dimensionless form of the dynamical equations is
used, which is derived in Appendix A. A sketch of the edge-emitting single-mode laser device

E
n

er
gy InGaAs QW

InGaAs QW

We

ρe

ρh

ΔEe

ΔEh

z

J

Wh

(a) (b)

Figure 1. (a): Sketch of the laser under delayed optical feedback. (b): Sketch of band struc-
ture.

is shown in Fig. 1(a). The light in the cavity is modeled by a semiclassical Lang-Kobayashi-
type [52] equation for the slowly varying complex amplitude E of the electric field. Taking
into account only one roundtrip of the light in the external cavity, the field amplitude E (t− τ)
delayed by the external cavity roundtrip time τ is coupled back into the laser with feedback
strength k and rotated by the external cavity phase C.
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The energy-band diagram of the dot-in-a-well structure under consideration is sketched in
Fig. 1(b). The carriers are first injected in the InGaAs quantum well (QW), which acts as a
carrier reservoir, with the dimensionless pump rate J. Within the QDs formed by pyramidal
structures of InGaAs, localized, discrete electron and hole ground states are considered that
lead to a wavelength of the optical transition of λopt = 1.3µm. The occupation probabilities of
electrons and holes in these states are denoted by ρe and ρh, respectively.

Coulomb scattering (nonlocal Auger scattering) is the dominating scattering process for high
carrier densities in the lasing regime [53]. Therefore, electron-phonon scattering is neglected
for the carrier exchange between QW and QDs, but it is taken into account for the intraband
transitions within the carrier reservoir. In the model the carrier exchange between QW and QDs
is mediated by non-constant microscopically calculated Coulomb in- (sin

e/h) and out-scattering
(sout

e/h) rates [54–56], which are nonlinear functions of the dimensionless carrier densities of
electrons (We) and holes (Wh) in the carrier reservoir, and therefore depend on J. Note, that we
use only dimensionless quantities for the rates (details of the non-dimensionalization can be
found in [7, 51]). The scattering rates also strongly depend on the energy spacings between the
QW band edges and the discrete QD levels, which are given by ∆Ee = 210meV and ∆Eh =
50meV for electrons and holes, respectively. The latter strongly depend on the size of the QDs
and also on their material composition. In comparison to conventional QW lasers the carrier
lifetimes τe/h (in their dimensionless form te/h = τe/hW ≡ (sin

e/h + sout
e/h)

−1 with W = 0.7ns−1

being the Einstein coefficient of spontaneous emission) constitute additional timescales, which
are responsible for the strong suppression of the relaxation oscillations (ROs) of QD lasers [57]
mentioned in the introduction. The order of magnitude of τe and τh can be tuned by the pump
current J, which permits to tune the turn-on damping of the laser.

In the subsystem of the carriers, different dynamics is taken into account for ρe and ρh as
well as for We and Wh. Therefore, the system of coupled delay differential equations reads

E ′(t ′) =
1+ iα

2

[
g(ρe +ρh−1)−1

]
E (t ′)

+ keiCE (t ′− τ)+
√

β rspρeρhξ (t ′), (1a)

ρ
′
e = γ

[
Fe− rw(ρe +ρh−1)

∣∣E ∣∣2−ρeρh

]
, (1b)

ρ
′
h = γ

[
Fh− rw(ρe +ρh−1)

∣∣E ∣∣2−ρeρh

]
, (1c)

W ′e = γ

[
J−Fe− cWeWh

]
, (1d)

W ′h = γ

[
J−Fh− cWeWh

]
. (1e)

Here, time t ′ ≡ t/τph is rescaled with respect to the photon lifetime τph, where t denotes the
physical time, and (·)′ denotes the derivative respect to t ′. The amplitude-phase coupling is
modeled by a constant linewidth enhancement factor α to admit analytical insight. Note how-
ever, that the validity of this approach depends upon the band structure under consideration.
In general, the α-factor is not a reliable parameter in QD lasers as shown recently in [4, 5].
The α-factor is defined as the variation of the real refractive index, which is proportional to
the real part of the complex susceptibility with the carrier density divided by the variation of
the gain, which is proportional to the imaginary part of the complex susceptibility, with the
carrier density. However, each charge carrier transition in the band structure under considera-
tion contributes differently to the complex susceptibility. While the resonant transitions of the
QD carriers mainly affect the gain, the main contribution to the change of the refractive index
is given by the off resonant carriers of the surrounding carrier reservoir (QW) (see [4] for de-
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Table 1. Parameter values used in the numerical simulations.

Symbol Value Meaning
g 3.96 Linear gain parameter
γ 7×10−3 Ratio of photon to carrier lifetime
τ 16 External cavity round-trip time
c 1.54 Spontaneous and non-radiative losses
α 0.9 Linewidth enhancement factor
rsp 1.26×104 Coefficient of spontaneous emission
C π External cavity phase
rw 1.5 ·10−4 Ratio of Einstein coefficients of

induced and spontaneous emission

tails). For shallow QDs the timescale of the intensity pulsations, which are, as the ROs, on the
timescale of nano-seconds, is large compared to the timescale of the carrier exchange between
QW and QDs (given by τe and τh). The carrier exchange is then fast enough to synchronize QD
and QW carriers, and the approximation of a constant α-factor holds. But, for very deep dots
the carrier exchange between QD and QW can become so slow that it takes place on a similar
timescale than the intensity pulsations. As a result, QDs and QW carriers can become desyn-
chronized in feedback regimes, in which intensity pulsations are observed. In this regimes, the
approximation of a constant α-factor then fails. Nevertheless, for the band structure discussed
in this paper, the approximation of a constant α-factor yields reliable results.

The linear gain coefficient is denoted by g. The value of g takes into account that due to the
inhomogeneous broadening of the gain medium only a subgroup of all QDs matches the mode
energies for lasing. Further, the rescaled feedback strength is denoted by k ≡ Kτph/τin, where
K is the dimensionless feedback strength ranging from zero to one (see Appendix A), τin is the
roundtrip time of the light in the internal cavity, and the dimensionless roundtrip time of the
light in the external cavity is given by τ . The process of spontaneous emission is modeled by a
complex Gaussian white noise term ξ (t ′), i.e.,

ξ (t ′) = ξa(t ′)+ iξb(t ′), 〈ξi(t ′)〉= 0,
〈ξa(t ′)ξb(t̃ ′)〉= δa,bδ (t− t̃ ′), for ξi(t ′) ∈ R, i ∈ {a,b}.

Here, subscripts a and b stand for real and imaginary parts, respectively. The spontaneous emis-
sion factor β measures the probability that a spontaneously emitted photon is emitted into
the lasing mode. This will be the important parameter to vary the noise strength. The rate of
the spontaneous emission is given by rsp ≡ ZQD

a Wτph, where ZQD
a is the number of QDs that

are resonant with the optical transition, and W is the Einstein factor of the spontaneous emis-
sion resulting from the incoherent interaction of the QDs with all resonator modes [58]. The
small parameter γ multiplying the right hand sides of Eqs. (1b)–(1e) expresses the timescale
separation between the fast field equation and the slow subsystem of the carriers. The terms
Fe/h ≡ sin

e/h(We,Wh)(1−ρe/h)−sout
e/h(We,Wh)ρe/h model the contributions of the scattering rates,

where the Pauli blocking is described by the terms 1−ρe/h. In- and out-scattering rates are re-
lated by a detailed balance relations [55, 59]. Fit functions for sin

e/h can be found in Ref. [60].
Further, rw describes the ratio of the Einstein coefficients of induced and spontaneous emission,
which was denoted by w in Ref. [60], and c is the band-band recombination coefficient in the
QW. Parameter values used in the simulations are given in Tab. 1.

It is crucial to note for the subsequent analysis that the carrier equations (1b)–(1e) are not
independent but contain carrier conservation, which can be seen by verifying that ρ ′e +W ′e =
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ρ ′h +W ′h holds. Thus, ρe−ρh +We−Wh is a constant, which is zero in the intrinsic case [59].
Due to the carrier conservation, one dynamical variable can be eliminated by expressing one
carrier type in terms of the others, i.e.,

Wh = ρe +We−ρh. (2)

2.1. External cavity modes–stationary solutions

In this section, the basic solutions of the dynamical equations (1) without noise (β = 0) are
discussed. These external cavity modes (ECMs) organize the phase space of the system and
provide a “backbone” for more complex, e.g., chaotic, dynamics observed in these systems [61],
and therefore it is crucial to understand their bifurcation structure. They are cw solutions with
constant photon number Nph = Ns

ph and carrier densities ρs
e/h,W

s
e/h, and a phase φ ≡ δωst of

the electric field amplitude E ≡√Npheiφ that varies linearly in time(
E ,ρe/h,We/h

)
=
(√

Ns
pheiδωst ′ ,ρs

e/h,W
s
e/h

)
, (3)

where the steady states of the dynamic equations (1) with feedback are denoted by the super-
script s, and δωs ≡ τph(ω −ωth) is the deviation of the frequency ω of the ECM from the
threshold frequency of the solitary laser ωth. Inserting the ECM-ansatz (3) into Eqs. (1), we
find the following expressions for the non-zero intensity solutions (Ns

ph 6= 0)

ρ
s
inv =−k cos(δω

s
τ +C), (4a)

δω
s = αρ

s
inv− k sin(δω

s
τ +C), (4b)

0 = γ

[
Fs

e − rw(ρ
s
e +ρ

s
h−1)Ns

ph−ρ
s
eρ

s
h

]
, (4c)

0 = γ

[
Fs

h − rw(ρ
s
e +ρ

s
h−1)Ns

ph−ρ
s
eρ

s
h

]
, (4d)

0 = J−Fs
e − cW s

e W s
h , (4e)

0 = J−Fs
h − cW s

e W s
h , (4f)

where a rescaled inversion
ρinv ≡

1
2
[g(ρe +ρh−1)−1] (5)

has been introduced. Inserting Eq. (4a) into Eq. (4b), we obtain a transcendental equation for
δωs in terms of α , τ , and C

δω
s =−keff sin

(
δω

s
τ +C+ arctan(α)

)
, (6)

where keff ≡ kτ
√

1+α2. For keff < 1 only one solution exists, and at keff = 1 a pair of ECMs
is created in a saddle-node bifurcation. Increasing k, α , and τ additional pairs of solutions are
created in saddle-node bifurcations. The saddle solutions (anti-modes) are always unstable and
the stability of the node solutions (modes) has to be determined by a linear stability analysis
[51]. Taking advantage of the carrier conservation (Eq. (2)), we can reformulate Eq. (4a) to
express ρs

e and ρs
h in terms of W s

e and W s
h

ρ
s
e =

1
2

[1+g−2k cos(δωs +C)

g
+W s

h −W s
e

]
, (7a)

ρ
s
h =

1
2

[1+g−2k cos(δωs +C)

g
+W s

e −W s
h

]
. (7b)
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Further, an expression for Ns
ph as a function of the carrier populations can be obtained, by

inserting the sum of Eqs. (4c) and (4d) into the sum of Eqs (4e) and (4f)

Ns
ph =

g
rw
(
1−2k cos(δωs +C)

)[J−ρ
s
eρ

s
h− cW s

e W s
h
]

=
g

rw
(
1−2k cos(δωs +C)

)[J− Jth
]
, (8)

where the pump current at lasing threshold Jth ≡ ρs
eρs

h− cW s
e W s

h has been introduced in the
second line. Eventually, the steady states W s

e and W s
h may be determined by solving Eqs. (4e)

and (4f) self-consistently, which has to be done numerically, because sin/out
e/h = sin/out

e/h (We,Wh) are
nonlinear functions of We and Wh.

3. Bifurcation structure and excitable dynamics

To understand the noise induced excitations, we first have to characterize the bifurcation struc-
ture of the deterministic system, and we then have to discuss which phase space configurations
lead to excitability. In principle, this structure was already reported elsewhere, [50, 51, 60].
Here, we focus on the dependence of the bifurcations on the pump current, which is crucial
for the discussion of the excitable dynamics. Figures 2(a) and 2(c) depict the bifurcation dia-
grams of the local maxima of Nph versus feedback strength K for low J = 2Jth (red dots) and
for higher J = 3Jth (black dots) and J = 4Jth (gray dots), respectively. Note that for the sub-
sequent discussion we use the feedback strength K, which is more intuitive because it ranges
from zero to one. The bifurcation diagrams have been obtained by increasing K stepwise us-
ing in each step the last τ-interval of the time series of the previous run as initial condition.
Figure 2(b) depicts the frequency deviation δωs of the ECMs. Solid and dashed lines indicate
stable and unstable solutions, respectively. For low K, only one ECM (blue line) exists, which
initially is stable. For J = 2Jth this ECM is destabilized in a supercritical Hopf bifurcation at
KH(J = 2Jth) = 0.085 (red dot in Fig. 2(b)), which results in a stable solution with a period-
ically modulated Nph (see leftmost inset in Fig. 2(a)). Increasing K further, this periodic orbit
undergoes a cascade of period doubling bifurcations. After a large period-2 window, the system
becomes chaotic at K = 0.21 (see middle inset in Fig. 2(a) for a time series of Nph). At the
end of the region with complex dynamics, the chaotic attractor collapses onto a limit cycle,
and periodic pulse packages are observed in the time series of Nph, which will be discussed
in detail below (see rightmost inset in Fig. 2(a)). At Ksn = 0.2290 a new pair of ECMs is cre-
ated at in a saddle-node bifurcation (limit point) indicated by an open black circle in Fig. 2(b).
The position of the limit point is determined by Eq. (6) only, and is thus independent of J. In
Fig. 2(b), the stable 2nd ECM is depicted by a green and the unstable anti-mode by a black
dashed line. The photon number Ns

ph of the stable parts of the first and the 2nd ECMs and of
the unstable anti-mode are plotted in Figs. 2(a) and 2(c), by thick blue, thick green, and black
dashed lines, respectively. For J = 2Jth, bi-stability between the periodic orbit and the 2nd ECM
is observed upon its creation at K sn, until eventually at Khom = 0.22920, the periodic orbit is
annihilated in a homoclinic bifurcation (brown vertical arrow) with the saddle (anti-mode) of
the 2nd ECM-pair. For K > Khom, the laser emits in stable cw operation on the 2nd ECM.

With varying current, the bifurcation scenario changes. In Ref. [7], it was shown that the RO
damping increases linearly with the pump current. This is the reason why for higher J = 3Jth
and J = 4Jth, the Hopf-bifurcation points KH shift toward higher K-values [9] (red dots and blue
arrows in Fig. 2(b). Further, for pump currents larger than J > 2.8Jth the end of the bifurcation
cascade is not marked by a homoclinic bifurcation, but by a boundary crisis [62] of the chaotic
attractor that collides at Kcris with the saddle (anti-mode) of the 2nd ECM pair. Bi-stability
is now observed in the interval [K sn,Kcris]. The feedback strengths Khom and Kcris, at which

#206726 - $15.00 USD Received 20 Feb 2014; revised 11 Apr 2014; accepted 6 May 2014; published 27 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 11 | DOI:10.1364/OE.22.013288 | OPTICS EXPRESS  13296



Hopf point
limit point

(a)

(c)

(b)

Figure 2. Deterministic dynamics: (a): Bifurcation diagram of local maxima of photon
number Nph vs. feedback strength K for pump current J = 2Jth (brown dots), where Jth ist
the threshold current. Thick blue and green lines denote the steady state photon numbers
Ns

ph of the stable parts of the first and the second ECM, respectively, and the black dashed
line denotes Ns

ph of the unstable antimode. Insets show time traces of Nph for fixed K.
(b): Frequency deviations δωs of the ECMs vs. K. Solid and dashed lines denote stable
and unstable solutions, respectively. Hopf and limit points are denoted by red dots and
open black circles, respectively. Blue, red, and black (gray) arrows indicate the feedback
strengths of the Hopf points (KH ), the homoclinic bifurcation (Khom), and the boundary
crisis (Kcris), respectively. (c): Same as (a) but for higher J = 3Jth (black dots) and J = 4Jth
(gray dots). Parameters as in Table 1.
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(a) (b)

(c) (d)

Figure 3. Subthreshold (green lines) and super-threshold (blue lines) excitations of deter-
ministic system in the bistable regime. (a) and (b): Close to a homoclinic bifurcation for
K = 0.229 and J = 2Jth. (c) and (d): Close to a boundary crisis of chaotic attractor for
K = 0.23 and J = 3Jth. Blue and green triangles in the closeups mark the starting points
of the perturbed trajectories for super- and subthreshold perturbations, respectively. Black
lines denote the steady state photon number of the unstable anti-mode of the 2nd ECM-pair.
(a) and (c): Time series of the perturbed trajectories. (b) and (d): Projections of the trajecto-
ries onto the (Nph,We)-plane. Green dots indicate the position of the stable 2nd ECM-mode.
Parameters as in Table 1.

homoclinic bifurcation and boundary crisis occur, have been found by up- and down-sweeping
K with a very small stepsize of ∆K = 1 ·10−5. For up-sweeping K, the system remains on the
periodic orbit (chaotic attractor), up to Khom (Kcris), while for down-sweeping K the laser emits
on the 2nd ECM down to Ksn. Therefore, Khom and Kcris are determined by the upper limit of
the bi-stability region. In contrast to the homoclinic bifurcation that is independent of the pump
current for J ∈ [Jth,2.8Jth], the feedback strength Kcris, at which the boundary crisis occurs,
increases with the pump current (see dark and light arrow in Fig. 2(c)).

The laser is excitable for K-values little larger than Khom for J < 2.8Jth and analogously
for K-values little above Kcris for J > 2.8Jth. In both cases, the short unstable manifold of the
anti-mode acts as perturbation threshold. For J ≤ 2.8Jth, the response of the system to a super-
threshold perturbation is a large excursion of the trajectory in phase space close to the “ghost”
of the limit-cycle that is destroyed in the homoclinic bifurcation. For J > 2.8Jth, the excursion in
phase space is guided by the ruin of the chaotic attractor that collapses at Kcris. In Figs. 2(a) and
2(c) this situation is elucidated, the threshold is given by the difference of the photon numbers
Ns

ph of the 2nd ECM (thick green line) and of the anti-mode (black dashed line). The threshold is
very low for K = Khom and increases with K. This implies that for J > 2.8Jth, when the system
re-stabilizes in a boundary crisis, the threshold can be tuned by varying the pump current and
with it the critical feedback strength Kcris = Kcris(J).

Next, the dynamics in phase space is discussed to gain a better understanding of the differ-
ence between the excitable behavior close to the homoclinic bifurcation and close to a boundary
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crisis. Figures 3(a) and 3(b) depict time series and phase space projections onto the (Nph,We)-
plane for K = 0.2290, i.e., just below Khom, where the periodic orbit still exists. A subthreshold
perturbation of the system from the stable 2nd ECM, i.e, the lasing fixed point, (green line)
decays rapidly back to this steady state, while a super-threshold perturbation (blue line) yields
strictly periodic pulse package, i.e., a motion along the periodic orbit. The green and the blue
triangles in the closeup of Fig. 3(a) denote the starting point of the trajectories and the photon
number of the anti-mode is plotted as a black line. In Ref. [50] we showed that the inter-
pulse interval time TISI scales logarithmically with the distance from the bifurcation point, i.e.,
TISI ∼ ln |K−Khom|, as it is expected close to a homoclinic bifurcation [63]. In the phase space
projection in Fig. 3(b), it can be seen that after a power dropout at the end of each pulse pack-
age (nearly vertical part of the trajectory), the trajectory at first performs pronounced damped
oscillations spiraling around the point in phase space, where the 2nd pair of ECMs has been
created at the nearby saddle-node bifurcation (the green dot in Fig. 3(b) indicates the stable 2nd

ECM). Afterwards, it is re-injected into the high gain region during the power dropout.
The lower panel of Fig. 3 depicts the excitability of the laser close to the boundary crisis

for K = 0.23, which is a little below Kcris(J = 3). A super-threshold perturbation (blue line in
Fig. 3(d)) yields rather regular pulse packages, although they are not strictly periodic as the
ones observed close to the homoclinic bifurcation. Furthermore, the inter-spike interval time
does not obey a specific scaling law as the pulse packages described before. From the phase
space projection in Fig. 3(b), we see that the trajectory has essentially the same shape observed
close to the homoclinic bifurcation, but does not close up, which yields a certain width of the
chaotic attractor in phase space. Note that these regular pulse packages are similar to those
observed by Heil et al. in a QW laser with short optical feedback [64, 65]. Comparing the
distance of Ns

ph of the 2nd ECM (green line) and Ns
ph of the anti-mode (black line) in Figs. 3(a)

and 3(c), we see that the excitation threshold is much larger close to the crisis than close to the
homoclinic bifurcation. Thus, close to the crisis larger perturbations (higher noise levels) are
needed to excite the system and cause a phase space excursion.

4. Coherence resonance

In this section, we analyze the phenomenon of coherence resonance close to the end of the first
bifurcation cascade discussed in the previous section. As a measure for the regularity of the
pulse packages, the correlation time tcor is used. For a stationary stochastic process y, it was
introduced by Stratonovich [66] as

tcor ≡
∫
R+

0

|Ψy(s)|ds, (9)

where Ψy ≡ 1
σ2

y
〈(y(t− s)−〈y〉)(y(t)−〈y〉)〉. Here, Ψy denotes the normalized autocorrelation

function of y, 〈·〉 denotes the ensemble average, and the variance is given by σ2
y ≡ Ψy(0) =

〈(y(t)−〈y〉)2〉. Using the Wiener-Khinchin theorem, which states that power spectral density
and autocorrelation function are a Fourier-pair [67], we calculate Ψy from the ensemble av-
eraged power spectral density. Here, we take the photon number as stochastic process, i.e.,
y = Nph. Another measure for the regularity of the pulse packages is the normalized standard
deviation of the inter-spike interval time TISI [68]

RT ≡

√
〈T 2

ISI〉−〈TISI〉2

〈TISI〉
, (10)

which is also known as normalized fluctuations [35]. In our laser system, the noise is applied
only to the optical equations. Therefore, measuring TISI not directly from the timeseries of Nph
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but from the carrier inversion yields more robust results, because the latter are only indirectly
effected by the noise. The dropout of Nph before the first intensity spike of each pulse package
(cf. Fig. 3(a)) corresponds to a spike of the inversion ρinv defined in Eq. (5), which is followed
by a damped oscillation towards its steady state value ρs

inv. To determine TISI, a threshold value
ρ thr

inv = 0.1 is chosen, which is crossed during the first dropout of each pulse package, but not
during the subsequent damped oscillations. To find the exact timing position of the first spike
of the inversion of the n-th pulse package, we define a probability density by

ρn(t ′)≡
ρ2

inv(t
′)

ρinv,n
, with ρinv,n ≡

∫ t ′n,e

t ′n,b
ρ

2
inv(t̃)dt̃,

where t ′n,b denotes the time when the leading edge of the n-th pulse first exceeds the threshold
ρinv(t ′n,b) > ρ thr

inv, and t ′n,e denotes the time when the trailing edge of the pulse first falls below
the threshold value, i.e., ρinv(t ′n,e)< ρ thr

inv. The timing position of the first spike of the n-th pulse
package is then determined by the first moment (mean) of the distribution function ρn(t ′)

t ′n ≡
∫ t ′n,e

t ′n,b
ρn(t̃) t̃ dt̃.

Eventually, the sequence of inter-spike intervals TISI, from which RT is calculated, is defined by
the difference of the timing positions of the first spikes of subsequent pulse packages. For the
chaotic system, we take advantage of the special shape of the chaotic attractor. The trajectory
is nearly periodic, meaning that the height of the first spikes of the pulse packages varies little
compared to the height difference of the first and the second spike of each pulse package (cf.
Figs. 3(c) and 3(d)). Therefore, for the deterministic system it is always possible to find an
appropriate threshold value ρ thr

inv, that is only passed by the first spike of each pulse package.
To study coherence resonance, the QD laser is operated on the stable 2nd ECM just behind

the bifurcation cascade, where the deterministic system is not bistable anymore. For instance,
this implies that the deterministic system would respond to a super-threshold excitation by an
excursion in the phase space along the “ghosts” of the attractors destroyed in the homoclinic
bifurcation (J ≤ 2.8Jth) and the boundary crisis (2.8Jth < J), respectively, and would then re-
turn to the stable 2nd ECM. Meaning that in contrast to the timeseries shown in Figs. 3(a) and
3(c) each super-threshold excitation is followed only by one pulse package. Subject to noise,
the system can be excited if the perturbation introduced by the noise is large enough to over-
come the excitability threshold. Figure 4(d) depicts tcor (red triangles, right y-axis) and RT
(blue dots, left y-axis) as functions of the noise strength β for K = 0.22921 and J = 2Jth, i.e.,
for a K-value closely above the homoclinic bifurcation at Khom = 0.22920. Furthermore, tcor is
shown for K = 0.2314 and J = 3Jth (black stars, right y-axis) as well as for K = 0.24515 and
J = 4Jth (gray hexagons, right y-axis), i.e., for K-values closely above the crisis of the chaotic
attractor at Kcris(J = 3Jth) = 0.23324 and Kcris(J = 4Jth) = 0.24514, respectively (cf. Fig. 2). A
clear maximum of tcor can be observed in all three cases indicating coherence resonance. Fig-
ures 4(a)–4(c) visualize the respective dynamics for values of β below (β = 1 ·10−10, Fig. 4(a)),
at (βopt = 5 · 10−9, Fig. 4(b)), and above (β = 6.5 · 10−8, Fig. 4(c)) the noise strength βopt, at
which the maximum of tcor is observed for J = 2Jth. Analogously, Figs. 4(e)–4(g) depict time
series below (β = 0.02, Fig. 4(e)), at (βopt = 0.038, Fig. 4(f)), and above (β = 0.08, Fig. 4(g))
the noise strengths βopt = 0.23325 of the coherence maximum for J = 3Jth. The β -values, at
which the time series are taken, are indicated by gray dashed vertical lines in Fig. 4(d).

Let us first discuss the coherence resonance close to the homoclinic bifurcation. Generally,
the time between two excitations TISI can be decomposed into the time needed to activate the
system ta and the refractory time tr, which the system needs to settle back to the rest state. In
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Figure 4. Stochastic dynamics: (a)–(c): Time series for J = 2Jth and K = 0.2292 for dif-
ferent β indicated by gray dashed lines in (d). βopt denotes the noise strength at the max-
imum of the coherence time. Central panel (d): Normalized standard deviation of inter-
spike interval RT (blue dots) for J = 2Jth and coherence time tcor (normalized to its max-
imum value tmax

cor ) versus noise strength β for J = 2Jth (red triangles), J = 3Jth (black
stars), and J = 4Jth (gray hexagons). In physical units the maximal coherence times are
τphtmax

cor (J = 2Jth) = 2.50ns , τphtmax
cor (J = 3Jth) = 2.39ns , and τphtmax

cor (J = 4Jth) = 1.93ns .
The feedback strength is K = 0.22921 for J = 2Jth, K = 0.23325 for J = 3Jth, and
K = 0.24515 for J = 4Jth, respectively. (e)–(g): Time series for J = 3Jth and K = 0.233325
for different β indicated by gray dashed lines in (d). Parameters as in Table 1.
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our system, the rest state is the stable 2nd ECM, and the refractory time is given by the time the
system needs to spiral back to the 2nd ECM after one excitation. This means that tr is fixed by
the internal dynamics of the system, while ta depends on the noise strength β . For low values of
β , the activation time ta is long compared to tr (see Fig. 4(a)). Increasing β , it becomes easier
for the system to overcome the excitation threshold and the pulse packages arise more regularly
(see Fig. 4(b)). This is indicated by an increase of tcor and a decrease of RT . Increasing β

further, pulse packages are excited more often, but the regularity of their appearance decreases
and they are additionally deformed by the noise (see Fig. 4(c)). This leads to a decrease of tcor
and an increase of RT . The maximum of tcor does not coincide exactly with the minimum of
RT . This is expected, because tcor accounts for coherence in periodicity of the pulse packages
as well as coherence in amplitude fluctuations, while RT only measures the periodicity of the
pulse packages.

Higher pump currents of J = 3Jth and J = 4Jth lead to higher excitability thresholds (see
Fig. 2(c)). Thus, a maximum of the correlation is therefore expected at a higher level of the
noise. This is the reason why the maximum of tcor shifts to higher values of the noise strength
β with increasing J (see black stars and gray hexagons in Fig. 4(d) for J = 3Jth and J = 4Jth,
respectively). By comparing the time traces taken at the maxima of tcor for J = 2Jth and J = 3Jth,
which are depicted in Figs. 4(b) and 4(f), respectively, two effects are prominent. On the one
hand, the higher noise level in Fig. 4(f) becomes obvious, and, on the other hand, we see that
the peak heights of the pulse package are varying more strongly in Fig. 4(f) than in Fig. 4(b),
i.e., the amplitude jitter of the pulse packages is larger. However, the measure RT fails at higher
values of the noise strength, because there is an ambiguity in distinguishing the peak position
from positions of extreme noise events. The trajectory is just distorted so much by the noise
that the first dropout in ρinv crossing ρ thr

inv is not necessarily the beginning of a pulse package.
Therefore, RT has not been depicted for J = 3Jth and J = 4Jth. That for J = 3Jth and J = 4Jth the
dynamics beyond the coherence maximum is dominated by the noise can be seen in Fig. 4(g)
depicting for J = 3Jth a time trace right to the maximum of tcor.

In Fig. 5(a) the dependence of the feedback strengths Kcris, at which the boundary crisis
occurs, is depicted as a function of the pump current. It reveals that Kcris increases linearly
with the pump current J. As mentioned in Section 3, it was shown in previous works [7, 69]
that the RO damping increases linearly with J. Further, the feedback strengths KH of the first
Hopf bifurcation marking the beginning of the first bifurcation cascade also reveals a linear
dependence on J as discussed in [9, 51]. The linear dependence of Kcris on J shown in Fig 5(a)
now suggest that the linear increase of Kcris with J is also due to the pump dependence of
the RO damping. From Fig. 2(c), it can be presumed that this linear dependence of Kcris on
J results in a square-root like increase of the projection of the excitability threshold onto the
photon number ∆Nthr

ph with J. This can be seen as follows: ∆Nthr
ph is given by the difference of the

photon number of the 2nd ECM (thick green lines in Fig. 2(c)) and its anti-mode (dashed black
lines in Fig. 2(c)). The former increases square-root like with J, while the latter decreases with J
in the same way, which causes the square-root like increase of ∆Nthr

ph depicted in Fig. 5(b). Since
the increase of Kcris on J is relatively small in the current range plotted in Fig. 5(b), the increase
of ∆Nthr

ph is nearly linear. Note that the threshold has always been determined at the same (very
small) distance to Kcris, more precisely at K =Kcris+1 ·10−5. Eventually, the dependence of the
noise strength at the coherence maximum βopt on J is depicted in Fig. 5(c). The optimal noise
level βopt increases with J as expected from the increase of the threshold. To our knowledge, this
is the first time coherence resonance has been observed close to a boundary crisis. Further, in
contrast to coherence resonance close to a homoclinic bifurcation studied in [25,32], the pump
current dependence of the coherence maximum observed close to a crisis should facilitates the
experimental accessibility of the excitable regime.
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Figure 5. Dependence of (a): the feedback strength Kcris, at which the boundary crisis, oc-
curs (red triangles), (b): the photon number of the threshold ∆Nthr

ph (normalized to the pho-
ton number without feedback N0

ph) (green hexagones), and (c): the optimal noise strength
βopt (blue circles) on pump current J (normalized to its threshold value Jth). The dashed
lines are best fits. Parameters as in Table 1.

In the remainder of this section, some practicalities of finding excitability and coherence
resonance in laser systems are discussed. Experimentally it has been shown that spontaneous
emissions noise is sufficient to excite a semiconductor laser under optical injection operating
in a stable locked cw state close to the boundary of the locking tongue [17–19]. Further, ex-
citability and coherence resonance has been experimentally observed in semiconductor lasers
under optical feedback by adding broadband Gaussian white noise to the pump current [39,43].
Moreover, excitability close to a homoclinic bifurcation [25] and close to a crises [26] has been
verified experimentally in an integrated multi-section semiconductor QW integrated feedback
laser by perturbing the laser with short external optical pulses. Both methods, adding noise to
the pump current and external optical pulses cause well tunable perturbations of the trajectory
in the phase space. In our simulations, for simplicity we use the spontaneous emission noise in
the field equation, i.e., the coefficient β , to excite the system. Since this is also a perturbation
of the trajectory in the phase space, we expect that our results can be verified experimentally
by the two methods mentioned above.

Further, our simulations have been performed for a fixed amplitude phase coupling α , a
fixed band structure, and a fixed feedback phase C, but they are robust under changes of these
parameters as discussed in the following. From the transcendental Eq. (6), it can be seen that
the number of ECMs and thus the number of bifurcation cascades increases with τ and α (See
[61] for a detailed discussion.). We have focused on the simplest scenario, of a short external
cavity and a small α-factor, where only one instability region is observed. However, excitable
regimes and crises can also be found for larger values of α and τ for which several bifurcation
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cascades occur [50,70]. The band structure mainly impacts on the damping of the ROs, which in
terms influences the dynamical stability of the laser. For experimental realizations the enhanced
dynamical stability of QD lasers is a big advantage, because the structure of the bifurcation
cascade is simpler [50, 71], and they are thus less sensitive to perturbations unavoidable in
experiments, e.g., small temperature fluctuations. Therefore, we expect that with a QD lasers
it should be easier to detect the excitable regime and stay close to a homoclinic bifurcation or
a boundary crises. Eventually, our results are robust under changes of the feedback phase C,
that mainly shifts the range of K values at which the bifurcations occur. As mentioned above
excitability has been demonstrated in multi-section integrated feedback laser, which reveals that
the feedback parameters, especially the phase C and the feedback strength K, can be controlled
well enough to stay close to the homoclinic bifurcation or the crises of the chaotic attractor.
Indeed it has been shown that the bifurcation cascade can be scanned by careful tuning of
external cavity phase C and pump current [72, 73].

5. Conclusion

We found that a QD laser subject to optical feedback can be operated in an excitable regime,
where the regularity of the emitted spikes is sensitive to the noise strength as well as to the pump
current. More precisely, we have shown that coherence resonance exists close to a boundary cri-
sis of a chaotic attractor. In contrast to coherence resonance close to a homoclinic bifurcation,
which was theoretically predicted previously, this type of coherence resonance has the advan-
tage to be highly sensitive to variations of the pump current. This permits to shift the excitability
threshold and, consequently, the maximum of the coherence found in the emitted spikes. Fur-
ther, our findings are robust over a large range of pump currents facilitating the experimental
accessibility of the excitable regime. Since the operating pump current is easily accessible in an
experiment, it opens up the possibility to experimentally observe coherence resonance in semi-
conductor QD lasers. Further, we connect the pump current induced shift of the boundary crisis
to the damping of the turn-on relaxations, as it also increases linearly with the pump strength.

A. Derivation of the dimensionless model

In this section, the dimensionless version of the dynamical equations (1) used in the main text
is derived from the physical model. The optical subsystem of the QD laser model with feedback
is described by a Lang-Kobayashy type delay differential equation for the normalized slowly
varying complex amplitude E (t) of the electric field E(t) = 1

2

(
E (t)ei2πνtht + c.c

)
, where νth is

the optical frequency at lasing threshold, and c.c denotes the complex conjugate. Since different
dynamics is taken into account for electrons and holes the carrier subsystem consists of four
coupled differential equations for the occupation probabilities ρe and ρh of electrons and holes
in the discrete QD ground states, and the carrier densities for electrons, we, and holes, wh, in
the surrounding QW acting as a carrier reservoir

dE

dt
=

1+ iα
2

[
2W̄ZQD

a (ρe +ρh−1)− τ
−1
ph

]
E +

K
τin

e−iCE (t− tec)+

√
βZQD

a Wρeρhξ , (11a)

dρe

dt
= Sin

e (1−ρe)−Sout
e ρe−W̄ (ρe +ρh−1)Nph−Wρeρh, (11b)

dρh

dt
= Sin

h (1−ρh)−Sout
h ρh−W̄ (ρe +ρh−1)Nph−Wρeρh, (11c)

dwe

dt
=

j
e0
−2NQD

[
Sin

e (1−ρe)−Sout
e ρe

]
−BSwewh, (11d)

dwh

dt
=

j
e0
−2NQD

[
Sin

h (1−ρh)−Sout
h ρh

]
−BSwewh. (11e)
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Here, the phase amplitude coupling is described by the linewidth enhancement factor α . Fur-
ther, the optical intensity losses for the laser device of length L are given by the inverse of the
photon lifetime τph. They are balanced by the linear gain term 2W̄ZQD

a (ρe + ρh− 1), where
W̄ZQD

a is the linear gain coefficient for the processes of induced emission and absorption. The
gain coefficient is proportional first to the Einstein coefficient of induced emission W̄ that mea-
sures the coherent interaction between the two-level system and the laser mode, and second to
the number ZQD

a of lasing QDs inside the waveguide (the factor 2 is due to spin degeneracy).
The number of lasing QDs, ZQD

a , is given by ZQD
a ≡ aLANQD

a , where aL is the number of self-
organized QD layers, A is the in-plane area of the QW, and NQD

a is the density per unit area of
the active QDs. As a result of the size distribution and of the material composition fluctuations
of the QDs, the gain spectrum is inhomogeneously broadened, and only a subgroup (density
NQD

a ) of all QDs (NQD) matches the mode energies for lasing. Taking into account only one
roundtrip of the light in the external cavity, the field amplitude E (t− τec) delayed by the ex-
ternal cavity roundtrip time τec is coupled back into the laser with feedback strength K and
rotated by the external cavity phase C≡ 2πνthτec. The roundtrip time of the light in the laser of
length L is denoted by τin ≡ 2L

√
εbg/c̃ with the background permittivity εbg, and the speed of

light c̃. Although being completely determined by νth and τec, the feedback phase C is usually
treated as an independent parameter since small variations of the external cavity length cause a
variation of the phase C over its full range [0,2π], while the external roundtrip time τec is hardly
affected by these fluctuations [65, 74, 75].

The spontaneous emission is modeled by bimolecular recombination βZQD
a Wρeρh, where β

is the spontaneous emission factor measuring the probability that a spontaneously emitted pho-
ton is emitted into the lasing mode. The Einstein coefficient for spontaneous emission is denoted
by W . It can be determined by calculating the coherent interaction of a two-level system, i.e.,
a single QD, with all resonator modes in the framework of the second quantization [58]. Note
that the coefficients W̄ and W differ by three orders of magnitude (See Refs. [8,60] for details of
their derivation.). In a semiclassical approach, the process of spontaneous emission is modeled
by a complex Gaussian white noise term ξ = ξ (t), i.e.,

ξ (t) = ξa(t)+ iξb(t), 〈ξi(t)〉= 0,
〈ξa(t)ξb(t̃)〉= δa,bδ (t− t̃), for ξi(t) ∈ R, i ∈ {a,b}.

Here, subscripts a and b stand for real and imaginary parts, respectively.
In the model, the carrier exchange between QW and QDs is mediated by non-constant mi-

croscopically calculated Coulomb in- (Sin
e/h) and out-scattering (Sout

e/h) rates [54, 56], which are
nonlinear functions of the carrier densities of electrons (we) and holes (wh) in the carrier reser-
voir, and therefore depend on the pump current density j. The latter is normalized by the el-
ementary charge e0 in the equations for the reservoir densities (Eqs. (11d) and (11e)). The
inverse of the sum of the scattering rates yields the carrier lifetimes τe/h ≡ (Sin

e/h + Sout
e/h)

−1 in
the QD levels. Note that in thermodynamic equilibrium, there is a detailed balance between
in- and out-scattering rates, which allows one to relate the coefficients of in- and out-scattering
even away from the thermodynamic equilibrium [76]. The detailed balance relation for in- and
out-scattering rates for the quasi-equilibrium then reads [59]

Sout
e/h(we,wh) = Sin

e/h(we,wh)e
−

∆Ee/h
kboT

[
e

we/h
De/hkboT −1

]−1

. (12)

It shows that the scattering rates strongly depend on the energy differences ∆Ee ≡ EQW
e −EQD

e
and ∆Eh ≡ EQD

h −EQW
h between the QD levels, EQD

e and EQD
h , and the band edges of the QW,
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EQW
e and EQW

h , for electrons (e) and holes (h), respectively. The carrier degeneracy concen-
trations are given by De/hkboT , where De/h ≡ me/h/(π h̄2) are the 2D densities of state in the
carrier reservoir with the effective masses me/h. The temperature is denoted by T and kbo is
Boltzmann’s constant (see [60] for fit functions for the in-scattering rates Sin

e/h). Analogously to
the spontaneous emission in the field equations, the spontaneous emission in the QW is incor-
porated by the bimolecular term BSwewh, where BS is the band-band recombination coefficient
(see Eqs. (11d) and (11e)). All physical parameters used are summarized in Table 2.

Table 2. Physical parameters used in the simulation of the QD laser model unless stated
otherwise.

symbol value symbol value symbol value

W 0.7ns−1 A 4 ·10−5 cm 2 T 300K

W̄ 0.11 µs−1 NQD
a 0.3 ·1010 cm−2 L 1mm

τ
−1
ph 0.1ps−1 NQD 1 ·1011 cm−2 εbg 14.2

β 2.2 ·10−3 BS 540ns−1 nm 2 τin 24ps

aL 15 ZQD
a 1.8 ·106 me 0.043m0

λopt 1.3 µm νth 230THz mh 0.45m0

∆Ee 210meV ∆Eh 50meV jth 6.72 ·105 A
m2

τec 160ms C π K [0,1]

In the main text, a dimensionless form of the dynamical equations is used, which emphasizes
the different timescales involved. As it is usually done for rate equation models of semiconduc-
tor lasers, time is rescaled with respect to the photon lifetime τph [77]. Introducing the dimen-
sionless time t ′ ≡ t/τph as well as the dimensionless reservoir populations We ≡ we/(2NQD)
and Wh ≡ wh/(2NQD), the set of dimensionless dynamical equations (1) discussed in the main
text can be derived. Where the dimensionless linear gain coefficient g, the rescaled feedback
strength k, the dimensionless delay time τ , the dimensionless coefficient of the spontaneous
emission rsp, the ratio of photon and carrier lifetimes γ (Here the lifetime of the carrier sub-
system is represented by W−1.), the ratio of the Einstein-factors of induced and spontaneous
emission rw, the dimensionless pump rate J, the coefficient of spontaneous and non-radiative
losses in the carrier reservoir c, and the dimensionless scattering rates sin/out

e/h have been intro-
duced as

g≡ 2aLW̄ANQD
a τph, k = K

τph

τin
, τ =

τec

τph
, rsp ≡WZQD

a τph, γ ≡ τphW,

rw ≡
W̄
W

, J ≡ j
2NQDe0W

, c≡ BS2NQD

W
, and sin/out

e/h ≡ 1
W

Sin/out
e/h .

The values of the dimensionless parameters corresponding to the physical parameters of Ta-
ble 2, are listed in Table 1. Note, that the small parameter γ multiplying the right hand sides of
Eqs. (1b)–(1e) expresses the timescale separation between the fast field equation and the slow
subsystem of the carriers, i.e., the QD laser is a slow-fast system if the scattering rates sin/out

e/h
are not to large.
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