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Abstract. A critical challenge in paleoclimate data analysis
is the fact that the proxy data are heterogeneously distributed
in space, which affects statistical methods that rely on spa-
tial embedding of data. In the paleoclimate network approach
nodes represent paleoclimate proxy time series, and links in
the network are given by statistically significant similarities
between them. Their location in space, proxy and archive
type is coded in the node attributes.

We develop a semi-empirical model forSpatio-
Temporally AutocoRrelated Time series, inspired by
the interplay of different Asian Summer Monsoon (ASM)
systems. We use an ensemble of transition runs of this
START model to test whether and how spatio–temporal
climate transitions could be detectable from (paleo)climate
networks. We sample model time series both on a grid
and at locations at which paleoclimate data are available
to investigate the effect of the spatially heterogeneous
availability of data. Node betweenness centrality, averaged
over the transition region, does not respond to the transition
displayed by the START model, neither in the grid-based
nor in the scattered sampling arrangement. The regionally
defined measures of regional node degree and cross link ra-
tio, however, are indicative of the changes in both scenarios,
although the magnitude of the changes differs according to
the sampling.

We find that the START model is particularly suitable for
pseudo-proxy experiments to test the technical reconstruc-
tion limits of paleoclimate data based on their location, and
we conclude that (paleo)climate networks are suitable for
investigating spatio–temporal transitions in the dependence
structure of underlying climatic fields.

1 Introduction

A growing number of paleoclimate records from environ-
mental archives are available for past climate reconstruction.
Fundamentally, this should increase the potential for success-
ful reconstructions of the spatial and temporal features of
past climatic changes, and thus enhance the general under-
standing of the climate system.

The paleoclimate network approach (Rehfeld et al., 2013),
illustrated in Fig.1, is a tool adapted to the challenges in
environmental data analysis. As in the climate network ap-
proach (Tsonis et al., 2006; Donges et al., 2009b), nodesare
identified with positions for which climate time series are
available, andlinks are drawn between the nodes if statisti-
cally significant associations are found. Theadjacency ma-
trix A is then a sparse binary matrix with the (i, j )th entry
being non-zero if (and only if) the time series representing
nodesi and j are significantlyassociated. Network statis-
tics can then reflect global and local characteristics of the
underlying data: the importance of a node, for example, can
be measured by its degree, i.e., how many links the individ-
ual node has, or more abstract measures such as betweenness
centrality (Opsahl et al., 2010; Barthélemy, 2011). Complex
networks have been used to investigate the behavior of the
climate system from reanalysis data (Donges et al., 2009a,
2011; Gozolchiani et al., 2011; Steinhaeuser et al., 2010;
Tsonis et al., 2010; Yamasaki et al., 2008) or recent obser-
vations (Ge-Li and Tsonis, 2009; Malik et al., 2010, 2011).
The network methodology can, however, not be applied di-
rectly to paleoclimate data.
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692 K. Rehfeld et al.: Spatio–temporal climate transitions from paleoclimate networks

Figure 1. (a)Schematic illustration of paleoclimate network construction: nodes in the network represent paleoclimate archives with proxy
time series. If the time series similarity estimate between a node pair is significant, these two nodes are considered to be linked. The
connectedness of the obtained graph reflects the underlying dependencies created by climate processes. While the(b) climate network
approach is based on gridded and dense observations of climatic parameters such as temperature or precipitation, the(c) paleoclimate
network combines paleoclimate proxy records that are heterogeneously and sparsely distributed on the Earth’s surface.

The first reason is that the availability of paleoclimate data
is heterogeneous in time, which implies that standard time
series similarity measures are not applicable, since bias ef-
fects distort the results (Schulz and Stattegger, 1997; Rehfeld
et al., 2011, 2013). For regular data the standard defini-
tions for mutual information (MI,Cover and Thomas, 2006)
or Pearson cross correlation (CC,Chatfield, 2004) can be
used to obtain correlation matrices for the network. For pa-
leoclimatic data sets, adapted techniques that are more ro-
bust against time series irregularity, such as Gaussian kernel-
based cross correlation (Rehfeld et al., 2011), mutual in-
formation (Rehfeld et al., 2013) or the event synchroniza-
tion function (ESF,Rehfeld and Kurths, 2014) need to be
employed.

The effect of the spatially heterogeneous node distribution
on network measures has also not received much attention
so far, beyond the studies ofHeitzig et al.(2010) andRhein-
walt et al.(2012). In particular for node-based network mea-
sures that depend on non-local network topology, changes
in network structure could cause non-trivial bias effects. A
systematic investigation of the effects of spatial sampling on
spatially embedded (climate) networks can be found in the
paper ofMolkenthin et al.(2014b).

In this paper we first review the paleoclimate network ap-
proach and identify potentially suitable network measures.
Then we investigate how different network measures re-
flect distinct changes (transitions) in the underlying cli-
mate fields. To this end we develop and use the semi-
empirical simplified modelSTART (name derived from
StreamTransportedAutocorRrelatedTime series, orSpatio-
TemporallyAutocoRrelatedTime series) to simulate char-
acteristic changes in a spatially extended domain. The model
is based on an approximated solution of the advection–
diffusion equation, which describes how temperature fluctu-
ations are dissipated through stationary flow fields (Molken-
thin et al., 2014a). A single forcing parameter can be varied
to change the underlying flow, resulting in distinctly different
fields, and in distinctly different climate network evolution

patterns (Tupikina et al., 2014). Transitions, in this context,
are large-scale dependence changes due to changes in the at-
mospheric flow patterns. Using this computationally efficient
and reduced model we test which climate network measures
are suitable for characterizing the transition in the underlying
climate field. In particular we evaluate if it is possible to in-
fer the degree of interaction between different regions in the
network and how spatially heterogeneously distributed nodes
affect the analysis of spatio–temporal dynamics.

2 The paleoclimate network approach (PAN)

A schematic illustration of a paleoclimate network is given in
Fig. 1a. Its nodes are given by paleoclimate proxy archives,
its links by significant statistical association between the
archives’ time series. As a method, climate networks ask
the question “How dependent, linearly or nonlinearly, are
the climate changes in place A on climate changes in an-
other place B – and vice versa?”, rather than “Was the tem-
perature in A strongly linearly correlated with the tempera-
ture in B at the same point in time?”, which is the case for
standard empirical orthogonal function analysis (EOFs were
used, for example, inMayewski et al., 2004; Sinha et al.,
2011; Yi et al., 2011). If, say, a proxy for local temperature
in China co-varied significantly with reconstructed rainfall
in India, this is caused by either (a) a common driving phe-
nomenon (for example through the North Atlantic Oscilla-
tion, Wu et al., 2009or solar forcing,Agnihotri et al., 2002),
(b) local convective phenomena (for example internal ASM
dynamics (Wang et al., 2010)), (c) an artifact in the recon-
struction, for example non-climate-related common trends in
the time series, or (d) a false positive (Rehfeld and Kurths,
2014).

Consider a paleoclimate network as a graphG = (V , E) on
a set ofN vertices ornodesV , which are connected by a set
of edges orlinks E. Thenodesin graphG are embedded in
space. Nodes have certain differingpropertiesthat include
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their positionon the Earth’s surface, the correspondingtype
of paleoclimate archive (e.g., tree, stalagmite, marine sedi-
ment) andproxy type (e.g., isotope ratios, lithogenic grain
size or annual ring width). There exist time series whose
archive sources are (a) distributed over a large area (Yi et al.,
2011), or are (b) not Earth-bound, as for insolation (Stein-
hilber et al., 2009). Pragmatically, in the former case, the
nodes should be placed in the center of the considered re-
gion. The latter should be considered as a node in a different
subnetwork(see the illustration in Fig.2 and the paragraph
on subnetworks below).

Technically, each node is associated with at least one
time series of an environmental proxy. If age uncertainty
is considered, an ensemble of observation time vectorsT i ,
i = 1, . . . ,Nens is generated and all ensemble members are
considered equally likely realizations of the proxy time se-
ries of this node. For modeled network results, an ensem-
ble of model realizations for the observation timest can be
considered. The spatial distribution of nodes is also time de-
pendent: while high-resolution archives (such as trees,An-
chukaitis et al., 2006; Sano et al., 2011; Singh et al., 2009, but
increasingly also stalagmites,Kennett et al., 2012; Hu et al.,
2008; Tan et al., 2009; Fleitmann, 2004) predominantly cover
more recent periods at annual timescales, others (e.g., marine
or lacustrine sediment sequences, stalagmites or ice cores)
might grow at very slow rates, and over the course of mil-
lennia (Dykoski et al., 2005; Rodbell et al., 1999; Fleitmann
et al., 2007; Wang et al., 2001). A node will only be incorpo-
rated into the network evaluation for a time windowW if it
fulfills the minimal sampling requirements of> 50 observa-
tions per window.

In the considered paleoclimate networks,links are undi-
rected and weighted. A link between nodei and nodej ex-
ists, if the linkweight, given by the link strength, is greater
than zero (Rehfeld and Kurths, 2014). Generally, links in the
paleoclimate network approach can not be assigned by sim-
ple thresholding of a similarity valueS(X, Y ) when the time
series are irregular, of different length and/or age-uncertain
(Rehfeld and Kurths, 2014). Therefore, significant similarity
is established using surrogate data. The surrogate time se-
ries have the same temporal resolution as the original time
series, but the observed proxy values are replaced using au-
tocorrelated noise (c.f.Rehfeld et al., 2011; Rehfeld and
Kurths, 2014). Using Nsim different similarity measuresS
with different characteristics and algorithms increases the ro-
bustness of the link detection, as the proxy-climate relation-
ship might be nonlinear, weak or even erratic (Rehfeld and
Kurths, 2014).

Fundamentally, for each pair of nodesi andj , time series
ensemble memberk and similarity measurel, a similarity
Sl,k

i,j is calculated.Nsur autocorrelated but mutually uncorre-
lated time series surrogates are employed to obtain a distri-
bution of surrogate similarity valuesS∗l,k

i,j . The fundamen-

tal adjacency matrixentry Al,k
i,j consequently results from

Figure 2.To test (paleo)climatic hypotheses, the considered domain
can be split and the nodes in the different subdomains associated
with different sub-networks. This offers the possibility of differen-
tiating statistically between associations within sub-networks (au-
tolinks, in blue) and those connecting different sub-domains (cross
links, in red).

thresholding the similarity valueSl,k
i,j using the chosen crit-

ical valuesS∗(qlow) andS∗(qhi), corresponding to the quan-
tilesqlow = 0.05 andqhi = 0.95 of the distributionS∗l,k

i,j :

Al,k
i,j = 1 if Sl,k

i,j < S∗ (qlow) or Sl,k
i,j > S∗ (qhi) (1)

for asymmetric measures that distinguish between positive
and negative similarity (e.g., CC), and

Al,k
i,j = 1 if Sl,k

i,j > S∗
(
q ′

hi

)
(2)

for symmetric measures that consider only an association
strength (e.g., MI and the ESF), whereq ′

hi = 0.90.
The weight of a link between nodesi andj is given by

the ratio of the number of significant associations between
them for allNens ensemble realizations andNsim similarity
measures. This is summarized in the link weight matrixLW :

LW (i, j) =

Nsim∑
k=1

Nens∑
l=1

Al,k
i,j

Nens · Nsim
. (3)

2.1 Subnetworks

The nodes in the paleoclimate networkG have different
properties (e.g., archive type or geographic origin from a spe-
cific region) that may influence its role within the network.
To investigate regional dynamics, these nodes are considered
here as lying in differentsubnetworks.

A subnetworkH1 is formed by a subset of nodesV (H1)

and linksE(H1) from networkG, where all nodes inV (H1)

fulfill a certain property (e.g., geographic location in the re-
gion of 60–100◦ eastern longitude and 0–40◦ northern lat-
itude) and all links between these nodes. If, and how, the
nodes are sorted into subnetworks depends on the research
question that is being asked. Splitting the domain as above is
motivated by the different ASM subsystems that are thought
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to influence the regions west and east of 100◦ E. To investi-
gate the dependence of the ASM on solar irradiance, a proxy
record of insolation (e.g.,Steinhilber et al., 2009) could then
be considered as a node in a separate subnetwork.

Links within the subnetwork,E(H1), are internal links,
and links from nodesV (H1) to nodes in another subnetwork
H2, V (H2), arecross linksE(H1, H2). Thus, the overall link
set is the unity of internal and cross links between the sub-
networks,E(G) =∪i,j E(Hi, Hj ), similar to Donges et al.
(2011).

2.2 PAN measures

An abundance of graph-theoretical measures, i.e., statistics
that are supposed to reflect characteristic node, link or net-
work properties (Tsonis et al., 2006; Gozolchiani et al.,
2011), is available. In the paleoclimate context, data-based
challenges require an adaptation and careful evaluation of
commonly employed (climate) network measures, because
of age uncertainty and temporal and spatial heterogeneity.
Here we test how well spatio–temporal changes are reflected
in network measures, and to what extent they are influenced
by spatially heterogeneous node distribution. Network mea-
sures considered for the test in the following include (a) the
averagelink density(or connectivity), (b) theregional de-
greeandcross link ratio, and (c) shortest pathbetweenness
centrality.

In the following paragraphs we derive and review these
basic network measures.

2.2.1 Average link density

For general complex networks, the link density, or connec-
tivity, of a graphG with Nno nodes is simply the ratio of
realized links between the nodes vs. the number of possible
links

LD′(G) =

∑
i,j

Ai,j

(Nno − 1) Nno
, (4)

which is between zero and one.
However, the number of nodes of a paleoclimate network

can vary if the minimal overlap between the time series is
not always fulfilled. Therefore the node number may differ
between the ensemble realizationsNno =N l

no, and this results
in a link density that depends on the realization numberl and
the link weight LW:

LD(l) =

∑
i,j

LW l
i,j(

N l
no − 1

)
N l

no
. (5)

This expression is averaged to obtain theaverage link den-
sity for the considered ensemble of time series,

LD =

Nens∑
l=1

LD(l)

Nens
. (6)

As all time series in this study are consistently sampled the
network is thresholded such that the 20 % strongest links are
considered significant.

2.2.2 Cross link probability

Assume networkG consists ofNG
no nodes andNG

ed edges.
Let us partition this network into nodes in two subnetworks,
say, H1 and H2 with N

H1
no or N

H2
no nodes each such that

NG
no =N

H1
no + N

H2
no . Accordingly, the sum of edges is parti-

tioned into the sum of edges withinH1 and H2, N
H1
ed and

N
H2
ed , and edges fromH1 to H2, N1−2

ed .
The relative frequency ofrealizedcross edges,

P ′

1−2 =
N1−2

ed

N
H1
no · N

H2
no

, (7)

gives thecross link probabilityP1−2

P1−2 =

∑
i∈H1,j∈H2

LW i,j

N
H1
no · N

H2
no

(8)

with a link weight matrixLW andLW i,j ∈ [0, 1].

2.2.3 Cross link ratio

The cross link ratio CLR(H1, H2, G) is given by the cross
link probability divided by the overall link probability

CLR(H1, H2, G) =
P1−2

LD
. (9)

2.2.4 Average and regional node strength

In classical complex network theory, thedegreeD of a nodei
is a measure of the presumed importance of a node, given
by the number of its links to all other nodesj = 1, . . . ,Nno,
j 6= i:

D′(i) =

∑
i,j 6=i

A(i, j). (10)

We consider the links to be weighted (cf.Opsahl et al.,
2010, and references therein), and therefore the notion of the
degreeof a node was replaced by that of anode strength, also
called thevertex strength(Gozolchiani et al., 2011; Opsahl
et al., 2010). Using link weights this gives anode strength
Dl

Dl(i) =

∑
i,j 6=i

LW l
i,j (11)

for each ensemble realizationl.

2.2.5 Shortest path betweenness centrality

Betweenness centrality has been regarded as a measure
of local dynamical information flow (Opsahl et al., 2010;
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Barthélemy, 2011). The shortest path betweenness of a
nodek is calculated from the number ofshortest pathsσij

between all nodesi andj , and the number of these paths that
pass through nodek, σij (k):

BC′(k) =

∑
j 6=k

σij (k)

σij

. (12)

If the node number changes over time, we can standard-
ize the betweenness to obtain a measure that is independent
under such changes:

BC(k) =
BC′(k)

(Nno − 1) (Nno − 2)
. (13)

3 START: spatio–temporally autocorrelated time series

3.1 Model philosophy

START is a simple semi-empirical model for the propaga-
tion of climate variability through flows in a spatially ex-
tended domain. In the current implementation it is a statis-
tical toy model with three independent spatial components
that react differently to applied external forcing. Asian Sum-
mer Monsoon (ASM) dynamics are determined by the inter-
play between the Indian Summer Monsoon (ISM) and the
East Asian Summer Monsoon (EASM). The predominant re-
gions of influence, and main wind directions, of ISM, EASM
and the continental westerlies are given in Fig.3. They can
be roughly divided at 100◦ eastern longitude (Wang et al.,
2010). The dependence – and interplay – of the subsystems
on each other is a topic of ongoing research (Wang et al.,
2010; Yihui and Chan, 2005; Cao et al., 2012).

Assuming that we can view the model domain in summer
as a region with three main wind systems (cf. Fig.3) that each
extend only zonally, i.e., laterallyor longitudinally. While
the true wind pattern might be significantly more complex,
we argue that this could be viewed as a statistical decompo-
sition of the mean summer surface wind field into simplified
lateral/longitudinal componentsVX(p), VY (p) andVZ(p).
Each of these fields are assumed to be a Gaussian-modulated
unidirectional front with a velocity at positionp and time
point t

vX (t, p, mX, W) = mX e−(px−p0,x)
2
/2W , (14)

with a full width at a half maximum of 2
√

W log2. The max-
imal amplitude of the velocity,mX,

mX(t, F ) = mX = BX + αF, (15)

is found in the center of the Gaussian front, as in Fig.3. Here,
BX is the baseline strength of the component’s flow, andα is
its amplitude, or susceptibility to the external forcing, repre-
sented by the parameterF , F = [−1, . . . , 1]. The velocities

Figure 3. Map showing the main wind directions of the Indian and
East Asian summer monsoon systems. Inflow corridors are mod-
eled as sources of variability: the Indian Summer Monsoon (ISM)
with a longitudinal (X, in blue) and a latitudinal component (Y )
and the East Asian Summer Monsoon (Z, EASM) with a latitudinal
component. The dynamics in the model, governed by the respective
strengths of the source flows, are sampled at the grid locations (tri-
angles) and where paleoclimate data is available (circles). Dashed
lines bracket the intermediate domain.

for sourcesY andZ are defined analogously, and the chosen
values are given in Table2.

Each of the fields originates from a source at a position
psrc, and each of the sourcesX, Y andZ is associated with
a climate processXt , Yt andZt that represents the annual
mean of a hypothetical climate variable, for example surface
temperature or precipitation anomalies, in the yeart . By def-
inition the model is restricted to modeling inter-annual vari-
ability, and the construction rationale is that local variability
can be modeled as a superposition of variability mediated by
atmospheric flows and local variability. The amount of dy-
namical information about the climatic process at the source
that flows along one of these fields, say, from sourceX to
a point at a positionp in its region of influence, is approx-
imated by avariance factorfX(p, F ). By construction, the
square of the variance factor is proportional to the amount of
variance shared between the sourceX and the time series at
pointp: f 2

X(p, F ) ∝ σX(p).
We assume three sources for the underlying flow system,

where random climate variability originates and which is
then transported via advection and diffusion along the paths.
The position and transmission direction of the sources and
the observation points are illustrated schematically in Fig.3.
At each point in the ASM region a local time series of climate
variability is computed as the sum of the noise contributions
from each of the three sources. These components are scaled
with a factor that quantifies the amount of information that is
preserved from the source to the point of observation:

Ri = fX(F, i)RX +fY (F, i)RY +fZ(F, i)RZ +Rnoise (16)

www.nonlin-processes-geophys.net/21/691/2014/ Nonlin. Processes Geophys., 21, 691–703, 2014
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whereRi is the signal at pointi obtained from the superpo-
sition of RX, the signal of the longitudinal ISM component,
RY , the latitudinal ISM component andRZ, the signal of the
EASM source.Rnoise is local observation noise. The factors
fX(F, i), fY (F, i) andfZ(F, i) scale the contributions to
the overall variance of the time series obtained at pointi at
time t and a potential forcingF .

3.2 Derivation of the scaling factors

The system we are looking at is a two-dimensional boundary-
less fluid of constant diffusivityχ with a stationary flow de-
scribed by the velocity fieldv(x). Temperature transport in
the system is governed by the advection–diffusion equation,
which states how the change in temperature over time is de-
termined by the spatial temperature change and the velocity:

∂T

∂t
= χ 1T − ∇ · (v(x)T ), (17)

which is obtained by inserting the advective and diffusive
flux

j = jdiff + jadv = −χ ∇ T + vT (18)

into the sourceless continuity equation for temperature

∂T

∂t
= −∇ j . (19)

T (p, t) is the temperature value at positionp at timet .
To compute the scaling factors we approximate and solve

Eq. (17) with temperature spikes along the source origin
line, perpendicular to the flow direction. These spikes are
propagated along a Gaussian-modulated velocity field, and
the scaling factors are determined from the remaining spike
height at positionp. We use this temperatureδ peak as a
tracer of the flow. The initial condition is a Gaussian-shaped
temperature front of unit height (in thex or y direction)

T (p, 0) = e−
(p−p0)

2

s , (20)

wheres is the Gaussian front width andp0 the position of
the source. Local temperature is computed as a function

T (p, t) =

√
s

s + 4χ t
e
−

(p−p0−vt)2

s+4χt (21)

of time and space. For the constantv this can be solved ana-
lytically. The diffusion constantχ is set to unity. We neglect
the derivative of the velocity field but replacev by v(p) and
thereby get an approximate solution for velocity fields with
a slow spatial variation. We also assume that this velocity
field depends on a given forcingF . As this can be seen as a
statistical description of how one original disturbance would
dissipate over space, we use it to define the local variance

factors:f ∗

X(T , i) =T (i, tmax) with the front in they direc-
tion andp0 =yX, f ∗

Y (T , i) =T (i, tmax) with the front in the
x direction andp0 =xY , f ∗

Z(T , i) =T (i, tmax) with the front
in thex direction, andp0 =xZ.

The factors depend on the observation positionp, source
positionspX, pY andpZ and the velocity component in flow
direction,vX(t, F ):

f ∗

X(p, F ) = f (pX, p, vX, χ, s) . (22)

3.3 Obtaining the START time series

At each point in space and for each time pointt the factors
are standardized by the factor sumg(t, F ),

g(t) = f ∗

X(F ) + f ∗

Y (F ) + f ∗

Z(F ) + f ∗

D,t , (23)

i.e., fX(F ) =
f ∗

X(F )

g(t)
. Here, the processesXt , Yt andZt are

uncoupled AR(1) processes of unit variance, and with a per-
sistence time ofτ = 6.4 years. This value forτ was chosen
as compatible with the order of magnitude estimated for
ASM paleoclimate proxy records spanning the last millen-
nium (Rehfeld et al., 2011). At each pointp in the model
domain, the local climate “history”Si(p) is computed as a
superposition of source and noise terms (Eq.16).

3.4 Model setup

START generates synthetic time series at locations in its inte-
gration domain. The interdependences between the time se-
ries depend on their relative position in the considered flows
and the given forcing. Although each time series is distinct,
as the influence of the different components is location de-
pendent, time series located in close proximity are similar,
and the amount of variance shared with the components’
sources is both location and forcing dependent.

The transient forcing model runs are sampled for two spa-
tial sampling types, a grid and a data set of locations of paleo-
climate records (c.f. Table1 and Fig.3) throughout the ASM
domain. The regional span of the spatial sampling and the
node numbers is comparable, although the archive locations
are spaced closer at the center of the ASM domain, while the
grid also samples the areas over the Indian Ocean.

Networks are computed for twenty 200-year-long time
slices of a 4000 year transient simulation, during which the
model forcing parameter,F , was increased consistently from
its minimum value,−1, to 1. To ensure the robustness of the
intended spatial inference against estimation errors for these
relatively short time series, 100 simulation realizations were
analyzed separately.

4 Validation of PAN using START

To validate the PAN methodology we run START with dif-
ferent forcing parameters and investigate the resulting net-
work topology. In transient runs we vary the parameter con-
tinuously. Three stages are distinguished in particular: “ISM

Nonlin. Processes Geophys., 21, 691–703, 2014 www.nonlin-processes-geophys.net/21/691/2014/
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Fig. 4: Extreme points of the modeled Asian Monsoon dynamics: Schematic illustration of input variance factors (a)-(c) and networks reconstructed on grid (d)-(f) as
well as the actual data positions (g)-(i). Only the 20% strongest links are shown.

Figure 4. Extreme points of the modeled Asian monsoon dynamics: schematic illustration of input variance factors(a)–(c) and networks
reconstructed on grid(d)–(f) as well as the actual data positions(g)–(i). Only the 20 % strongest links are shown.

Table 1.Spatial setup for the START model experiments.

Grid Heterogeneous

Number of 42 36
nodes

Regional span [−10; 40] [−7; 39.5]
[latitude]

Regional span [60; 120] [66; 115.5]
[longitude]

Node Regular grid Paleoclimate record
distribution origins, c.f.

Rehfeld et al.(2013)

off”, equivalent to forcingF =−1, “Coexistence” withF = 0
and “ISM on” withF = 1 (c.f. Fig.4).

The velocities in the Gaussian-shaped fronts in Eq. (22)
are modulated through the forcing parameterF in the START
model. Consequently the amount of variance conserved
along a flow and the synchronizing reach of the three “wind
components” change with changing forcing, as illustrated
schematically in Fig.4a–c. The components are tuned to
react proportionally to the effected forcing, but compete at
each point in space due to the standardization in Eq. (23).

Therefore, the fraction of variance explained by the compo-
nents in each location changes in a nonlinear way. With pa-
rameterF , the reach of theX component increases while the
other components lose relevance.

4.1 Topology of the observed networks

The networks obtained from the 20 % strongest time series
correlations are given in Fig.4d–f for the grid-based time
series, and in Fig.4g–i for the proxy locations. In the first,
“ISM off” case in Fig.4d and g the latitudinal componentsY

andZ are strong, resulting in two clearly separated network
components. TheY component covers the longitudes 60–
80◦ E, while theZ component covers the longitudes 100–
120◦ E, and no strong links appear between the two.

As the forcing increases, a “coexistence” stage is reached:
the longitudinalX component strengthens, and the latitudinal
componentsY andZ lose in relation, as they have opposite
sensitivities to forcing (c.f. Table2). As Fig.4e and h show,
the reconstructed network is still split, as the strongest links
are in the core region of theY andZ flow parts. However,
strong links, originating far in the west, connect to the 90◦ E
grid points, and weaker links extend even beyond. TheZ-
component half of the network has retracted southward, in
agreement with the decreased relative forcing strength.
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Table 2.START source and flow attributes.

Source Position StrengthB Ampl. Width W

ISM (long. component) X (30, 55) 85 α = 70 1200
ISM (lat. component) Y (−15, 70) 10 β =−5 100
EASM Z (−15, 112.5) 30 γ =−12 100
White noise N all – Const. –K. Rehfeld et al.: Spatio-temporal climate transitions from paleoclimate networks 9
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Fig. 5: Most network measures reflect the increasing change in network structure occurring with changing ISM dominance in
START (a)-(d), but they show different sensitivities. The spatial distribution of node positions influences the absolute value of
the network measure, but the general trends are consistent for the underlying grid and the heterogeneous data positions. Broken
lines indicate 10 and 90% quantiles of the ensemble results.

4.2.1 Cross link ratio

In the grid-based network reconstruction the cross link ra-
tio (Fig. 5a), calculated as the ratio of cross link probability
over overall link probability, increases monotonously for the
grid-based networks and saturates well before maximal forc-520

ing is reached. It crosses the threshold of equal probabilities,
transitioning from values of .6 to 1.2. This means that while
in the early, bimodal, stage the cross link density is about
60% of the average link density, it reaches 120% when the
synchronized region spans the whole network. Thus, at low525

forcing the cross link density is significantly lower than the
overall link density, with the network being effectively parti-
tioned. At high forcing the co-varying region spans across the
former separate parts, resulting in a higher cross link density
than average link density. For the data-based network, the ex-530

pected path of transition for the heterogeneous network dif-
fers from that observed for the grid topology by a negative
offset, but parallels it otherwise.

4.2.2 Average node strength in the intermediate domain

The intermediate domain (85-105◦E) between the defined535

model ISM/EASM core regions is not synchronized by an
external source of variability for low forcing values. Thus,

nodes within this domain are expected to have no, or few,
connections, resulting in weak node strength, as illustrated in
Fig. 5b. This changes, however, as the longitudinal X compo-540

nent strengthens with increasing forcing, when these nodes
fall into its region of influence. Please note that this does
not tie exactly with the actual ISM/EASM transition region,
which is situated further to the East. This adaptation was nec-
essary because the implemented flow paths in START are545

modeled for simplicity either lateral or longitudinal, and the
core interaction region around 100◦E should be reachable for
both flows. Indeed, as shown in Fig. 5b the average node
strength in the intermediate domain rises from a low level
to full connectivity (node strength equal to Nno− 1) for the550

grid-based network mesures after an initial short decline. The
amplitude of the change is, however, lower for the heteroge-
neous locations.

4.2.3 Regional node strength ratio

The regional node strength ratio (Fig. 5c) highlights the dif-555

ferent regional degree in subregions of the network. Here it
is computed using Eq. 10 as the ratio of the average node
strengths in “India” vs. that in “China”. If both subnet-
works are equally well connected within the overall network,
their average node strength should be similar, and the node560

Figure 5. Most network measures reflect the increasing change in network structure occurring with changing ISM dominance in START
(a)–(d), but they show different sensitivities. The spatial distribution of node positions influences the absolute value of the network measure,
but the general trends are consistent for the underlying grid and the heterogeneous data positions. Broken lines indicate the 10 and 90 %
quantiles of the ensemble results.

With maximal forcing the full “ISM only” stage is reached
in Fig. 4f and i. TheX component dominates, and the recon-
structed network has only a single core region extending to
and across 100◦ longitude. The changing strength of the syn-
chronizing components due to the varied forcing is reflected
by the extent of the synchronized regions in which the grid-
point time series show the strongest similarities. Although
differences exist, the networks reconstructed from grid and
heterogeneous locations bear a large resemblance and relate
to the underlying forcing structure.

4.2 Validation of the network measures

Network measures are statistical estimators that reflect prop-
erties of individual nodes as well as regional or global char-
acteristics of the network. The spatio–temporal changes, vis-
ible as the START model is driven with different forcing,
should effect consistent transitions in measures suitable for
the investigation of spatio–temporal changes. Furthermore,
these transitions should also be detectable under varying
node distributions, i.e., for a grid structure as well as for

heterogeneous node distribution. The gradually increased
forcing results in a transition from a bimodal, laterally syn-
chronized network with separated components to a widely
connected state. Figure5 shows the network measure expec-
tation values from 100 transient START forcing runs.

4.2.1 Cross link ratio

In the grid-based network reconstruction thecross link ra-
tio (Fig. 5a), calculated as the ratio of cross link probability
over overall link probability, increases monotonously for the
grid-based networks and saturates well before maximal forc-
ing is reached. It crosses the threshold of equal probabilities,
transitioning from values of 0.6 to 1.2. This means that while
in the early, bimodal, stage the cross link density is about
60 % of the average link density, it reaches 120 % when the
synchronized region spans the whole network. Thus, at low
forcing the cross link density is significantlylower than the
overall link density, with the network being effectively parti-
tioned. At high forcing the co-varying region spans across the
former separate parts, resulting in ahighercross link density
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than average link density. For the data-based network, the ex-
pected path of transition for the heterogeneous network dif-
fers from that observed for the grid topology by a negative
offset, but parallels it otherwise.

4.2.2 Average node strength in the intermediate domain

The intermediate domain(85–105◦ E) between the defined
model ISM/EASM core regions is not synchronized by an
external source of variability for low forcing values. Thus,
nodes within this domain are expected to have no, or few,
connections, resulting in weak node strength, as illustrated in
Fig.5b. This changes, however, as the longitudinal X compo-
nent strengthens with increasing forcing, when these nodes
fall into its region of influence. Please note that this does
not tie in exactly with the actual ISM/EASM transition re-
gion, which is situated farther to the east. This adaptation was
necessary because the implemented flow paths in START are
modeled for simplicity either laterallyor longitudinally, and
the core interaction region around 100◦ E should be reach-
able for both flows. Indeed, as shown in Fig.5b, the average
node strength in the intermediate domain rises from a low
level to full connectivity (node strength equal toNno− 1)
for the grid-based network measures after an initial short de-
cline. The amplitude of the change is, however, lower for the
heterogeneous locations.

4.2.3 Regional node strength ratio

The regional node strength ratio (Fig.5c) highlights the dif-
ferent regional degrees in subregions of the network. Here it
is computed using Eq. (10) as the ratio of the average node
strengths in India vs. that in China. If both subnetworks are
equally well connected within the overall network, their aver-
age node strength should be similar, and the node strength ra-
tio should equal unity, as indicated by the gray line in Fig.5c.

Starting off at equally well-connected subdomains, the
western, “Indian” part of the network gains importance with
increased forcing and the node strength ratio settles after a
short growth slightly below 4 for the grid-based network.
Thus, nodes in “India” are associated with four times the
link weight when compared to those in “China”. For the het-
erogeneous sampling scheme the line of equal node strength
is crossedlater than for the gridded data. The following in-
cline, contrastingly, is sharp and the plateau reached gives
fivefold node strength for “India” vs. “China”, accompanied
by a large uncertainty in this estimate. This, c.f. Fig.3, is
consistent with the stronger representation of “China” in the
used grid.

4.2.4 Shortest path betweenness

Shortest path betweenness centralityis a measure devel-
oped to infer the presumed relative importance of nodes
and regions (Gozolchiani et al., 2011; Opsahl et al., 2010;
Barthélemy, 2011; Donges et al., 2009a). Furthermore,

Donges et al.(2009b) found that “betweenness centrality
allows to measure the importance of localized regions on
the earth’s surface for the transport of dynamical informa-
tion within a climatological field in the long term mean”,
and stated that “information is transported by advective pro-
cesses, where the assumption of information traveling on
shortest paths can be substantiated by extremalization prin-
ciples”. As such it should, in principle, also be an interesting
measure for paleoclimate network applications.

As a node-based measure it is not possible to compare it
directly when using different spatial sampling schemes. Still,
the characteristic dynamical changes should be reflected in
regional properties. Based on this presumption, betweenness
centrality estimates for nodes in the intermediate and central
region (85–105◦ E) are averaged to obtain a domain estimate.
The results, shown in Fig.5d, are inconsistent for the first
segment of the transition experiment, in which the largest
dynamical changes occur. On the one hand, the betweenness
estimates for the gridincrease slowly, albeit with a compara-
tively large uncertainty. On the other hand, the estimates for
the heterogeneous locationsdecrease initially from large ini-
tial values to then stay on a flat plateau.

4.3 Comparison to flow network results

For comparison we also computed the networks analytically,
directly from the flow using a continuously defined cross-
correlation analog and a solution of the ADE fromMolken-
thin et al.(2014a). Figure6 shows the results obtained for the
cross link ratio and the regional degree ratio, where the av-
erage node strengths West/East of the 100◦ longitude bound-
ary are compared. Both grid-based and data location-based
results agree well with those obtained from the START time
series for the cross link ratio, showing the gradual increase
in the cross link density as the forcing parameter increases.
The regional degree ratio shows substantially more variabil-
ity than for START, though an overall positive trend is ap-
parent. This may be due to the fact that the flow networks,
by construction, have an overall higher connectivity due to
a higher correlation level than the START networks. Please
note that by construction the absolute forcing values are not
equivalent for START and the flow networks and therefore
the results can not be compared quantitatively. The main con-
struction difference is that flow networks do not have desig-
nated fluctuation sources, but average over all possible source
locations. By contrast, sources in START (e.g.,X, Y andZ in
Fig.3) are the origin of variability. Links closer to the sources
are more likely than those far away from them in START.
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Figure 6. Cross link ratio(a) and average regional degree ratio(b) for networks computed directly from the flow data (Molkenthin et al.,
2014a, b). Note that due to the necessarily different implementations the results can not be quantitatively compared to those obtained with
START.

5 Discussion

5.1 Network measures

The cross link ratio reflects the transition in the model simu-
lations well. While the paths for different node distributions
differ substantially in their amplitude, baseline and speed
of increase, both show the overall increase in subdomain-
connecting cross links. The initial decline observed for the
data topology results from spurious cross links, as the over-
all similarity level (not shown) is much lower than at higher
forcing levels. These cross links appear randomly at low forc-
ing, but disappear if the link density is chosen more conser-
vatively. Heterogeneous sampling apparently also does not
strongly affect the node strength in the intermediate domain.
Both sampling schemes reflect the transition of these nodes
from being irrelevant to heavily tied to the rest of the net-
work.

The regional node strength ratio is more difficult to in-
terpret. The expected transition path for the relative average
strength of nodes in India vs. that of those in China is signif-
icantly different for differing sampling schemes. The general
feature, however, that repeats itself is that proximity to the
source clearly results in higher node strength. There is nev-
ertheless large uncertainty associated with the transition path
for the data-based network.

The betweenness centrality estimates are inconsistent for
the different sampling schemes, and the error margins spread
widely. This inconclusiveness could be due to hypersensi-
tivity of the measure and the comparatively low number of
nodes in our network.

5.2 Regional changes and inter-regional information
flow

Three major regions are relevant for START dynamics: the
ISM region, the intermediate region and the EASM re-
gion. While the first and the latter start off as independent

subdomains of the network, they are connected by the lon-
gitudinal ISM component at increased forcing. The distinct
dynamical features include (i) bimodality vs. later unimodal-
ity, (ii) increasing size of the spatially synchronized region
and (iii) increased flow of dynamical information through the
increasing strength of the longitudinal ISM component.

The initial bimodality of the network is directly visible
in the network, and in the low cross link ratio and average
node strength in the intermediate domain. Although the ab-
solute values of the between cross link ratio are not on the
same scale as those for the grid, a significant increase occurs.
Thus, the change in model dynamics can be inferred if the
node topology does not change and if the sampling bias (de-
fined here as a systematic offset due to an other-than-regular
node topology) can be quantified. Node strength in the tran-
sitional region shows smaller sampling-dependent deviations
and could thus be a more robust measure of the importance of
intermediate regions. The regional degree ratio shows, how-
ever, that spatially biased sampling can have large effects:
as only one node of the paleoclimate network samples close
to the EASM source, and most of the rest of the clusters far
north of it, the synchronizing influence of this source quickly
disappears as the ISM region grows. Located at the fringe
of the ISM component, these nodes also get less ISM input
than all its westwards neighbors. This results in few links
and an under-representation of the Chinese part of the net-
work, caused by a combination of model shortcomings and
data sparsity. Such effects have to be addressed before a com-
parison of networks with changing node architecture is pos-
sible. The increasing strength of the ISM component is di-
rectly visible by its growth in the reconstructed network, and
additionally reflected in the increasing cross link ratio. The
source region of the modeled pathway is robustly character-
ized by a higher node degree. Increasing information flow
from the ISM to the EASM core region is indecipherable
using shortest path betweenness, which is sensitive to sam-
pling changes and spurious links. Nevertheless, provided the
potentially changing node topology is addressed, the cross
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link ratio could be a sufficient measure to quantify changes
in inter-regional dependences.

What remains to be investigated is the influence that vary-
ing node numbers – in space and time – have on estimated
network measures. This could be done by simulating con-
stant START “climate dynamics” and removing nodes itera-
tively. The relevance of the spatial position of a node can then
be assessed by the discrepancy between the network mea-
sures estimated with/without it in comparison to the expected
value for high-resolution sampling.

6 Conclusions

We conclude that it is also possible to reconstruct the spatio–
temporal changes in the semi-empirical ASM model for het-
erogeneous node distribution in space, though the results
are limited to qualitative statements if the node topology
changes. Model dynamics are reflected in the reconstructed
network, specifically its link strength distribution, and in net-
work measures such as regional average node strength and
node strength in the transitional zone, the intermediate do-
main outside the latitudinal source influence.

Inter-regional information flow, or, in the context of the
START model, spatial distribution of variance, cannot be in-
ferred using shortest path betweenness, as it is found to be
too sensitive to irregularities, and no clear dynamical signa-
ture can be found in the transition experiments. The cross
link ratio is a better alternative, though sampling biases have
to be taken into account for its analysis.

Spatial heterogeneity, in general, has strong effects, both
on the reconstructed network and on the network measures.
It manifests itself in (i) biases in network measures that can
be negative (cross link ratio) as well as positive (regional de-
gree ratio), (ii) increased variance in the estimates (between-
ness centrality, regional degree ratio), and (iii) the amplifica-
tion of effects due to node clustering (regional degree, recon-
structed network). Therefore, if networks with varying spa-
tial sampling are investigated, care has to be taken to perform
adequate significance tests to ensure that spurious sampling
effects can be distinguished from real climate processes.

The developed ASM model START is a toy model that
can not be expected to reflect actual monsoon dynamics.
In reality, local, global and external forcing influences local
climate processes. In the START model world, information
transfer and local climate processes are governed solely by
physical flows. Processes external to the ASM domain are
not considered but can, in nature, lead to increased correla-
tion in the whole or parts of the ASM region. One of the
desired features to improve realism, for example, would be
the inclusion of regional sources of variance, i.e., by region-
dependent noise terms. Then the propagation of information
could be considered serially, and causality-sensitive directed
measures (Granger causality, ESF) could be tested. In the
model’s simplicity, however, also lies its strength, because it

is possible to interpret the results with respect to its dynam-
ics, a task that is much more complicated if such pseudo-
proxy experiments are conducted with actual global climate
models (GCMs) (Smerdon, 2012; von Storch et al., 2004;
Mann and Rutherford, 2002). Unlike GCMs, START is com-
putationally inexpensive; therefore large ensembles of time
series for pseudo-proxy experiments can be generated. Us-
ing START, hypotheses concerning local vs. global drivers
of climate dynamics can be tested directly based on the pa-
leoclimate data, because START models the propagation of
local climate variability through advection and diffusion. For
large-scale dynamical and coupled GCMs with their multi-
tude of output variables and parameters, cause and effect are
more difficult to discern. Thus, it provides a good opportu-
nity to assess whether and how spatio–temporal dynamics of
a given paleoclimate data set are affected by age uncertainty,
spatio–temporal heterogeneity and sparsity.
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