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The aggregate potential for urban mitigation of global climate
change is insufficiently understood. Our analysis, using a dataset
of 274 cities representing all city sizes and regions worldwide,
demonstrates that economic activity, transport costs, geographic
factors, and urban form explain 37% of urban direct energy use
and 88% of urban transport energy use. If current trends in urban
expansion continue, urban energy use will increase more than
threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows
that urban planning and transport policies can limit the future
increase in urban energy use to 540 EJ in 2050 and contribute to
mitigating climate change. However, effective policies for re-
ducing urban greenhouse gas emissions differ with city type.
The results show that, for affluent and mature cities, higher
gasoline prices combined with compact urban form can result in
savings in both residential and transport energy use. In contrast,
for developing-country cities with emerging or nascent infra-
structures, compact urban form, and transport planning can
encourage higher population densities and subsequently avoid
lock-in of high carbon emission patterns for travel. The results
underscore a significant potential urbanization wedge for re-
ducing energy use in rapidly urbanizing Asia, Africa, and the
Middle East.

urbanization | manufactured capital | energy use |
urban climate change mitigation

Cities constitute the primary agglomerations of manufactured
capital. Their infrastructures modulate energy flows in eco-

nomic activities, buildings, and transport. Urban built environments,
including transport infrastructure, shape energy consumption pat-
terns for decades. Urban energy use significantly contributes to
climate change. The most recent Intergovernmental Panel on
Climate Change (IPCC) report shows that urban areas consume
between 67% and 76% of global energy and generate about
three quarters of global carbon emissions (1). This share of
global greenhouse gas (GHG) emissions is likely to increase as
global urban populations increase by two to three billion this
century (2). Additionally, to accommodate growing urbanizing
populations and economies, urban areas and their built envi-
ronments are projected to more than triple between 2000 and
2030 (3). This ongoing urban transformation worldwide raises
three key questions about future urbanization and climate
change. How can cities contribute to climate change mitigation?
What urban strategies are effective for different types of cities?
What is the magnitude of the total mitigation potential of
future urbanization?
Previous studies have identified significant factors that shape

per capita urban GHG emission for individual cities (4), small
sets of cities (5, 6), and for cities globally in a qualitative way (7).
In these studies, factors that have been identified as correlating
with urban GHG emissions include heating degree days, eco-
nomic activity, population density, power generation, and tech-
nology (8). Other studies show that population density scales
negatively with transport energy consumption and GHG emissions

(9, 10), and also with GHG emissions from the residential
sector (11). The recent IPCC report identifies urban form
as a driver of urban emissions but does not provide guidance on
its relative importance vis-à-vis other factors. In comparative
studies, cities are often sampled from similar geographies (5, 12,
13) or population sizes (8). In these studies, causality is difficult
to establish, and self-selection (14) as well as topological prop-
erties and specific urban form characteristics (15) partially ex-
plain the relationship between urban population density and
transport energy consumption. Although these case studies have
generated in-depth understanding for dozens of cities, there re-
main significant knowledge gaps. Missing from the literature is
a comprehensive comparative analysis of what drives urban en-
ergy use and resulting GHG emissions globally that can help
inform and identify effective mitigation strategies across differ-
ent types of cities. Filling this knowledge gap would have two
practical implications. First, it would allow a comparison of cities
with approximately similar statistical drivers of urban GHG
emissions. If cities can be clustered according to their energy
end-use and GHG emission attributes, then more effective mit-
igation strategies could be developed, including peer-to-peer
learning of climate action plans of comparable cities (16). Sec-
ond, a comprehensive analysis of cities worldwide would help
identify the aggregate potential of cities for mitigating climate
change, something not possible with individual case studies.
To analyze urban attributes related to energy consumption,

a comprehensive set of variables describing the multidimensional
features of urban areas was required, including urban form,
economic, and geographical characteristics. We used data from
three established sources to proxy these variables, each collected
using different methods: the World Bank (WB), the Global
Energy Assessment (GEA), and the International Association of
Public Transport (UITP) (Methods and Dataset S1). We used
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direct final energy use of cities, including electricity consumption
and heating in building and energy use from urban transport
from the GEA. We used information on final energy use in the
urban transport sector provided by the UITP, and the WB data
on GHG emissions in cities, comprising energy use, waste, and
industrial processes but excluding marine and aviation emissions.
We tested the robustness, stability, and statistical relationships
across the datasets using advanced statistical and data-mining
methods (Methods).
Although fuel composition often changes with urbanization

(17), fuel composition and consumption-based emissions were
not considered in this study. Limiting our scope to energy end-
use within cities and direct emissions enabled this study to
identify urbanization-relevant attributes that are not often in-
cluded in technology-focused studies of climate stabilization. We
did not analyze cross-boundary contributions to GHG emissions
and consumption-based carbon footprints, studied elsewhere
(6, 13). In total, our dataset (Dataset S1) includes 274 cities from
60 countries with a combined population of 775 million, or 21% of
the global urban population (SI Appendix, Section 1; all data
provided in Dataset S1). The cities in the study include all 21
megacities (cities with more than 10 million inhabitants) and are
distributed across a range of population sizes, with the smallest
city of 55,000.
We calculate the rank size of the entire sample cities to ex-

amine whether the 274 cities in the study are statistically rep-
resentative of cities worldwide in terms of their size (18). The
frequency of cities of different population sizes and their rank,
where rank is determined by the frequency of occurrence, are
connected through a power-law function P(i) ∼1/iα with the ex-
ponent α close to unity, giving rise to the so-called Zipf Law (19).
Sometimes called the rank-versus-frequency rule, it is a mathe-
matical formulation of a long-observed phenomenon: the city
with the largest population is about twice the size of the second
largest and so on. Our results show that it scales log-log-linearly
with population size (SI Appendix, Fig. S1). The slope between
log city rank and log city size is −1.07, and the 95% confidence
interval (CI) is between −1.21 and −0.93, including the value −1.
This result confirms that the city sizes in this study are broadly
representative of the global system of cities.

Results
Our analysis (Fig. 1 and SI Appendix, Section 2) shows that
gasoline price and population density correlate most strongly
with transport energy use and GHG emissions, followed by
economic activity. In contrast, the effect from economic activity
dominates final energy consumption and is followed in impor-
tance by climatic variables [heating degree days (HDDs)],
household size, and urbanization rate. The analysis shows that,
across all datasets, economic activity, population density, and
gasoline price are the most important factors in GHG emissions,
but population size, household size, urbanization level, and an
index of commercial centrality are also significant (SI Appendix,
Table S1). However, out of the last four, only the commercial
centrality index remains significant in the partial regression when
we control for the other variables (SI Appendix, Table S1). Sur-
prisingly, energy use decreases with an increase in cooling degree
days (CDDs) (Fig. 1). This correlation is possibly an indirect effect
of the concurrent reduction of HDD. A partial correlation, con-
trolling inter alia for HDD, demonstrates a positive impact on
energy use by increase in CDD (SI Appendix, Table S1). Coastal
locations do not correlate significantly with either energy use or
GHG emissions.
The regression models (Methods) also show that four factors

explain at least one-third of the variance in urban energy end-use
and GHG emissions. According to the regression results, trans-
port energy use is driven by fuel price, population density, and
economic activity (Table 1). Together, economic (economic

activity, gasoline prices), structural (population density), and
geographical (HDD, but not CDD and coastal city location)
variables explain an important fraction of the energy use vari-
ability of cities (adjusted R2: WB, 0.70; GEA, 0.35; UITP, 0.88)
(Table 1). In general, economic factors (economic activity and
gasoline prices) are more correlated with energy use and GHG
emissions than structural variables (population density), whereas
geographic variables (HDD) are highly significant but induce less
marginal change in energy use (Table 1, substantiated by energy-
driven top-down clustering; see SI Appendix, Sections 3 and 4).
We also tested for nonlinear gross domestic product (GDP)
terms, which were significant only for the UITP data (SI Ap-
pendix, Section 5 and Table S4, and discussion below).
Importantly, urban energy use is less elastic to changes in

economic activity than observed in studies using national data
(20). This observation may be a reflection of economies of scale
in urban infrastructures and/or the relocation of energy-intensive
urban production activities to rural areas. The elasticity of energy
use with respect to fuel prices is significant, even in datasets of
total direct urban energy use and emissions. This finding indi-
cates that fuel prices influence energy use not only in transport,
but possibly also in residential energy use. A plausible explana-
tion for why fuel prices influence residential energy use is that,
with higher transport prices, individuals will live closer to the city
center and that the higher density reduces energy demand for
heating (11) (SI Appendix, Section 3 and Table S2).

Urban Energy Use Typologies. Beyond the aggregate statistics that
are reported above, contextual factors such as development stage
and historical development as well as the interaction between
various attributes, might be equally important for explaining
emission patterns across cities. To examine this hypothesis, we
developed a typology of cities in the GEA dataset according to
the combination of their emission attributes using endogenous

Fig. 1. Confidence intervals (CIs) for Pearson’s correlation coefficients with
energy use of key variables in the three datasets and the combined corre-
lation by metaanalysis; WB, GHG emissions; GEA, final energy consumption;
UITP, transport energy consumption. The center squares of the CIs are pro-
portional to weights used in metaanalysis. The summarizing measure with
associated CI is given by the diamonds; associated CIs are given by the lateral
tips of the diamonds. The gray, dashed vertical line represents the no effect.
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threshold estimation and testing procedures in the regression
context (GUIDE algorithm, see Methods; for cross-validation
and confidence interval estimation, see SI Appendix, Sections 6–8).
The analysis showed that the relationship between energy and

its determinants varies across cities. Our analysis identified eight
types of cities which are characterized by a combination of GDP
per capita, population density, gasoline price, and HDD. Afflu-
ence is the most important thresholding variable at the top level
(Fig. 2). Among affluent cities, those with high or medium gas-
oline prices and high population density have lowest emissions
(Fig. 2). At the second level, threshold values in both population
density and gasoline prices separate types of cities (Fig. 2). At
the third, level heating degree days (HDDs) and population
density further split cities into different types (Fig. 2).
Cities with GDP less than 10,000 USD per capita (19% of all

cities analyzed) show nearly three times lower energy use than
those above this threshold (Figs. 2 and 3). Among less affluent
cities (<10,000 USD per capita), the city type with the highest
population densities (4,600 population per km2) and lowest
HDD (30 in average) show the lowest energy use (∼20 GJ per
capita) (Fig. 3). More affluent cities (>10,000 USD per capita),
in contrast, are clustered by both gasoline prices and population
density. Among these affluent cities, those with gasoline prices
above 1.2 USD/L and less than 3,000 HDD have relatively low
energy use (∼100 GJ per capita on average compared with ∼150
GJ per capita with HDD > 3000), but, if cities have a higher
population density than 450 population per km2, the relatively
dense urban form can compensate for a lower gasoline price
(∼100 GJ per capita compared with ∼200 GJ per capita for
population density >450 population per km2) (Fig. 2).

The third-level thresholds in this clustering analysis show
a surprising relevance of HDD. The linear regression model
demonstrates a significant but weak influence of HDD. In con-
trast, the nonlinear threshold regression exhibits that HDD
becomes a highly relevant variable, once affluence, transport
prices, and urban form variables are controlled for. Among less
affluent cities, energy consumption differs by a factor of three
between cities in warmer (type 10) or cooler (type 11) climatic
zones, and for more affluent cities by a factor of 1.5 (type 14
versus type 15) (Fig. 2). The less affluent types 8 and 9 display
similar energy consumption at notably different HDD levels, but
the lower level of HDD in type 8 is compensated by 10% lower
gasoline costs (Fig. 2).
The relative importance of each individual factor (GDP per

capita, population density, gasoline prices, HDD) changes with
type of city (SI Appendix, Table S5).

Peak Urban Transport Energy Use.Our analysis of the UITP dataset
corroborates the analysis with the GEA data and shows that
energy use saturates with increasing economic activity, specifi-
cally for urban transport (SI Appendix, Section 9 and Fig. S2).
Energy consumption for urban transport increases with GDP at
low GDP levels but decreases with GDP at high GDP levels
(threshold regression, 29,300 USD; CI, 22,400–33,000 USD).
Specifically, cities in developed countries with GDP per capita
over 13,500 USD and with fewer than two million inhabitants
show a slight decrease in transport energy use with increasing
GDP (Pearson correlation coefficient r = −0.35, P = 0.06). All
other cities show strong growth in transport energy use with
GDP per capita (r = 0.65, P < 0.01). This finding is evidence that,

Table 1. Emission elasticities

Dataset Dependent variable No. of cities GDP per capita Pop. density HDD Fuel price Adjusted R2

WB GHGe per capita 26 0.18 −0.38** 0.13** −0.76* 0.70
GEA FE per capita 225 0.39*** −0.07*** 0.07*** −0.37*** 0.35
UITP UT FE per capita 87 0.45*** −0.42*** 0.02 −0.55*** 0.88
Combined 0.39*** −0.28** 0.13* −0.55***

FE, final energy; GHGe, greenhouse gas emissions; UT FE, urban transport final energy. Significance levels: ***P < 0.01; **P < 0.05; *P < 0.1.

Fig. 2. Three-level threshold regression on GEA cities. Economic activity splits cities at the top level (node 1), population density and gasoline price at the
second level (nodes 2 and 3), and HDD and population density at the third level (nodes 4–7). Eight typologies of cities emerge as a result (nodes 8–15); key
statistics are given for each type in the table Below. See SI Appendix for regression models for each city type and the identity of cities belonging to each type.
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at higher levels of income, urban transport decouples from GDP
per capita, similar to what has been observed on the national
level in OECD (Organisation for Economic Co-operation and
Development) countries (21). Affluent cities with GDP per capita
above 13,500 USD and population size below 2 million inhabitants,
mostly European cities, have higher gasoline prices (P < 0.01) but
lower population density than the other cities (P < 0.01). This result
suggests that increases in economic activity increase the demand for
urban land and thus reduce population density, but that an increase
in gasoline taxes can mediate and even counterbalance this pattern.

An Urbanization Wedge. Our results point to the potential of ur-
banization to save energy and reduce associated GHG emissions.
This raises the question of the potential magnitude of the global
urbanization wedge between 2005 and 2050. In 2005, the global
urban population of ∼3.2 billion consumed about 240 EJ of
energy at end-use (SI Appendix, Section 10) (22). By 2050, the
urban population is expected to double to around 6.4 billion (2).
During this same period, the average GDP per capita could
plausibly increase by 80% in OECD countries and 390% in Asia
(23). Accounting for population growth and considering the
economic activity elasticity in low and affluent types of cities,
total energy consumption in cities worldwide could increase to

around 730 EJ (Fig. 4A and SI Appendix, Section 10). This es-
timate omits potential interventions by urban planning or gaso-
line taxes, and assumes stable oil prices. If urban planning and
fuel taxes are used, total urban energy consumption could in-
crease to about 540 EJ (Fig. 4A), assuming a universal increase
of gasoline prices to 1.6 USD/L (deflated to 2005 dollars; ap-
proximately reflecting the existing level of gasoline prices in
European countries) (24) and assuming urban planning policies
that support higher population densities, mixed-use devel-
opment, and accessibility (Methods). More precisely, we model
population density to increase half as fast as population growth.
That is, when the total population of a world region increases
by 10% between 2005 and 2050, then urban planning allows
urban population density to increase by 5%. The mitigation
potential is greatest in rapidly growing cities and in cities with
low gasoline prices. The total urbanization wedge is about
180 EJ. More than half of this urbanization wedge is in Asia
(57%), and nearly one-third (29%) is in Africa and the Middle
East. In contrast, the OECD90 (OECD countries in 1990) pos-
sesses relatively low potential for reducing energy use in cities
(6%), mainly because OECD90 cities are mature, built-up
environments with established infrastructure and associated
locked-in behavior and energy consumption patterns.
The uncertainty underlying these scenarios is considerable.

Structural uncertainty is based on uncertainties in economic
growth, how urban energy use changes with economic growth, fuel
prices, and population density changes. We rely on the spread of
the SRES (Special Report on Emissions Scenarios) scenarios and
confidence intervals obtained in the threshold regressions to es-
timate overall energy use in world regions in the business-as-usual
and policy scenarios and report the uncertainty by a Monte Carlo
simulation (Fig. 4B; for more details, see SI Appendix, Section 10).
Despite the uncertainties, the scenarios illustrate the enormous
potential for a mitigation wedge in urbanizing Asia, Africa, and
the Middle East. The uncertainties change the magnitude of the
potential, but the underlying reasons for the mitigation wedge
remain. It is in those places where infrastructure is still nascent
that there is the greatest mitigation potential.

Discussion
This study points to a considerable but differentiated potential
for an urban mitigation wedge. Continued urban population
growth and associated development of urban areas worldwide
combined with projected increases in GDP per capita could lead
to a tripling of urban energy use from 2005 to 2050. However,
how the cities of tomorrow develop spatially, especially their
urban form, will lock in patterns of energy consumption for
decades to come. Recent forecasts suggest that the global urban
footprint will triple between 2000 and 2030, an area of 1.2

Fig. 3. Energy use increases with increasing economic activity, especially for GDP
per capita <10,000 USD, but this increase slows down for GDP per capita above
30,000 USD (2005 US dollars in purchasing-power parity). The vertical gray-shaded
area denotes the confidence interval for node 1 of threshold regression in Fig. 2.
The lower gasoline price of very affluent, mostly North American cities is associ-
ated with another small increase in overall direct energy use.

BA

Fig. 4. Potential of an urbanization wedge in energy use. (A) Urbanization wedge characterized by median business-as-usual (BAU) and low-carbon urban
development (LCUD) scenarios. (B) Uncertainty in scenarios for the different world regions. The centerline is the median, the top and bottom of the boxes are
the 25th and 75th percentiles, and lines present overall range. OECD90, OECD countries in 1990; LAM, Latin America and the Caribbean; MAF, Middle East and
Africa; REF, reforming economies of Eastern Europe and the former Soviet Union.
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million km2, or equal to the size of South Africa (3). Thus,
mitigation interventions related to urban form have the highest
potential during early phases of urban development. This win-
dow of opportunity exists especially for low-emissions cities in
Asia, the Middle East, and Africa where urbanization and as-
sociated rises in income could lead to high increases in urban
energy use if current trends continue. However, demand-side
policies, such as increased gasoline prices, encouraging compact
and accessible urban forms, along with idiosyncratic urban design
options, can also reduce urban energy use in developed cities
(25, 26). Backed by increases in gasoline prices, urban form
modifications could reduce global energy use in cities by 26% or
190 EJ, constituting a notable and possibly low-cost or negative-
cost urbanization wedge for climate change mitigation.
To realize this urbanization wedge, different types of cities

require different mitigation strategies. Currently thousands of
cities worldwide are developing local climate action plans, but
their aggregate impact on emissions is uncertain (1). This un-
certainty is in part because of low accountability and lack of
baseline data on urban emissions, but also because the strategies
adopted may not be the most effective at lowering emissions for
a particular type of city. Although many urban mitigation strat-
egies have important local cobenefits, any measurable impact on
emissions will require adopting strategies that target the main
sources of emissions. If countries with fuel prices below 1.2 USD/L
increased this price to 1.6 USD/L, they would enable a market-
based transition toward more energy-efficient cities. Similarly,
urban-planning policies, including mixed-used design and high
connectivity and accessibility, which are themselves closely re-
lated to population density, could be supportive in establishing
long-term energy savings. In addition, those city types with high
HDD could reduce emissions by enforcing stricter building codes
and retrofitting strategies. These results are not only highly
policy-relevant. In addition, the results provide a promising base
for integrated assessment models that investigate the interaction
between urbanization and technological decarbonization options
in global scenarios.
This study provides for the first time, to our knowledge, robust

(taking into account cross-data heterogeneity), statistically
meaningful observations on a globally representative set of cities.
The large sample of 274 cities validates some previously ob-
served effects while simultaneously providing more statistically
meaningful results (Fig. 1 and SI Appendix, Figs. S1–S7 and
Tables S1–S5) and statistically and quantitatively significant
elasticities (Table 1). High-emissions cities display in aggregate
high economic activity and low population density, low fuel
prices, and high HDD whereas low-emissions cities have low
economic activity, high population densities, and high fuel prices.
Fuel price as a potential driver of urban GHG emissions

deserves particular attention for policy purposes. Although the
importance of fuel prices as drivers of GHG emissions has been
generally widely recognized (25), its specific importance for ur-
ban energy use and GHG emissions has not yet been systemat-
ically specified in the literature on cities and climate change. In
the urban economics literature, gasoline prices and other trans-
port costs have long been known to influence urban transport
distances and modal choice, urban form, and population density
(27, 28). Gasoline price is likely to influence GHG emissions
directly and indirectly. Directly and in the short term, higher
gasoline prices modify travel behavior and reduce transport
distance traveled by cars inside and outside of cities alike (29).
Indirectly and in the long run, higher gasoline prices could in-
duce a shift in private vehicle ownership but also could change
patterns of where people live and work (30), travel behavior, and
electricity/heating demand via modified floor space (11).
Our analysis focuses on the direct energy use in cities, including

also the energy use from economic production activities. A num-
ber of studies have emphasized the importance of production

activities for the urban carbon footprint (6, 13, 31). As a crude
proxy, the commerce index correlation indicates that economic
commerce activity plays a role also in our global sample of cities.
In fact, production activity is likely to explain a significant part of
the variability left unexplained by our study. For example, some of
the outlier cities in Fig. 3 displaying very high energy use are small
cities with oil refining or an allied industry as a dominating busi-
ness. This hypothesis is supported by an analysis of the United
Kingdom demonstrating that territorial emissions, including pro-
duction-based carbon footprints of human settlements, are highly
variable (13). Our typology could therefore be extended by pro-
duction-based material-flow data for cities worldwide. Overall,
however, our results provide support for developing differentiated
urban mitigation strategies that reflect the variation in the key
drivers of urban emissions.

Methods
Correlation Analysis. We performed the correlation analysis for each dataset
using a distinct dependent variable: final direct energy consumption per
capita for the GEA data, total transportation energy use per capita for the
UITP data, and GHG emissions per capita for theWB data. Because dependent
variables but also methods of data collection and year of data collection
differed, datasets were not harmonized. We calculated the correlation
(Pearson correlation coefficient; see SI Appendix) for 10 independent vari-
ables: GDP per capita, population density, heating degree days (HDDs;
number of days with temperatures <15.5 °C), cooling degree days (CDDs;
number of days with temperatures >23 °C), gasoline price, population size,
household size, urbanization level, a center of commerce index (a compar-
ative ranking of 75 of the world’s leading global cities and their in-
strumental role in driving the economy), and coastal location, a binary
variable representing coastal city location. With the exception of coastal
location, which did not show any significant correlation with energy use-
related variables, results are presented in Fig. 1 and SI Appendix, Table S1.
Even though recent studies have normalized GHG emissions of direct energy
use with GDP (31, 32), we treat GDP as one of several attributes, which allows
a distinction between different classes of cities based on complete bundles of
attributes. Each dataset was analyzed independently. Correlation statistics (SI
Appendix, Table S1) for each database were calculated individually. Heating
degree days (HDDs), cooling degree days (CDDs), and household size were
collected independently and were used for all datasets.

Statistical Analysis. We used correlation coefficients as effect sizes to ag-
gregate results across all datasets using the meta analysis random effect
DerSimonian-Laird (DSL) approach (33). The random-effects analysis requires
first an inverse variance weighting, and then a reverse unweighting by ap-
plying a random effects variance component, which is derived from the
extent of variability of the underlying studies’ effect sizes. The random ef-
fect approach, as opposed to a fixed effect one, permits interference to
extend beyond the datasets included in this study (34). It also allows for
between-dataset heterogeneity as well as within-dataset variability. In-
dividual studies taken separately tend to consistently underestimate het-
erogeneity (33).

Regression Analysis. To estimate the relationship between energy con-
sumption and determinants, we used a standard multiple regression ap-
proach with log-transformed variables as described in standard applied
regression literature (35, 36). The estimated model has the following stan-
dard form,

lnðEiÞ= αi +
Xk

j=1

βjXij + «i

with i = (1, . . ., N) representing cities. Here, Ei is a measure of city energy
consumption, and Xj for j = (1,. . ., k), denotes the consumption determinants,
with k the total number of regressors, and «i is the classical error term.

The variables included in the final regression were selected from
a larger set of possible determinants: i.e., GDP per capita, population
density, heating degree days, cooling degree days, gasoline prices,
household size, urbanization rate, and commerce center index. The
variables included were then reduced, applying the widely used backward
elimination statistical procedure (35, 36). The model selection procedure
is known as “general to specific approach.” The procedure starts with
a large number of variables that are sequentially reduced by removing
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the least significant variable, one at the time, if its P value is above
a chosen threshold, reestimating the model each time with the remain-
ing variables. The initial selection criterion used was P > 0.2 to remove.
The procedure stops, when all variables are significant at the 0.2 level. In
the UITP dataset, in addition to the other variables reported in Table 1,
household size was also significant at the P < 0.05 level. Coefficients
from a regression model, where the dependent and independent vari-
ables of interest are in natural log form and linearly related to each
other, can be conveniently interpreted as the average percentage
change in the dependent variable corresponding to a percentage change
in the independent variable (ref. 37, p. 55). The regression coefficients
thus obtained are independent of the units used for measuring variables and
are known as elasticities.

Threshold Regression. Recursive data partitioning algorithms provide com-
putationally efficient methods to produce the classification that requires
processing multiple threshold variables as well as threshold values. In this
paper, we used the recursive data-partitioning algorithm developed by Loh
and Hansen et al. (38–40), known as GUIDE (generalized, unbiased, in-
teraction detection and estimation) (see also SI Appendix, Section 7), which
repeatedly splits the data into increasingly homogeneous groups. The
resulting model can be conveniently presented as a binary tree graph. These
models can be viewed as parsimonious strategies for a fully nonparametric
estimation of a regression model. Regression-tree methods are known to be
consistent in the sense that, under standard statistical assumptions, the
predicted values converge to the unknown nonlinear regression function
(see SI Appendix). GUIDE minimizes potential biases in variable selection and
interaction detection and allows fitting a linear model at each node.
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