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Abstract

Recurrence plot based measures of complexity are capable tools for characterizing complex dynamics. In this letter we
show the potential of selected recurrence plot measures for the investigation of even high-dimensional dynamics. We
apply this method on spatially extended chaos, such as derived from the Lorenz96 model and show that the recurrence
plot based measures can qualitatively characterize typical dynamical properties such as chaotic or periodic dynamics.
Moreover, we demonstrate its power by analysing satellite image time series of vegetation cover with contrasting
dynamics as a spatially extended and potentially high-dimensional example from the real world.
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1. Introduction

The recurrence plot (RP) is a modern and versatile
tool for the study of the complex behavior of dynam-
ical systems [1, 2]. It represents time points of recur-
ring states even of high-dimensional phase space tra-
jectories. Quantitative extensions, such as recurrence
quantification analysis and recurrence networks, enable
the investigation of dynamical transitions and regime
changes, the quantitative characterization of the dynam-
ics, or the detection of phase synchronization [3–5]. As
proven by several examples, the RP based quantities
work quite well even with short time series (e.g.,[6–
9]). The practical and powerful use of RP based meth-
ods has been demonstrated by their growing and in-
terdisciplinary application, such as for cardiovascular
health diagnosis, behavioral, cognitive and neurological
studies, studying fluid dynamics and plasma, analysing
optical effects, material health monitoring, palaeocli-
mate regime change detection, etc. [9–16]. In gen-
eral, such studies have so far been restricted to rather
low-dimensional systems. However, when studying
the complex behavior of real world systems, we often
end up with extended complex systems, and the ques-
tion arises whether the RP based tools can be applied
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on high-dimensional systems, such as exhibiting high-
dimensional chaos. So far, the ability of RP based meth-
ods for studying high-dimensional dynamics has not
yet been demonstrated, although it was already used
to investigate spatial recurrences [17–19] and spatio-
temporal chaos in turbulence and a reaction-diffusion
system [20, 21]. Moreover, the classic characterization
of complex dynamics by using, e.g., entropy [22], cor-
relation dimension [23], and Lyapunov exponents re-
quires very long time-series [24] or the knowledge of
the differential equations of the system which are in
practical examples not known. The study of extended
spatio-temporal dynamics is even more challenging be-
cause of the large degrees of freedom.

In this letter we demonstrate the potential of RP based
measures of complexity for identifying hardly acces-
sible extended spatio-temporal dynamics and for char-
acterizing high-dimensional chaos. We will use the
Lorenz96 model [25–27] which is a paradigmatic sys-
tem for extended complex spatio-temporal chaotic dy-
namics and was systematically studied by Karimi et
al. [28] and apply the method on an example of a satel-
lite time series imagery.

2. The Lorenz96 model

The Lorenz96 model is a conceptual time-continuous
linear lattice model that was developed to demonstrate
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Figure 1: Space-time representation of xk(t) of the Lorenz96 system, Eq. (1), for f = 5 and system size of (a) N = 38 and (b) N = 47, showing
periodic and chaotic dynamics.

fundamental aspects of weather predictability [25]:

dxk

dt
= (xk+1 − xk−2)xk−1 − xk−1 + f (1)

for k = 1, . . . ,N, with a constant external forcing f , and
with periodic boundary conditions xN+1 = x1. Depend-
ing on the system size N and the forcing f , the dynamics
on the lattice can be periodic or chaotic and can exhibit a
high dimensionality [28]. Therefore, this model is very
appropriate for our study.

For integrating Eq. (1) we use a Runge-Kutta integra-
tion of 4th order with time step δt = 1/64. In order
to remove transients, we neglect the first 10,000 values
from each xk(t). In the numerical experiments discussed
below, we will use 20 slightly varying initial conditions
for each selected setting of N and f .

In our study we consider f = 5 (as used by Karimi et
al. [28]). Then, for example, for N = 38, we find peri-
odic dynamics, but for N = 47, the dynamics is chaotic
(Fig. 1).

The change of the dynamical regimes with system
size N can be measured by the maximal Lyapunov expo-
nent λmax and the Kaplan-Yorke dimension DKY. Here
we compute the Lyapunov spectrum from the set of N
differential equations by linearizing the corresponding
evolution and using a Gram-Schmidt Orthonormaliza-
tion scheme [29, 30]. For stable results, we integrate
200,000 iterations. The Kaplan-Yorke dimension DKY
can then be derived from the N (ordered) Lyapunov ex-
ponents by the Kaplan-Yorke algorithm

DKY = K +

K∑
i=1

λi

|λK+1|
, (2)

where K is the largest number of the first largest Lya-
punov exponents with

∑K
i=1 λi ≥ 0 [22]. Increasing the

system size from N = 10 to N = 50 reveals a periodic
alternation between periodic and chaotic dynamics by
periodic variations of λmax (Fig. 2a). The dimension of
the system dynamics as measured by DKY is increasing
by trend (Fig. 3a). The calculation of λ and DKY is ex-
pensive for such systems with large degrees of freedom.
Moreover, for accurate values we need very long time
series (here, even for N = 200, 000 we find some spread
in the results of λmax and DKY).
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Figure 2: (a) Maximal Lyapunov exponent λmax for the Lorenz96 sys-
tem, Eq. (1), with different system size N. The RP based measures
(b) 1/Lmax and (c) RTE reveal a similar variation with the N as λmax.
Averaged values for 20 different initial states are presented. The stan-
dard deviations of the measures for the different initial conditions are
presented by the error bars.
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Figure 3: (a) Kaplan-Yorke dimension DKY for the Lorenz96 system,
Eq. (1), with different system size N. The RP based measures (b) DET
and (c) DT reveal a similar variation with the N as DKY. Averaged
values for 20 different initial states are presented. The standard devia-
tions of the measures for the different initial conditions are presented
by the error bars.

3. Recurrence plot analysis

RP quantification may be suitable for a simpler es-
timation of the dynamical properties. An RP Ri, j =

Θ(ε − ‖~xi − ~x j‖) is a binary matrix R representing the
time points j when a state ~xi at time i recurs [3] (Fig. 4).
The recurrence criterion is usually defined as a spatial
distance between two states ~xi and ~x j is falling below
a threshold ε. Besides the ability to discuss the visual
aspect of an RP, several quantification approaches are
based on this matrix. The diagonal line structures in an
RP correspond to periods of parallel evolution of two
segments of the phase space trajectory. The scaling of
the length distribution of such lines is related to the K2
entropy. A good proxy for this is measuring the inverse
of the length of the longest diagonal line 1/Lmax, with

Lmax = arg max
l

HD(l), (3)

and l the length of the diagonal lines, and HD(l) the
length distribution of diagonal lines in R [3].

Based on a heuristic approach, the fraction of recur-
rence points that form such diagonal lines is a qualita-
tive measure of predictability, called determinism (DET)
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Figure 4: Recurrence plots of the Lorenz96 system xk(t) for f = 5
and system size of (a) N = 38 and (b) N = 47, showing periodic and
chaotic dynamics.

[3],

DET =

∑N
l=2 l HD(l)∑N

i, j=1 Ri, j
. (4)

Systems possessing deterministic dynamics are char-
acterized by diagonal lines indicating repeating recur-
rences within a state (and, hence, higher DET values).

The vertical empty space between two recurrence
points in the RP correspond to Poincaré recurrence
times, i.e., the distance v between recurrence points in a
column of R [31]. From the distribution HV(v) we can
derive the recurrence time entropy (RTE), also called re-
currence period density entropy [32]

RT E = −
1

ln Vmax

Vmax∑
v=1

HV(v) ln HV(v). (5)

This measure quantifies the extent of recurrences and is
related to the Pesin dimension [33].

In the last years, the similarity of the binary, squared
matrix R with the adjacency matrix of an unweighted,
undirected complex network was used to apply complex
network measures on recurrence plots in order to quan-
tify the geometrical properties of the system’s attractor
encoded in the RP [6]. For example, the transitivity co-
efficient (T )

T =

∑N
i, j,k=1 R j,kRi, jRi,k∑N

i, j,k=1 Ri, jRi,k(1 − δ j,k)
. (6)

allows the differentiation of periodic and chaotic dy-
namics [34]. Moreover, T can be used to define a novel
dimensionality measure, the transitivity dimension (DT )

DT =
log(T )

log(3/4)
, (7)

allowing the calculation of the dimension without ex-
plicit consideration of scaling behaviors. Using the RP,
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Figure 5: Influence of noise on the RQA results. Observational, normally distributed noise is added to the time series of the Lorenz96 system. The
standard deviation of the noise is relative to the averaged mean amplitude mA of the time series.

the correlation dimension D2 can also be derived [35].
However, the advantage of DT is that it results directly
from the RP without analysing any scaling behavior de-
pending on the recurrence threshold ε.

Although still rather novel, such recurrence quantifi-
cation is meanwhile widely accepted and applied in dif-
ferent disciplines to study diverse problems. For more
details on this methodology we refer to [3, 5, 36, 37].

4. Recurrence analysis of spatially extended chaos

For the application of the RP approach to spa-
tially extended high-dimensional data such as from the
Lorenz96 model, we consider each variable as one
component of the phase space representation: ~x(t) =

(x1(t), x2(t), . . . , xN(t)). We remove transients by delet-
ing the first 10,000 data points and then downsample the
time series by considering only every 2nd value. Then,
for only 1,500 time points of the vector ~x(t) we calculate
the RP and the above mentioned measures DET, 1/Lmax,
RTE, and DT . We calculate this set of measures for dif-
ferent system size N ∈ {10, . . . , 50} and repeat the cal-
culation for 20 different initial conditions. For the line
based RP measures DET and 1/Lmax we choose a min-
imal line length of two. We apply a Theiler window of
length 20 (in units of iteration steps) and a recurrence
threshold such that the fraction of recurrences in the RP
is 10% (and using the Euclidean norm). We estimated
the size of the Theiler window by the auto-correlation

time, which is in average 20. The choice of the fixed re-
currence rate for the threshold selection is justified by
the increase of the state space dimension with grow-
ing N that would require a rescaling of the recurrence
threshold. By fixing the recurrence rate we can avoid
this rescaling.

The inverse of the longest diagonal line 1/Lmax as
well as the RTE reveal a similar alternating variation
with N as λmax (Fig. 2b,c). The Pearson correlation be-
tween these two RP based measures and λmax is 0.745
(for 1/Lmax) and 0.750 (for RTE). The strong correla-
tion even for the used rather short data segment suggests
that these RP based measures are good estimators for
studying the divergence behavior of high-dimensional
systems.

The DET measure varies between values of 0.94
and 1, indicating the deterministic nature of the model
(Fig. 3b). During the periodic regimes, the DET shows
maxima, whereas during the chaotic regime, DET falls
to lower values. The transitivity dimension DT varies
rather similar compared to the Kaplan-Yorke dimension
DKY. It also shows the upward trend with increasing
N (Fig. 3c), but DKY is in average 2.5 times higher
than DT . The correlation of DKY with DET and DT
is −0.715 and 0.723, respectively.

The recurrence based measures are able to reveal the
dynamics using very short time series of length 1,500,
obtained from 3,000 iterations, in comparison to the
classic measures where 200,000 iterations and the dif-
ferential equations had been necessary. One explana-
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Figure 6: Geographical location and MODIS extended vegetation index (EVI) within the 5 × 5 km2 subarea used for the analysis for the regions
(a) NE Spain and (b) NE Brazil.

tion is that an RP compares the states at all time points
with those at all other time points (i.e., an N2 pair-wise
test), and that the measures are of statistical nature. The
method will also work up to a certain level of noise.
In the following we investigate the influence of noise
by adding normally distributed random numbers to the
time series. The standard deviation of the noise is cho-
sen relative to the mean amplitude mA of the time series
and is varied between 0 (no noise) and 0.5 × mA. We
find that even for a large portion of noise with standard
deviation half of the mean amplitude, the RQA mea-
sures distinguish clearly between the different dynam-
ics (Fig. 5). In particular, DT shows almost identical
results for the considered noise levels (Fig. 5(d)). With
increasing noise, DET and RTE decrease, and 1/Lmax
increases. However, there are differences in their vari-
ations with respect to the noise level. As the varia-
tion of DET and 1/Lmax increases for growing noise
(Fig. 5(b,d)), the variation for RTE decreases (Fig. 5(c)).
It is remarkable that DT is the measure with the lowest
sensitivity on noise, whereas 1/Lmax is less sensitive for
low noise levels but becomes abruptly high sensitive for
high noise levels (Fig. 5(a)). Nevertheless, these results
suggest that the approach is quite robust even for higher
level of observational noise (at least for differentiating

chaotic and periodic dynamics).

5. Application on satellite time series imagery

In order to illustrate the applicability of the pro-
posed RP quantitative measures on spatially extended
and potentially high-dimensional real world data, we
use MODIS satellite time series imagery of the extended
vegetation index (EVI) of two test sites in NE Spain,
centre coordinates 42.37◦N, 0.51◦E, and NE Brazil,
5.00◦S, 39.50◦W (Fig. 6). The test sites are character-
ized by differently complex vegetation dynamics both in
the temporal (inter-annual and intra-annual) and spatial
domain (Fig. 7) as a result of diverse natural processes
and human interactions [38, 39]. Thus, these sites are
seen as ideal to study the usefulness of the proposed RP
measures in order to objectively quantify and evaluate
this complex behavior and decipher changes in vegeta-
tion cover dynamics related to land extensification/ in-
tensification or climate change and drought. The sub-
humid Spanish test site shows a pronounced seasonal
variation in precipitation and temperature with cold and
dry winters and hot and stormy summers, whereas the
Brazilian test site located in the so-called drought poly-
gon is characterized by a semiarid climate with distinct
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dry and wet seasons and rainfall of high temporal and
spatial irregularity. The Spanish test site has undergone
severe land use changes during the last 50 years with
the abandoning of former agricultural areas and subse-
quent reforestation as well as setting aside of lands from
agriculture promoted by the European Agricultural Pol-
icy [40]. The Brazilian test site has been more inten-
sively occupied since 1985, when the Federal Govern-
ment accomplished a land reform leading to the intensi-
fication of agricultural and livestock practices. A dense
water surface reservoir network has been built in the last
decades to mitigate water scarcity problems [41].

The MODIS-Terra MOD13Q1 product used for this
real world application is a 16-day composite image of
the enhanced vegetation index (EVI) in a sinusoidal
projection with a spatial resolution of 250 m. Global
MODIS vegetation indices are designed to provide con-
sistent spatial and temporal datasets used for global
monitoring of vegetation conditions. The EVI is cho-
sen since it minimizes canopy background variations
and maintains sensitivity over dense vegetation. We
obtained 316 MOD13Q1 images for the period Febru-
ary 2000 to November 2013 for both the MODIS tiles
h18v04 (Spain) and h14v09 (Brazil) from the Land Pro-
cesses Distributed Active Archive Center (LP DAAC),
located at the US Geological Survey (USGS) Earth
Resources Observation and Science (EROS) Center
(lpdaac.usgs.gov).
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Figure 7: EVI time series of all pixels in the subareas as shown in
Fig. 6 for (a) NE Spain and (b) NE Brazil. The vegetation dynamics
in NE Brazil appears clearly to be more erratic in the temporal and
spatial domain than in NE Spain.

In both regions we consider subareas of 5 × 5 km2

(N = 441 grid points) varying around the centre point
by 0.25◦ and within a range of [−0.5◦ 0.5◦] (resulting
in 25 subareas for both regions). That way, the subar-
eas contain a mixture of land covers representative for
the test sites. For calculating the RP, we create the phase
space vector ~x from the pixels of the satellite image sub-

area, i.e., ~x has 441 dimensions (not to be confused with
the dimension of the dynamics).
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Figure 8: Recurrence plot of a 5 × 5 km2 subarea of the EVI of
test sites in (a) NE Spain and (b) NE Brazil. The selected subarea
is situated at the centre point of the study region (see text).

For both regions we visually find periodic patterns in
the corresponding RPs, revealing mainly the seasonal
variability (Fig. 8). The appearance of the periodic pat-
terns differ for Spain (more line-like patterns) and Brazil
(more block-like patterns), indicating substantial differ-
ences in the spatial dynamics. The RP quantification
by the measures DET, 1/Lmax, and DT clearly reveals
quantitative differences: in Brazil we find a more erratic
or chaotic spatio-temporal pattern than in Spain, indi-
cated by lower DET and higher 1/Lmax as well as DT
for Brazil (Fig. 9, Tab. 1). Although the considered sub-
areas consist of information that is a mixed signal of
several land cover classes, the difference between Spain
and Brazil is consistent for subareas of varying location.
These results can be interpreted in such sense that the
vegetation (or land use) dynamics in Brazil is probably
less regulated and less predictable than in Spain.
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Figure 9: Recurrence quantification measures for the MODIS EVI
data for different subareas around the study regions’ centre point.

6. Conclusion

By using the Lorenz96 model as a prototypical exam-
ple of spatially extended dynamics with large degrees
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Table 1: Median of recurrence quantification measures for the MODIS
EVI data (standard deviation in brackets).

Spain Brazil
DET 0.51 (0.07) 0.33 (0.04)
1/Lmax 0.10 (0.03) 0.13 (0.03)
DT 2.35 (0.45) 3.85 (0.41)

of freedom, we have shown that recurrence plot based
analysis can be used to investigate high-dimensional
dynamics from rather short time series and provides
insights in the fundamental features of the dynamics,
comparable with the Kaplan-Yorke dimension or the
Lyapunov exponent. This study, thus, answers the hith-
erto open question, whether recurrence plots and their
quantification are suitable to study high-dimensional
chaos. The more systematic study on the limits of the
used methods and the necessary length of time series in
dependence on the degrees of freedom of the system is
a subject of future work.

Moreover, by applying the method to MODIS satel-
lite time series data we have demonstrated its suitabil-
ity for the investigation of extended spatio-temporal dy-
namics of real world processes. The recurrence analysis
has indicated a clear difference in the spatio-temporal
vegetation dynamics in a subhumid (Spain) and in a
semiarid (Brazil) climate, where the first shows a more
regular pattern, whereas the latter is characterized by a
more irregular and less predictable behavior.
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