
 
 

 

Originally published as:  

 
Szczesniak, M., Piniewski, M. (2015): Improvement of hydrological simulations by 

applying daily precipitation interpolation schemes in meso-scale catchments. - Water, 7, 

2, 747-779  

 

DOI: 10.3390/w7020747 

 

http://dx.doi.org/10.3390/w7020747


Water 2015, 7, 747-779; doi:10.3390/w7020747 
 

water 
ISSN 2073-4441 

www.mdpi.com/journal/water 

Article 

Improvement of Hydrological Simulations by Applying Daily 
Precipitation Interpolation Schemes in Meso-Scale Catchments 

Mateusz Szcześniak 1,†,* and Mikołaj Piniewski 1,2,† 

1 Department of Hydraulic Engineering, Warsaw University of Life Sciences—SGGW,  

ul. Nowoursynowska 159, Warsaw 02-776, Poland; E-Mail: M.Piniewski@levis.sggw.pl 
2 Potsdam Institute for Climate Impact Research, P.O. Box 601203, Potsdam 14412, Germany 

† These authors contributed equally to this work. 

* Author to whom correspondence should be addressed; E-Mail: M.Szczesniak@levis.sggw.pl;  

Tel.: +48-22-593-5267. 

Academic Editor: Miklas Scholz 

Received: 14 November 2014 / Accepted: 2 February 2015 / Published: 12 February 2015 

 

Abstract: Ground-based precipitation data are still the dominant input type for hydrological 

models. Spatial variability in precipitation can be represented by spatially interpolating 

gauge data using various techniques. In this study, the effect of daily precipitation 

interpolation methods on discharge simulations using the semi-distributed SWAT (Soil and 

Water Assessment Tool) model over a 30-year period is examined. The study was carried 

out in 11 meso-scale (119–3935 km2) sub-catchments lying in the Sulejów reservoir 

catchment in central Poland. Four methods were tested: the default SWAT method (Def) 

based on the Nearest Neighbour technique, Thiessen Polygons (TP), Inverse Distance 

Weighted (IDW) and Ordinary Kriging (OK). =The evaluation of methods was performed 

using a semi-automated calibration program SUFI-2 (Sequential Uncertainty Fitting 

Procedure Version 2) with two objective functions: Nash-Sutcliffe Efficiency (NSE) and the 

adjusted R2 coefficient (bR2). The results show that: (1) the most complex OK method 

outperformed other methods in terms of NSE; and (2) OK, IDW, and TP outperformed Def 

in terms of bR2. The median difference in daily/monthly NSE between OK and Def/TP/IDW 

calculated across all catchments ranged between 0.05 and 0.15, while the median difference 

between TP/IDW/OK and Def ranged between 0.05 and 0.07. The differences between pairs 

of interpolation methods were, however, spatially variable and a part of this variability was 

attributed to catchment properties: catchments characterised by low station density and low 
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coefficient of variation of daily flows experienced more pronounced improvement resulting 

from using interpolation methods. Methods providing higher precipitation estimates often 

resulted in a better model performance. The implication from this study is that appropriate 

consideration of spatial precipitation variability (often neglected by model users) that can be 

achieved using relatively simple interpolation methods can significantly improve the 

reliability of model simulations. 

Keywords: spatial interpolation; rainfall; SWAT; watershed model; Sulejów reservoir; Pilica; 

temporal scale; spatial scale; station density 

 

1. Introduction 

The growing needs in the field of hydrological modelling necessitate the continual improvement of 

existing hydrological models. One of the most commonly used hydrological models nowadays is the 

semi-distributed Soil and Water Assessment Tool (SWAT; [1]). Gassman [2] reported that the model has 

been applied on almost every continent and that SWAT or SWAT model spinoff applications have been 

the subject of around 1075 peer-reviewed articles in nearly 216 different journals. 

Temporally and spatially variable precipitation is the major driving force in all (semi-)distributed 

hydrological models, including SWAT. Its temporal variability is fundamental for hydrological modelling 

and has been discussed many times elsewhere. Likewise, there is a large and still growing body of literature 

on the role and effect of the spatial distribution of precipitation in hydrological modelling [3–8]. In general, 

there are several types of potential data sources: (1) station data from precipitation gauges; (2) reanalysis 

data and (3) radar data. Gauge data are traditionally the most widely used data type for hydrological 

modelling. However, they pose multiple problems such as gauge undercatch [9] and the high costs of 

supporting dense networks of gauges which are crucial for reliable areal precipitation estimates [10],  

in particular during intensive and spatially variable rainfall events causing flash floods [11]. Reanalysis 

data products such as the WATCH Forcing Data (Water and Global Change, “WFD”; [12]) are promising 

in that they usually cover long time periods (100 years in the case of the WFD), but their spatial resolution 

is not sufficient for modelling of small and medium-sized catchments. Finally, (high-resolution) radar data 

do not have drawbacks of gauge and reanalysis data and are a valuable asset for the hydrological 

modelling community [5,13–15]. Nevertheless, their use often implies using gauge data as well in order 

to find the optimal parameters of the transformation equation [16]. Furthermore, their accessibility in many 

countries is low, and is, in particular, not sufficient for simulation periods covering a few decades,  

e.g., a climate normal 30-year period. 

Hence, in many cases, the primary source of precipitation data in hydrological modelling, in particular 

for the climate normal period in small and medium-sized catchments, is still ground-based measurements. 

Since distributed models require spatially variable precipitation, there is a need for spatial interpolation 

of gauge data. The use of different interpolation methods may result in significant differences from the 

actual spatial distribution of precipitation. 

Several authors have compared different spatial interpolation methods of precipitation data for 

hydrological modelling. Most notable are: the review paper of Ly et al. [17] and works of  
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Hartkamp et al. [18], Goovaerts [19], Zhang and Srinivasan [20], Tabios and Salas [21] which compare 

a number of different methods, of which the most frequent are Thiessen Polygons, Inverse Distance 

Weighted and Ordinary Kriging. Evaluation of methods is typically done by applying an independent or 

cross-validation [17], which makes it possible to estimate and compare prediction errors. In general, more 

complex methods give better results, e.g., Ordinary Kriging outperforms Inverse Distance Weighted which 

surpasses the Thiessen Polygons method. The results also showed that different methods give similar 

average areal precipitation values, but often differ in extreme values. 

An alternative approach in evaluating different interpolation schemes is to validate them in hydrological 

models [17], but this has been done less frequently. The main advantage of this approach is that it evaluates 

area-integrated precipitation rather than point measurements, which makes it more fit-for-purpose in terms 

of hydrological modelling. Technically, this approach can be applied by preparing a number of different 

precipitation input alternatives obtained using different interpolation schemes, then executing (and often 

calibrating) the model for each alternative and comparing/evaluating the results. One of the first works 

of this type was that of Haberlandt et al. [22], who applied the SLURP model in the Mackenzie River 

Basin in Canada. They concluded that more complex interpolation techniques and the use of combined 

precipitation data help to improve discharge simulations. Furthermore, the relative size of the simulation 

units was the factor that explained these improvements. Masih et al. [23] applied SWAT in the Karkheh 

basin in Iran, concluding that the IDEW (Inverse Distance Elevation Weighted) method outperformed 

the default method mainly in small sub-catchments in the range 600–1600 km2. For larger catchments 

(above 5000 km2), no significant difference in performance between studied methods was reported. 

By default, precipitation input data in SWAT are processed by a rather simple, Nearest Neighbour-based 

method, in which each sub-basin is assigned data from the nearest stations. The distance from the station 

to a certain sub-basin is calculated based on the location of its centroid. Since this is the default method, 

it is presumably used by most SWAT users, even though it is expected that the model performance is likely 

to be affected in this case. Our hypothesis is that applying spatial interpolation of precipitation prior to 

reading input data in SWAT should improve its performance in discharge simulation. 

The main goal of this paper is to verify whether selected spatial interpolation techniques can improve 

the performance of the SWAT model in predicting daily and monthly flows over a climate normal period 

in a set of meso-scale catchments of different size. The term meso-scale catchments refers to catchments 

whose order of magnitude lies between 10 and 103 km2 [24]. The secondary goal is to analyse the effect 

of certain catchment properties in order to explain the between-catchment differences in results. Even 

though there exists a body of literature on this topic (e.g., [22,23,25–28]), our study brings certain 

improvements in methodological design, by combining simultaneously the following features: 

- We perform interpolation of daily precipitation data for a climate normal period (in contrast to 

many other studies that used a monthly or annual time step, e.g., [19,29–33], or a daily time step 

for a much shorter period, e.g., [20]). Long simulation periods are recommended for model 

application for climate change impact assessment [34]; 

- We include both conventional interpolation methods such as Thiessen Polygons or Inverse 

Distance Weighted and geostatistical methods such as kriging (in contrast to Masih et al. [23] and 

Hwang et al. [26], who did not include geostatistical methods in their comprehensive studies); 
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- We focus on the effect of different interpolation methods on hydrology (in contrast to some 

interesting papers that limit their attention to the comparison of performance of interpolators, 

e.g., [17,20,35]) and evaluate this effect using a semi-automated SUFI-2 (Sequential Uncertainty 

Fitting)  algorithmin 11 catchments spanning in size between 119 and 3935 km2. Taking advantage 

of the relatively large number of studied catchments (compared to other studies that usually 

focused on one catchment), we investigate the influence of certain catchment characteristics on 

evaluation results, which to our knowledge has not been done to date; 

- We present the results of our analysis for both daily and monthly time step aggregations;  

Many similar studies limited their attention to either only monthly (e.g., [22,27]) or only daily 

(e.g., [23,28]) time steps. 

2. Materials and Methods 

2.1. Study Area 

The study was conducted in 11 sub-catchments of the Sulejów reservoir catchment (hereafter referred 

to as the SRC), i.e., a part of the Pilica catchment, situated upstream of the dam on Sulejów reservoir, built 

in 1974. Sulejów reservoir is located in central Poland and its total drainage area consists of catchments of 

two main inflowing rivers: the Pilica and the Luciąża rivers and direct sub-catchment with several smaller 

reaches (Figure 1). This is a large reservoir (95 × 106 m3 of total capacity) but its effect on river flow is 

outside the scope of this paper, because all catchments studied in this paper (i.e., sub-catchments of the 

SRC) are situated upstream of it. The SWAT model is however set up for the whole SRC, whose total 

area equals 4928 km2, of which the Pilica catchment contributes nearly 80% and the Luciąża catchment 

nearly 16% [36]. 

 

Figure 1. Study area: Sulejów Reservoir Catchment (SRC) and its location in Poland. 
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Elevation in the SRC varies from 154 m a.s.l. in lowland areas in the North to 499 m a.s.l. in the highland 

areas in the South. Land cover in the catchment is distributed as follows: 44.4% arable land, 38.6% forest 

areas, 12.3% grasslands, 4.7% urban and the rest occupied by other land covers types (data according to 

Corine Land Cover 2006). Loamy sands and sands predominate in the soil cover. Climate is typical for 

central Poland with a mean annual temperature of ca. 7.5 °C, and mean January/July temperature equal 

to −4 and 18 °C, respectively. Mean annual precipitation is ca. 600 mm, with the highest totals in 

June/July and the lowest ones in January. 

As for the hydrologic regime, floods occur usually due to snowmelt but quite often also due to rainfall 

events in summer, which usually is a low flow period. There is relatively low pressure on water resources: 

very small water consumption by industry, households, irrigation and locally moderate consumption for 

fish farming; the largest reservoir Cieszanowice constructed in 1998 on the Luciąża river has the total 

capacity of 7.3 × 106 m3. Such a quasi-natural character of the SRC makes it a suitable study area for 

hydrological modelling. 

2.2. SWAT Model 

2.2.1. General Features 

SWAT is a public domain, river basin scale model developed to quantify the impact of land 

management practices in large, complex river basins [1]. SWAT2009 rev. 591 model version [37,38] under 

ArcSWAT 2012.10_0.1 [39], an ArcGIS-ArcView extension and graphical user input interface for SWAT, 

was used in this study. SWAT is a physically based, semi-distributed, continuous time model that simulates 

the movement of water, sediment, nutrients, pesticides and bacteria on a catchment scale. It can operate on 

sub-daily, daily, monthly and yearly time step. The SWAT model river basin can be divided into sub-basins 

based on the Digital Elevation Model (DEM) or predefined stream network layer and a threshold that 

defines the minimum drainage area required to form the origin of a stream. The basic unit of discretization 

in SWAT is so-called “hydrological response unit” (HRU) which is a unique compound of soil, land use 

and slope overlay and one of the most important features of SWAT is the fact that HRUs are lumped 

within sub-basins. Each HRU runoff is simulated individually and then aggregated to the sub-basin level. 

In order to acquire the total runoff for the river basin, runoff from HRUs is routed through the stream 

network to the main outlet. 

2.2.2. Model Setup 

The GIS input data required to build the SWAT model setup include Digital Elevation Model (DEM), 

land cover map, and soil map. The following input data were used to develop this setup:  

- DEM based on the ASTER satellite data, 1:25,000 topographic map and Regional Water 

Management Authority (RZGW) water cadastre.  

- Land cover data derived from reclassified Corine Land Cover 2006 (CLC2006) available from 

General Directorate of Environmental Protection (GDOŚ).  

- Soil map composed of a 1:100,000 digital map from Institute of Soil Science and Plant Cultivation 

(IUNG) and 1:25,000 soil map available from Regional Directorate of State Forests (RDLP). 
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The ArcSWAT interface was used to delineate the catchment into 272 sub-basins. In the next step, 

the overlay of land cover and soil maps resulted in 3401 Hydrologic Response Units (HRU). 

The meteorological data required by SWAT (precipitation, solar radiation, relative humidity, wind 

speed, maximum and minimum temperatures) were acquired from the Institute of Meteorology and Water 

Management-National Research Institute (IMGW-PIB). Meteorological data (except precipitation which 

will be described in the next section) were available from six synoptic (highest level) and 11 climate 

stations. This data was interpolated by the Thiessen Polygon method (which will also be described in the 

next section) and assigned to all sub-basins. 

2.3. Precipitation Data and Interpolation Methods 

The total number of stations with precipitation observations obtained from IMGW-PIB was 49 but not 

all of them had the full set of data. In three cases, when two stations were located next to each other (within 

3 km distance) and had complementary periods of data availability, they were “merged” into a single one 

with the same coordinates as the station with a longer period of record. Spatial distribution of the stations 

is presented in Figure 2, whereas periods of data availability can be found in Table S1. 

 

Figure 2. Location of flow gauges and precipitation stations in the Sulejów Reservoir catchment. 
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In selection of interpolation methods evaluated in this paper, we have taken the model user perspective. 

Selection was based on the popularity of different methods in research papers on precipitation interpolation. 

Obviously, the method based on the Nearest Neighbour technique that is used as default in SWAT was 

tested in first instance. Three other tested methods were: Thiessen Polygons, Inverse Distance Weighted 

and Ordinary Kriging. The literature review showed that the number of applications of these three 

methods largely exceeded respective numbers for other methods. 

The first method tested in this paper was the default SWAT method (hereafter referred to as “Def”) 

shortly mentioned in the Introduction). It is a version of the least sophisticated Nearest Neighbour (“NN”) 

technique. NN applies the values to unknown points such that: ܲ(ݔ଴) = (௞ݔ)ܲ ݎ݋݂ ,଴ݔ)݀ (௞ݔ = ݉݅݊௜ ,଴ݔ)݀ ௜) (1)ݔ

where ܲ(ݔ଴) is interpolated value in the point ݔ଴, ܲ(ݔ௞) represents the measured value in the point ݔ௞ 

and ݀(ݔ଴,  .௞ݔ ଴ andݔ ௞) denotes the Euclidean distance between the pointsݔ

In the Def method, observed values are applied to the centroids of each sub-basin as in the NN 

method. Therefore, inputs from the nearest station are used throughout the whole sub-basin.  

An important consideration about this method is that it uses SWAT built-in Weather Generator 

(“WXGEN”; [40]) that produces synthetic daily inputs based on user-provided long-term weather statistics 

in order to fill in the missing values if they are present in the time series (cf. Table S1 and Figure 2). 

Precipitation statistics for the Weather Generator were calculated for all stations and loaded into  

SWAT.wgn files. 

The Def method will be used as a point of reference throughout this paper. It is assumed that this is 

the method that is used by majority of SWAT users. All other interpolation methods described in this 

paper were executed externally of ArcSWAT so the influence of using them will be evaluated mainly in 

comparison with the Def method. 

The method number 2 was Thiessen Polygons (“TP”), developed by Thiessen [41]. This method uses 

the same principle as NN, however, instead of assigning values to sub-basin centroids (as in Def),  

for each sub-basin a weighted average is calculated from values belonging to polygons intersecting a 

given sub-basin.  

The method number 3 was Inverse Distance Weighted (“IDW”). In this method, values are assigned 

to the unknown points based on the calculated weighted average of the known point values. The weights 

of the known values are inversely proportional to distance from the known point to the estimated point. 

General equation for Inverse Distance Weighted is [42]: 

௫ܲ = ෍ݓ௜௡
௜ୀଵ ௜ܲ (2)

where ௫ܲ represents interpolated precipitation value in the point x, ݓ௜ is a weight assigned to the station 

and 	ܲ is observed precipitation on the station i. The weights are calculated as follows: ݓ௜ = 1݀௜௞ (3)

where 	݀௜ is the distance between points x and i and k is an exponent. In this paper, the k value was set 

to 2 that is the most widely used exponent value for IDW applications (e.g., [20,26,27,33]). 
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IDW spatial interpolation was performed in ArcMap 10.1 with the use of Geostatistical Analyst Tool 

with the daily time step. Because there were almost 11,000 days to calculate, the model was developed 

in the ModelBuilder. Values interpolated by the IDW method were saved as rasters (spatial resolution  

2 km) and then they were averaged in the sub-basin boundaries using Zonal Statistics as Table tool. 

The last method (number 4) of spatial interpolation was Ordinary Kriging (“OK”) which belongs to the 

category of advanced geostatistical techniques that offer the unbiased estimation of the variable at an 

unobserved location from observations of the random field at nearby locations. The OK is one of the 

most commonly applied Kriging techniques that is characterized by an unknown and constant trend. The 

OK estimates the unknown values at a given location as a weighted linear combination of neighbouring 

observations [19]. 

The main goal in the OK method is to define the spatial correlation of the analysed process for the best 

estimation of the output surface. In this study, we used a commonly applied semivariance, which represents 

the spatial variation set against the distance or separation of input sample points [43]. The empirical 

semivariance ݕ(ℎ) is computed from the input data, as follows: [19]: 

(ℎ)ݕ = 	 12ܰ ෍[ܼ(ݔ௜) − ௜ேݔ)ܼ
௜ୀଵ + ℎ)]ଶ (4)

where, N is the number of possible pairs of points, ܼ(ݔ௜) is the value in output location and ܼ(ݔ௜ + ℎ))	 
is the value in location moved by vector h. Next, a theoretical, continuous function (curve) needs to be 

fitted to the empirical semivariance. Finally, predictions at unmeasured locations are made using a similar 

formula as for IDW (the measured values closest to the unmeasured locations have the most influence). 

However, kriging weights come from a semivariogram and the spatial arrangement of measured values 

that are nearby. 

Spatial interpolation by the OK method was performed in ArcMap Geostatistical Analyst tool using 

a similar approach as in the case of the IDW interpolation. As in the previous case, the ModelBuilder 

feature was applied and values interpolated by the OK method were saved as rasters (spatial resolution 

2 km) and then were averaged in the sub-basin boundaries using Zonal Statistics as Table tool. 

The Gaussian model was used as the primary semivariance model. Additionally, the Rational 

Quadratic model was used in days when the Gaussian model generated negative values of interpolation 

results. This kind of semivariance model change approach is similar to the one that was used by  

Ly et al. [44]. Negative values of interpolation results may come from negative weights assigned to very 

high precipitation values on distant stations. The change of the semivariance model in case of negative 

interpolation values was also applied to the model of interpolation developed in ModelBuilder. 

Because finding the best parameters of semivariance is time-consuming, complex and hard to 

automatize—especially for the 30-year period with daily time step—an automatic estimation option was 

used in ArcGIS Geostatistical Analyst. The following parameters were automatically optimised: range of 

influence, sill and nugget. Other parameters that were set prior to interpolation were: measurement error 

set to 20%, as average uncertainty of precipitation measuring instruments given by Larson and Peck [45] 

and lag size that was set to 9500 m after applying the Average Nearest Neighbour tool as suggested in 

ArcGIS help [46]. Furthermore, OK in contrast to other used methods allows to calculate prediction 

standard errors and visualise them on maps, which is a useful tool in validating the interpolation results 

and uncertainty of prediction. 



Water 2015, 7 755 

 

 

It should be noted, that there is one aspect in which the TP, IDW and OK methods differ from the 

Def method: they do not use the Weather Generator function built in SWAT. In case of missing values 

on a given day for a given station, estimated values are calculated only from known, observed data, thus 

stations with missing data are neglected in interpolation. 

2.4. Precipitation Station Density Factor 

As shown in Figure 2, the density of precipitation stations is variable over the area, which could 

potentially affect the results. We applied a Kernel Density (“KD”) function in ArcGIS [43,47] in order 

to calculate a smooth surface being a proxy of precipitation stations density. The KD function calculates 

the density of features in a neighbourhood around those features and expresses the result as magnitude per 

unit area. The KD function has two important parameters: Population field that enables to count some 

features more heavily than others, and search radius that defines the size of the circular neighbourhood. 

We used the number of available years for each station as the Population field and set the search radius 

to 20,000 m. Kernel density function generates a smooth surface (Figure 3A), whereas our interest is in 

mean values across each catchment upstream of a given flow gauging station. Hence, Figure 3B shows the 

calculated catchment-averaged values (hereafter denoted as KD), which can be viewed as a proxy for 

station density within a catchment. This index will be used as one of the catchment properties in an attempt 

to explain the differences in results between different catchments. 

 

Figure 3. A surface of kernel density function (A) applied for estimation of station density 

within each catchment (B) expressed in units (number of stations) per km2. 
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2.5. Strategy for Evaluation of Hydrological Simulations 

Four separate model setups of the SRC were prepared using four different precipitation data input 

alternatives and holding all other parameters and inputs unchanged. We will hereafter refer to each of the 

four setups (input/method alternatives) as “scenarios” with the following abbreviations: (1) Def (Default 

SWAT method); (2) TP (Thiessen Polygons); (3) IDW (Inverse Distance Weighted) and (4) OK (Ordinary 

Kriging). In each case the model was run for a time period 1982–2011 with two first years treated as a 

warm-up period. 

The main goal of this analysis was the assessment of the impact of different precipitation interpolation 

methods on the SWAT model performance in discharge simulation across different temporal and spatial 

scales. It is well known that hydrological models require calibration and validation prior to real application. 

Calibration of the SWAT model consists of adjustment of parameters (chosen in sensitivity analysis) 

within predefined ranges to the point when simulated and observed discharge values are satisfactory. 

This process can be very complex and time-consuming, especially in catchments with numerous water 

gauges [48]. Nowadays, with increasing computational power, calibration is usually executed using 

various automatic techniques. The most widely used SWAT calibration program is SWAT-CUP (Soil 

and Water Assessment Tool-Calibration and Uncertainty Programs) [49]. However, calibration itself 

was not the goal of this paper; it was rather a way of setting up a semi-automated testing model created 

using different interpolation methods against the observed discharge data. 

2.5.1. SWAT-CUP and SUFI-2 

SWAT-CUP is a freeware program which allows to use several different algorithms for optimization 

of the SWAT model. SWAT-CUP allows sensitivity analysis, calibration, validation and uncertainty 

analysis [49]. In this paper we applied SWAT-CUP version 2009 4.3 and selected an optimization 

algorithm SUFI-2 (Sequential Uncertainty Fitting Procedure Version 2), which is a kind of inverse 

modelling program that contains elements of calibration and uncertainty analysis [50]. Parameters and 

their initial ranges applied in SUFI-2 (Table 1) were chosen based on the previous applications of the 

SWAT model in Polish conditions [48,51], and on sensitivity analysis performed in the SRC. 

SWAT-CUP enables testing various objective functions in calibration. We used two different objective 

functions in order to evaluate different interpolation methods. The first one was Nash–Sutcliffe model 

efficiency coefficient (“NSE”). NSE can range from −∞ to 1, where 1 is the optimal value. Values between 

0 and 1 are acceptable and below 0 provide unsatisfactory results of simulation. Further thresholds for 

NSE in different contexts were provided e.g., by Moriasi et al. [52]. NSE is calculated as follows: ܰܵܧ = 1 − ∑ (ܳ௠௜ − ܳ௦)௜ଶ∑ (௜ ܳ௠,௜ − തܳ௠)ଶ (5)

where ܳ௠ is the mean of observed discharges, and ܳ௦ is simulated discharge. 

The second objective function was bR2 which is the coefficient of determination R2 multiplied by the 

coefficient of the regression line b. This modified coefficient of determination allows accounting for the 

discrepancy in the magnitude of two signals (depicted by b) as well as their dynamics (depicted by R2) [50]. 

It can range between 0 and 1, where 1 is the optimal value. Equation for bR2 is [50]: 
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ܾܴଶ = ൜ |ܾ|ܴଶ ݂݅ |ܾ| ≤ 1|ܾ|ିଵܴଶ ݂݅ |ܾ| > 1 (6)

where b is coefficient of the regression line, coefficient of determination is calculated as: ܴଶ = ൣ∑ (ܳ௠,௜ − തܳ௠)(ܳ௦,௜ − തܳ௦)௜ ൧ଶ∑ (ܳ௠,௜ − തܳ௠)௜ ଶ ∑ (ܳ௦,௜ − തܳ௦)௜ ଶ (7)

The optimal simulations found using both objective functions were also evaluated in terms of the root 

mean square error (RMSE) and percent bias (PBIAS), which measures the average tendency of the modelled 

data to be larger or smaller than their observed counterparts. Positive values indicate model underestimation 

bias, and negative values indicate model overestimation bias [53]. 

Table 1. Parameter definitions and initial ranges used in SUFI-2. 

Name Lower Limit Upper Limit Definition 

ESCO.hru 2 0.7 1 Soil evaporation compensation factor 

EPCO.hru 2 0 1 Plant uptake compensation factor 

SOL_Z().sol 1 −0.4 0.4 Depth from soil surface to the bottom of layer 

SOL_AWC().sol 1 −0.4 0.4 Available water capacity of the soil layer 

SOL_BD().sol 1 −0.4 0.4 Moist bulk density 

SOL_K().sol 1 −0.9 2 Saturated hydraulic conductivity 

HRU_SLP.hru 1 −0.3 0.3 Average slope steepness 

ALPHA_BF.gw 2 −0.9 2 Baseflow alpha factor 

GW_DELAY.gw 2 50 400 Groundwater delay time 

GWQMN.gw 2 0 1000 Threshold depth of water in the shallow aquifer required for return flow to occur 

GW_REVAP.gw 2 0.02 0.2 Groundwater “revap” coefficient 

RCHRG_DP.gw 2 0 0.3 Deep aquifer percolation fraction 

CN2.mgt 1 −0.15 0.15 Initial SCS (Soil Conservation Service) runoff curve nr for moisture condition II 

SURLAG.bsn 2 0.3 3 Surface runoff lag coefficient 

SLSUBBSN.hru 1 −0.3 0.3 Average slope length (m) 

CH_N2.rte 2 0.01 0.1 Manning's “n” value for the main channel 

CH_N1.sub 2 0.01 0.1 Manning's “n” value for the tributary channel (-) 

SMTMP.bsn 2 −2 2 Snow melt base temperature 

TIMP.bsn 2 0 1 Snow pack temperature lag factor 

SNOCOVMX.bsn 2 0 40 Minimum snow water content that corresponds to 100% snow cover 

Notes: 1 parameter multiplied by 1 + r, where r is a number between lower and upper limits; 2 parameter 

replaced by the new value from the range. 

Additionally, two uncertainty coefficients (default in SUFI-2) were used: p-factor and r-factor. p-factor 

denotes the percentage of observations covered in 95% range of uncertainty (95PPU), while r-factor 

indicates the thickness of the 95PPU band divided by the standard deviation of the measured data.  

In theory, p-factor ranges from 0%–100% and r-factor from 0 to ∞. The optimal situation is when  

p-factor is equal to 1 (100%) and r-factor to 0, [49]. It is important to note that while NSE and bR2 refer 

to one single parameter set that produces the best value of the objective function, p- and r-factors refer to 

the whole body of simulations resulting from the 95PPU, not one simulation. 
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2.5.2. The Observed Data and Catchment Properties 

Discharge data (m3/s) required for model testing in SUFI-2 were used in two temporal aggregations: 

daily and monthly, most widely used in hydrological modelling. They were obtained from 11 IMGW-PIB 

flow gauges for the period of 28 hydrological years from 1984–2011 (the hydrological year in Poland 

begins on 1 November). Names and codes of the gauges, corresponding rivers and available data periods 

as well as some basic catchment characteristics are presented in Table 2, whereas their location is shown 

in Figure 2. 

Table 2. List of IMGW-PIB flow gauges in the Sulejów reservoir catchment used in this 

study with data availability and selected catchment properties. 

No Gauge Name River Name Code A (km2) 
Period of  

Available Data 
Years 

Flow (m3/s) 
qm (m3/s/km2) cv (-) 

Mean St. Dev. 

1 Sulejów Pilica Pil-SUL 3934 11/1/1983–10/31/2011 28 21.9 14.9 5.5 0.68 

2 Przedbórz Pilica Pil-PRZ 2491 11/1/1983–10/31/2011 28 13.5 9.6 5.3 0.71 

3 Wąsosz Pilica Pil-WAS 974 11/1/2005–10/31/2011 6 5.7 4.7 6.5 0.82 

4 Szczeko-ciny Pilica Pil-SZC 360 11/1/1983–10/31/2009 26 1.8 1.3 5.0 0.69 

5 Kłudzice Luciąża Luc-KLU 507 11/1/1983–10/31/2011 28 2.6 2.5 5.2 0.95 

6 Dąbrowa Czarna Maleniecka CzM-DAB 946 
11/1/1983–10/31/2008; 

11/1/2009–10/21/2011 
27 5.6 5.6 5.8 1.00 

7 
Wąsosz-Stara 

Wieś 
Czarna Maleniecka Cza-WSW 119 11/1/1991–10/31/2003 12 0.91 1.2 7.6 1.09 

8 
Wąsosz-Stara 

Wieś 
Krasna Kra-WSW 120 11/1/1991–10/31/2011 20 0.77 1.2 6.3 1.51 

9 Janusze-wice 
Czarna 

Włoszczowska 
CzW-JAN 598 11/1/1983–10/31/2011 28 3.3 4.0 5.5 1.20 

10 Bonowice Żebrówka Zeb-BON 128 11/1/1983–10/31/2009 26 0.51 0.47 6.5 0.82 

11 Bonowice Krztynia Krz-BON 256 11/1/1990–10/31/2009 19 1.3 0.68 5.0 0.54 

Note: A is the upstream catchment area, qm is the area-specific runoff and cv is coefficient of variation in daily 

flows. St. Dev. is abbreviation of standard deviation 

Seven out of 11 gauges have data record longer than 26 years, whereas the other four have shorter 

availability. No division into calibration and validation periods was made, but instead the whole period of 

data availability for each station was used for evaluation of methods in SUFI-2. It is also worth noting that 

some of the analysed catchments are nested, hence only seven out of 11 gauges designate hydrologically 

independent (non-nested) catchments. Their upstream areas (A) vary from 119–3935 km2, mean  

area-specific runoff (qm) from 4.1–7.6 m3/s·km2 and the coefficient of variation of daily flows (cv) from 0.54 

to 1.51. The two last hydrological characteristics are indices that accumulate the complex interplay of 

physiographic (e.g., elevation, slope, land cover, soil permeability), climatic (e.g., evapotranspiration, 

precipitation) and water management (e.g., abstractions, reservoirs) properties. They will be used along 

with KD index illustrated in Figure 3 in an attempt to explain the differences in results (e.g., objective 

function values) between different catchments. 
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2.5.3. Study Design 

Eight SUFI-2 projects were created: four for each interpolation method and two for each type of 

observed flow data temporal aggregation (daily or monthly). For each of these projects, identical input 

settings were defined. A single iteration of the main SUFI-2 program was composed of 800 SWAT model 

simulations with different parameter values sampled (in SUFI-2 pre-processing program) across the 

parameter space using Latin hypercube sampling [49]. In all eight SWAT-CUP projects, after execution 

of the SUFI-2 program, we executed SUFI-2 post-processing program for each type of objective function 

(NSE and bR2) and for each of the 11 catchments (gauging stations) separately. More precisely, when 

the observed data input file contains data from multiple gauging stations, SUFI-2 enables assigning 

weights to different stations and thus calculating weighted objective function values: ܱܨ(ωଵ,… ,ω௡) =෍ω௜ ∙ ௜௡ܨܱ
௜ୀଵ  (8)

where ܱܨ௜ is the value of objective function for catchment (gauging station) ݅, OF is a weighted objective 

function, ω௜  is a non-negative weight coefficient ( 	∑ω௜ = 1	) and ݊  is the number of catchments 

(gauging stations; here 11). We have applied 11 different sets of weights for each objective function type: (1,0… ,0), (0,1,0,… ,0), … , (0,0, … ,0,1), i.e., in consecutive post-processing runs we were assigning the 

weight equal to 1 for one particular station and 0 for all other stations. This approach allowed us to conduct 

SUFI-2 procedure for all gauging stations at the same time in a single SWAT-CUP project instead of 

creating 11 projects and executing SUFI-2 11 times for each studied catchment separately. 

SUFI-2 is an iterative procedure in that after each iteration new parameter ranges are suggested and 

normally the program is executed again with these new ranges with a goal of improving the goodness-of-fit 

or uncertainty measures. We have also followed this guidance and executed SUFI-2 with new parameter 

ranges for each interpolation method—temporal aggregation—objective function combination, but since 

the results appeared to be negligibly different from the set of results coming from the first iteration, we do 

not present them in this paper. The advantage of this is that another iteration with new parameter ranges 

could lead to a problem of model calibration compensating for possibly a wrong input. This issue will 

be further referred to in Discussion. 

As indicated before, we treat the Default method as the point of reference for evaluating three 
interpolation methods: TP, IDW and OK. Let ܱܨ௑,௧ denote the value of objective function (NSE or bR2) 

for the interpolation method ܺ (Def, TP, IDW or OK) and temporal aggregation ݐ (݀ for day or ݉ for 

month). In the first step, since the sample size is small (݊ = 11) and the population cannot be assumed to 

be normally distributed, we applied a Wilcoxon signed-rank test that is a nonparametric analogue to the 

paired t-test [54]. Eleven catchments and three pairs of interpolation methods (Def vs. TP, Def vs. IDW 
and Def vs. OK) served as nominal variables, while ܱܨ௑,௧ served as measurement variable. The null 

hypotheses is that the median difference in ܱܨ௑,௧	between two given interpolation methods is zero. We 

applied this test at two significance levels: ݌ = 0.05 and ݌ = 0.1. Additionally, the ܱܨ௑,௧ values will be 

illustrated as box plots showing the median, interquartile range and minimum/maximum values. 

In the second step, we wanted to examine the relationship between catchment properties and the 
differences in ܱܨ௑,௧ between any two methods ܺ	 and ܻ hereafter denoted as ∆ܱܨ௑,௒,௧, i.e., 
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௑,௒,௧ܨܱ∆ = ௑,௧ܨܱ − ௒,௧ (9)ܨܱ

The positive values denote an improvement in model behaviour with method ܺ over the method ܻ. 
Pearson r correlation coefficients between catchment properties and ∆ܱܨ௑,௒,௧ and respective significance 

levels were calculated in each case. 

3. Results and Discussion 

3.1. Evaluation of Interpolation Results 

Spatial variability in mean annual precipitation is visible, but is not very high in the SRC. As shown 

in Figure 4A, the highest difference between any two catchments for Def equals 61 mm (for three other 

methods the difference is also ca. 60 mm). Clearly, spatial differences at shorter temporal scales usually 

grow larger. However, the most interesting is the difference (bias) in mean annual precipitation between 
any two methods ܺ and ܻ, hereafter denoted as ∆ ௑ܲ,௒: ∆ ௑ܲ,௒ = ௑ܲ − ௒ܲ (10)

Figure 4B shows the values of ∆ ௑ܲ,஽௘௙ calculated for all 11 catchments. In 10 out of 11 cases, there 

is a positive bias for each method and in one case (KrzBON) it exceeds 60 mm. In seven out of 11 cases, 

the bias is in the range (−20 mm, 20 mm). The differences between interpolation methods themselves are 

very small compared to the differences between them and the Def method. Only in three out of 33 cases ∆ ௑ܲ,஽௘௙	 exceeds 10 mm in terms of the absolute values. There is no general pattern for the sign of the 

difference, however it is more frequent that OK and IDW have higher values than TP. The analysis of 

interpolated maps for certain events with high precipitation showed that the differences can be considerably 

higher than for a long term period showed in Figure 4. The IDW method produced the smoothest pattern, 

whereas the Default method the sharpest pattern. Which is in agreement with observations of Zhang and 

Srinivasan [20]. 

We have also evaluated correlation between station density indicator ܦܭ and precipitation bias indicator ∆ ௑ܲ,஽௘௙ . For each method, we have found a significant (at significance level ݌ = 0.05 ) negative 

correlation between these two variables, with Pearson correlation coefficients in the range (−0.68, −0.61). 

This shows that for higher station densities there was a little difference in mean annual precipitation 

between interpolation methods and the Def method, whereas for lower densities the interpolated mean 

annual precipitation was higher than precipitation according to the Def method. 

Each interpolation method carries a certain amount of uncertainty, but the only method that enables 

quantifying this uncertainty is the OK. Hence, Figure 5 presents raw precipitation data measured at gauge 

stations, interpolated values and prediction standard errors (“SE”) for four selected wet days with 

different precipitation patterns. The only common pattern valid for four different days is increasing value 

of SE in the outward direction from the SRC catchment (i.e., in places with no gauges, where we deal 

with extrapolation instead of interpolation). It can be seen that on days 9 July 1994 and 7 November 

1998 SE is nearly spatially constant, but also significant (ca. 4 mm on 9 July 1994 and 6 mm on 

November 1998). In contrast, on 4 January 1983 mean SE values are much smaller, not exceeding  

0.6 mm in any point of the catchment. The most interesting pattern can be observed for the day 17 April 

1989, when there is a clear relationship between SE values and gauge density (cf. Figure 3A). In the 
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buffer zone of ca. 2 km around each station, SE did not usually exceed 0.8 mm, while in some areas in 

the catchment where distance to the nearest station exceeded 15 km, SE values increased up to 3.8 mm. 

This analysis was made for a small number of events, but it shows a large spectrum of possibilities in 

how prediction errors may look on days with different precipitation patterns. 

 

Figure 4. Mean annual precipitation for the period 1982–2011 calculated for 11 studied 

catchments for the Default method (A); The difference in mean annual precipitation between 

three interpolation methods (TP, IDW, OK) and Def (B). 
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Figure 5. Spatial distribution of precipitation on four selected wet days (4 January 1983);  

17 April 1989; 9 July 1994; 7 November 1998) estimated using Ordinary Kriging (A,C,E,G) 

and respective prediction standard errors for the same days (B,D,F,H). 

3.2. Effect of Interpolation Methods on Model Performance 

3.2.1. Statistical Summary for All Catchments  

Figure 6 illustrates the ܱܨ௑,௧ values obtained for best parameter combinations for different interpolation 

scenarios and different temporal aggregations. The ܱܨ௑,௧ values are depicted as box plots, calculated 

across 11 analysed gauging stations. A general observation coming from this figure is that precipitation 

interpolation methods improve, to a variable extent, simulations of daily and monthly discharge across a 

range of scales. More specifically, OK outperformed all three other methods in terms of daily and monthly 
NSE (Figure 6a,c). The median difference of ∆ܱܨை௄,௒,ௗ was in this case equal to 0.06, 0.05 and 0.05 for ܻ being Def, TP or IDW, respectively. The median difference of ∆ܱܨை௄,௒,௠ was equal to 0.08, 0.05 and 

0.15, respectively. In the case of bR2 all three interpolation methods led to a significant improvement 

over the default method, however the difference between each of them individually was very small 
(Figure 6b,d). The median difference of ∆ܱܨ௑,஽௘௙,ௗ  was equal to 0.05 for ܺ being TP, IDW or OK.  

The median difference of ∆ܱܨ௑,஽௘௙,௠ was equal to 0.07 for ܺ being TP or OK and 0.06 for ܺ being 

IDW. A comparison of results between daily and monthly aggregations leads to a conclusion that the 

effect is broadly similar and its magnitude is only a bit stronger for monthly aggregation. 

Figure 7 shows the box plots of PBIAS calculated for the optimal simulations found using NSE or bR2 

as the objective functions. It can be noted that the positive values of PBIAS largely predominate, which 

shows that the model generally underestimated the discharge. This underestimation was always higher 

for bR2 than for NSE. For NSE, it was significantly lower for the monthly temporal aggregation than for 

the daily aggregation. For bR2 no such trend was observed. As regards comparison between methods,  

the results were quite variable. For monthly NSE, clearly OK produced the values of PBIAS closest to zero 

as compared to all other methods. For daily NSE, OK was characterised by lower variability of PBIAS 
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than other methods, particularly lower than IDW. For monthly bR2, the PBIAS box plot statistics were 

slightly lower for Def than for other methods, whereas for daily bR2 no clear trend could be found, even 

though the variability for IDW and OK was slightly higher than for Def and TP. 

 

Figure 6. Box plots of selected objective functions across all 11 flow gauging stations for 

different interpolation methods (Def—Default version, TP—Thiessen Polygons, IDW—Inverse 

Distance Weighted, OK—Ordinary Kriging) and different temporal aggregations (a,b: daily; 

c,d: monthly). 

 

Figure 7. Cont. 
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Figure 7. Box plots of PBIAS across all 11 flow gauging stations for different interpolation 

methods (Def—Default version, TP—Thiessen Polygons, IDW—Inverse Distance Weighted, 

OK—Ordinary Kriging) and different objective function/temporal aggregation combinations 

(a—ܰܵܧௗ; b—ܾܴௗଶ; c—ܰܵܧ௠; d—ܾܴ௠ଶ ). 

We have also evaluated the values of RMSE for each of the optimal solutions found using NSE or bR2 

as objective functions. In general, the values of RMSE were always lower for NSE than for bR2, and always 

lower for the monthly temporal aggregation than for daily aggregation. When it comes to the comparison 

between methods, since RMSE is not dimensionless, it cannot be compared between different catchments. 

Hence, we have calculated percent changes in RMSE for each pair of methods (Figure 8). As with PBIAS, 

the results are different for different objective functions. For NSE, RMSE for OK is significantly lower 

than for all other methods for both temporal aggregations, which is in agreement with observations from 

Figure 6a,c. For daily bR2 all interpolation methods are characterised by lower RMSE than Def and OK 

has slightly lower RMSE than IDW. For monthly bR2 the results are highly variable between catchments 

and no clear relationship can be distinguished. 

 

Figure 8. Cont. 
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Figure 8. Box plots of percent changes in RMSE across all 11 flow gauging stations for 

different interpolation methods (Def—Default version, TP—Thiessen Polygons, IDW—Inverse 

Distance Weighted, OK—Ordinary Kriging) and different objective function/temporal 

aggregation combinations (a—ܰܵܧௗ; b—ܾܴௗଶ; c—ܰܵܧ௠; d—ܾܴ௠ଶ ). 

Another dimension of analysis is provided by studying the uncertainty coefficients p and r-factor 

(Figure 9). These two factors are strongly related to each other and should be interpreted jointly, i.e., as a 

multi-objective problem. One can say that method A is better than method B only if  

(1) p-factor for method A is higher than p-factor for method B and r-factor for method A is not 

higher than r-factor for method B. 

(2) p-factor for method A is not lower than p-factor for method B and r-factor for method A is lower 

than r-factor for method B. 

Mathematically, it can be said that a solution for method A is Pareto optimal. Following this rule, the 

OK method outperforms the IDW method for both daily and monthly aggregations, whereas it outperforms 

the TP method but only for monthly aggregation. For these three cases, the aforementioned rule holds 

true for the mean objective function values across all catchments as well as for most of the box plots 

characteristics shown in Figure 9. However, the p- and r-factors do not provide sufficient evidence to 

evaluate the three interpolation methods in relation to the Default method. It can be noted that r-factor 

is significantly lower for Def than for all other methods for each temporal aggregation, which shows that 

the width of 95PPU uncertainty band is lower in this case, but in most cases p-factor is also lower, which 

shows that a fewer percent of observed values fall into the uncertainty band. This phenomenon can be 

explained by lower precipitation for the Def method than for other methods, which leads to lower river 

flows and hence thinner uncertainty bands. Comparing the results between daily and monthly aggregation 

one can say that both p- and r-factors were slightly lower for the latter ones. 
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Figure 9. Box plots of uncertainty coefficients across all 11 flow gauging stations for different 

interpolation methods (Def—Default version, TP—Thiessen Polygons, IDW—Inverse 

Distance Weighted, OK—Ordinary Kriging) and different temporal aggregations (a,b: daily; 

c,d: monthly). 

3.2.2. Relationship between the Objective Functions and Catchment Characteristics 

The previous section outlined the differences between studied interpolation scenarios on the most general 

level. In this section, we analyse the results for individual catchments and try to explain the differences in 

results between catchments and between interpolation methods by examining relationships between ∆ܱܨ௑,௒,௧ (cf. Equation (9)) and a set of catchment descriptors. The following five descriptors were studied: 

upstream catchment area (ܣ), mean area-specific runoff (ݍ୫), coefficient of variation of daily/monthly 

flows ( ܿ୴ ) (cf. Table 2), mean kernel density (KD) as a proxy of precipitation station density  

(cf. Figure 3), and the difference in mean annual precipitation between different combinations of methods 
(∆ ௑ܲ,௒, cf. Equation (10)). Table 3 presents Pearson correlation matrix for all these variables apart from ݍ௠ for which no significant correlation was found. ∆ ௑ܲ,௒ and KD were two catchment descriptors with the 

highest number of significant correlations with the output variables. KD was the most frequently negatively 
correlated with ∆ܾܴ௑,௒,௧ଶ . ∆ ௑ܲ,௒ had significant positive correlations with ∆ܾܴ௑,௒,௧ଶ , whereas for ∆ܰܵܧ௑,௒,௧ 
one significant correlation was positive, while two were negative. 
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Table 3. Pearson correlation matrix between selected catchment properties (precipitation 

station density indicator KD (km−2), upstream catchment area ܣ, (km2), coefficient of variation 

of daily/monthly flows ܿ୴  (-) and the difference in mean annual precipitation between 
methods ܺ and ܻ ∆ ௑ܲ,௒ (mm) and the differences in objective functions ∆ܱܨ௑,௒,௧. 
Catchment 
Properties 

–ࡷࡻ ࡼࢀ–ࡷࡻ ࡼࢀ–ࢃࡰࡵ ࢌࢋࡰ–ࡷࡻ ࢌࢋࡰ–ࢃࡰࡵ ࢌࢋࡰ–ࡼࢀ ∆ ୴ 0.19 0.28 −0.10 0.18 −0.46 −0.44ܿ ‡ 0.73 ‡ 0.60 0.44− 0.14 0.49− 0.25− ܣ ௑,௒,ௗ KD −0.15 −0.36 −0.14 −0.36 0.00 0.28ܧܵܰ∆ ࢃࡰࡵ ௑ܲ,௒ 0.03 0.10 −0.04 0.14 0.07 −0.88 ‡ ∆ܾܴ௑,௒,ௗଶ  KD −0.54 † −0.56 † −0.60 † −0.07 −0.32 0.17 0.08 0.22− 0.09− 0.16− 0.13− 0.13− ܣ ܿ୴ −0.58 † −0.60 ‡ −0.59 † 0.14 −0.05 0.20 ∆ ௑ܲ,௒ 0.81 ‡ 0.78 ‡ 0.79 ‡ 0.19 0.51 0.24 ∆ܰܵܧ௑,௒,௠ KD 0.20 −0.29 −0.43 −0.69 ‡ −0.50 −0.10 0.34 0.04− 0.40− 0.35 0.03 0.27 ܣ ܿ୴ 0.51 0.49 −0.27 −0.23 −0.71 ‡ −0.88 ‡ ∆ ௑ܲ,௒ −0.60 † −0.25 0.32 0.34 0.74 ‡ −0.37 ∆ܾܴ௑,௒,௠ଶ  KD −0.54 † −0.59 † −0.70 ‡ −0.52 † −0.80 ‡ −0.56 † 0.03− 0.13− 0.20− 0.26− 0.29− 0.27− ܣ ܿ୴ −0.25 −0.16 −0.33 0.26 −0.38 −0.55 † ∆ ௑ܲ,௒ 0.63 ‡ 0.53 † 0.70 ‡ 0.32 0.64 ‡ 0.46 

Notes: † Significant at significance level ݌ = 0.1. ‡ Significant at significance level ݌ = 0.05. 

We have selected all cases from Table 3 with significant correlations (at significance level ݌ = 0.05) 
and showed the respective relationships as scatter plots in Figure 10. First of all, it should be noted that 
in most plots the values of ∆ܱܨ௑,௒,௧ are positive for the majority of points, which shows that method ܺ 

has higher objective function value than method ܻ. More specifically, the outcomes should be discussed 

in four groups related to different objective functions and temporal aggregations: 

 ௑,௒,ௗ (Figure 10A,B): OK is superior over IDW and TP in catchments with larger drainageܧܵܰ∆ (1)

areas; OK is superior over IDW in catchments with small mean precipitation difference between 

these two methods. 
(2) ∆ܾܴ௑,௒,ௗଶ  (Figure 10C,D): IDW is superior over Def in catchments with lower daily ܿ୴ (more stable 

flow regime); TP, IDW and OK are superior over Def in catchments with high positive difference 

in mean precipitation. 
 ;௑,௒,௠ (Figure 10E–G): TP is superior over IDW in catchments with higher station densitiesܧܵܰ∆ (3)

OK is superior over IDW and TP in catchments with lower monthly ܿ୴  (more stable flow 

regime); OK is superior over TP in catchments for which the difference in mean precipitation 

between OK and TP is positive. 
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(4) ∆ܾܴ௑,௒,௠ଶ  (Figure 10H,I): OK is superior over Def (more apparently) and TP (less apparently) in 

catchments with low station density. TP and OK are superior over Def in catchments with high 

positive difference in mean precipitation. 

Figure 10. Cont. 
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Figure 10. Scatter plots of ∆ܱܨ௑,௒,௧ and various catchment descriptors for relationships with 

significant correlation (at significance level ݌ = 0.05) from Table 3. Note: DNS_X_Y = ∆ܰܵ௑,௒, Dbr_X_Y = ∆ܾܴ௑,௒ଶ . 

3.3. Discussion 

Table 4 shows basic information and data extracted from peer-reviewed papers on the impact of 

precipitation interpolation methods on flow simulation identified through a literature review. For a better 

context, our study was placed in the first row. In this summary, we present only those studies that fulfil 

the following criteria: (1) apply at least two different precipitation spatial interpolation schemes to daily 

precipitation for a period of at least three years; (2) force semi-distributed or distributed continuous time 

hydrological models with different input alternatives and test their efficiency in flow simulation.  

We have excluded studies using event-scale models running usually at sub-daily time step for prediction 

of individual flood event hydrographs (e.g., [55]). Some of the studies included in Table 4 presented also 

results for the lumped model version in parallel to a semi-distributed version [25], others reported results 

for output variables other than only flow (e.g., sediment, nutrient loadings [27]) or used other precipitation 

products apart from interpolation (e.g., GCM—General Circulation Model and reanalysis products: [22]). 

In all these cases, we have neglected this additional information that was not relevant for comparison with 

our study. The results from Hwang et al. [26] were divided into two separate records as two contrasting 

catchments were modelled separately in this study. The results from Wagner et al. [28] were however 

kept in one record because one model setup covered two neighbouring catchments. 
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Table 4. Literature review of studies evaluating precipitation interpolation methods for hydrological modelling. 

ID 
Publication Code 

and Material 

Catchment 

(Country) 

Area 

(km2) 

Number of 

Precipitation 

Gauges 

Station Density 

(Stations/1000 km2) 

Model 

Name 

Simulation 

Period 

(Years) 

Number 

of Flow 

Gauges 

Analysis 

Time 

Step 

Interpolation 

Methods 

Evaluation 

Criterion 
Main Conclusion 

1 
This paper;  

Figures 6 and 8 
Pilica (PL) 4,928 46 9.3 SWAT 30 11 d, m 

Def (NN), 

TP,IDW, OK 
NSE, bR2 

OK, IDW, TP outperformed  

Def for bR2 for both daily and 

monthly time step; OK slightly 

better than others for NSE  

(daily and monthly) 

2 
Haberlandt1998 [22]; 

Figure 7A 

Mackenzie 

(CA) 
1,800,000 81 0.05 SLURP 16 29 m NN, OK 

Relative 

standard 

error 

OK superior over NN but  

mainly in smaller subbasins 

(below 50,000 km2) 

3 

Hwang2012 [26]; 

Table 7,  

Figures 17 and 18 

Animas  

(CO, USA) 
1,792 37 20.6 

PRMS 

(distributed

) 

26 1 d, s, a 
IDW, MLR, 

CMLR, LWP 

RMSE, 

NSE, Flow 

statistics 

All methods similar in terms of 

NSE and RMSE; all methods 

provide accurate timing of flood 

events but the magnitude is 

underestimated 

4 

Hwang2012 [26]; 

Tables 6 and 7, 

Figures 17 and 18 

Alapaha 

(GA, USA) 
3,626 28 7.7 

PRMS 

(distributed

) 

22 1 d, s, a 
IDW, MLR, 

CMLR, LWP 

RMSE, 

NSE, Flow 

statistics 

LWP and MLR superior over 

CMLR in terms of NSE and 

RMSE; all methods provide 

accurate timing of flood  

events but the magnitude  

is underestimated 

5 
Masih2011 [23] 

Table 3, Figures 5–7 
Karkheh (IR) 4,2620 41 0.96 SWAT 15 15 d, m 

Def (NN), 

IDEW 

R2, NSE, 

Flow 

statistics 

Little difference between  

two methods for R2, but IDEW 

superior over Def for NSE, 

especially in smaller subbasins 

(below 2500 km2) 
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Table 4. Cont. 

ID 
Publication Code 

and Material 

Catchment 

(Country) 

Area 

(km2) 

Number of 

Precipitation 

Gauges 

Station Density 

(Stations/1000 km2) 

Model 

Name 

Simulation 

Period 

(Years) 

Number 

of Flow 

Gauges 

Analysis 

Time 

Step 

Interpolation 

Methods 

Evaluation 

Criterion 
Main Conclusion 

6 
Ruelland2008 [25]; 

Table 5, Figure 10 

Bani  

(ML, CI, BF) 
100,000 13 0.13 

Hydrostrahl

er 
6 7 10d 

TP, IDW, 

Spline, OK 

NSE, VE, 

PE 

The best results in terms of selected 

criteria were obtained for IDW, 

intermediate for TP and OK and 

the worst for Spline; all methods 

underestimated flood peaks 

7 

Shen2013 [27]; 

Tables 2 and 3, 

Figure 3a,b 

Daning (CN) 4,426 19 4.3 SWAT 7 3 m 

Def (NN), 

TP, IDW, 

Dis-Kriging, 

CoKriging 

NSE, flow 

statistics 

All methods showed an 

improvement over the  

Default method in terms of NSE 

(the highest for CoKriging);  

all methods underestimate most of 

flow characteristics 

8 

Wagner2012 [28]; 

Tables 4 and 5, 

Figure 8 

Mula and 

Mutha (IN) 
2,036 16 7.9 SWAT 21 4 d 

RIDWx, 

RIDWtrmm, 

RKx, RKtrmm 

NSE, 

PBIAS, 

flow 

statistics 

RIDWTrmm and RKTrmm 

outperform RIDWX and RKX in 

terms of NSE and PBIAS;  

RKX overestimates runoff and 

does not reproduce right timing of 

floods in contrast to RKTrmm 

Notes: Country codes: PL—Poland, CA—Canada, CO—Colorado, GA—Georgia, IR—Iran, ML—Mali, CI—Cote d’Ivoire, BF—Burkina Faso, CN—China, IN—India). 

Analysis time step: d—daily, m—monthly, s—seasonal, a—annual. Objective functions: NSE—Nash-Sutcliffe Efficiency, R2—coefficient of determination, RMSE—root 

mean squared error; VE—volume error, PE—relative peak error; PBIAS—percentage bias. Methods: Def—Default, NN—Nearest Neighbour, TP—Thiessen Polygons,  

IDW—Inverse Distance Weighted, OK—Ordinary Kriging, MLR—Multiple Linear Regression, CMLR—Climatological Multiple Linear Regression LWP—Locally Weighted 

Polynomial Regression, IDEW—Inverse Distance and Elevation Weighting, RIDWx, RIDWtrmm—Regression Inverse Distance, RKx, RKtrmm—Regression Kriging methods. 
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All studies reported in Table 4 apart from ours were located in Asia (three cases), North America (three 

cases) or Africa (one case). Out of eight cases, five have drainage areas in the range 1792–4928 km2, whereas 

three others have drainage areas in the range 42,620–1,800,000 km2. The first group, containing our 

study, can thus be classified as meso-scale applications, and the second one as macro-scale applications. 

We used these values as well as the numbers of precipitation stations used for interpolation in order to 

estimate the values of mean station density indicator for each case: these varied considerably between 

studies, from 0.05 stations per 1000 km2 [22] to 20.6 stations per km2 [26]. In this respect, our study  

(9.3 stations per km2) belongs to the group of higher station densities together with [26–28]. SWAT was the 

most frequently used hydrological model (four cases), whereas other models were: semi-distributed SLURP 

(Semi-distributed Land Use-based Runoff Processes), Hydrostrahler, and fully-distributed PRMS 

(Precipitation Runoff Modeling System). The length of simulation period was the longest in our study 

(30 years) and exceeded almost by a factor of two the mean value across all other studies. Since calibrated 

parameter values are very sensitive to climatic conditions and those calibrated for dry and short periods 

might not be suitable for simulating the opposite conditions [34,56], we conclude that study designs for 

this type of assessments should contain longer simulation periods (20–30 years) rather than only several 

years. The number of flow gauging stations varied between 1 and 29. Our study used 11 stations, 

however when referring the number of stations to catchment unit area, our study had the largest station 

density. Temporal aggregations were diversified, however daily and monthly aggregation used in our 

study were the most frequent. The range of applied interpolation schemes was also wide and included 

also regression-based methods [26,28] and more sophisticated than OK geostatistical methods  

(Dis-kriging, Cokriging; [27]). Only three studies including ours have applied the model default (usually 

NN) method that served as a reference for other more complex methods. The assessment criteria for 

method evaluation were non-uniform as well. However, all studies apart from Haberlandt et al. [22] used 

NSE as one of objective functions. In five cases, various flow statistics (e.g., mean flow and extreme 

flows) were reported and compared to measured values. None of the studies apart from ours used bR2. 

Looking at the main conclusions from these studies, one should notice that only in one case (Animas 

catchment in Colorado, USA [26]) only relatively minor differences between discharge simulated using 

various input alternatives was observed. In all other cases, there existed methods that were assessed as 

superior over other methods. Shen et al. [27] and Masih et al. [23] reported that all investigated 

interpolation methods were superior (in some sense) over the SWAT default method, which is in agreement 

with our results. Masih et al. [23] and Haberlandt et al. [22] showed that this improvement can be observed 

mainly in smaller catchments (i.e., below 2500 km2 and 50,000 km2, respectively. Figure 10 A for daily 

NSE shows a relationship in the opposite direction: OK outperforms TP and IDW mainly in catchments 

with larger drainage areas. This discrepancy can be explained by a considerable scale and station density 

differences between our study and aforementioned studies (cf. Table 4), i.e., the relationships found by 

Haberlandt et al. [22] and Masih et al. [23] are not necessarily valid for smaller spatial scales and/or for 

catchments with significantly higher station densities. 

None of investigated papers did, however, make an attempt to study the effect of selected catchment 

properties on the evaluation of methods (apart from the catchment area discussed above). Negative 
correlation between station density indicator KD and some of the ∆ܱܨ௑,௒,௧ (Table 3, Figure 10E,H) imply 

that in catchments characterised by higher station densities spatial interpolation of precipitation does not 

bring much benefit. A similar conclusion was reported in the study of Masih et al. [23] in Iran, who 
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showed that mainly in smaller catchments with low station densities an the IDEW method outperformed 

the NN method. An interesting observation comes from the comparison of results for two catchments: 

Krz-BON (Krztynia upstream of Bonowice) and Pil-SZC (Pilica upstream of Szczekociny). They are 

neighbouring catchments, with quite similar area, physiographic properties and flow regime (cf. Table 2 

and Figure 2) but differ largely in terms of station density (cf. Figure 3). We therefore assume that the fact 

that Pil-SZC has two precipitation stations inside its borders and Krz-BON has none explains the huge 

difference in results between these catchments. 
The effect of ܿ୴ on ∆ܱܨ௑,௒,௧ is perhaps less intuitive and requires more in-depth analysis. Table 3 and 

Figure 10C,F show that catchments with lower daily/monthly flow variability are more prone to 

improvements brought by interpolation methods than catchments with higher variability. This is 

particularly visible for evaluation with monthly NSE (Figure 10F), for which the correlation between ܿ୴ 
and ∆ܰܵܧை௄,ூ஽ௐ,௠ is very high (−0.88). The improvement of using OK over using IDW (and TP) is thus 

particularly high for catchments with more stable flow regime. The ruling mechanism lying behind is 

not so clear, though. More stable flow regime (low ܿ୴ ) usually means higher baseflow and smaller 

frequency and magnitude of flood events. Since applying interpolation schemes is assumed to affect mainly 

the flood events and since the objective functions used are very sensitive to highest flows, perhaps an 

improvement in simulation of flood events brought by interpolation schemes is more likely to have a 

measurable effect in catchments with more stable flow than in catchments with highly variable flow. 
The highest number of significant correlations between catchment descriptors and ∆ܱܨ௑,௒,௧  was 

found for ∆ ௑ܲ,௒ (Table 3, Figure 10 B,D,G,I). Significant correlations were found for all four possible 

combinations of objective functions and temporal aggregations. With one exception (Figure 10B for ∆ ைܲ௄,ூ஽ௐ) all correlations were positive and the values of ∆ ௑ܲ,௒ were also predominantly positive. It should 

also be noted that there is a significant negative correlation between KD and ∆ ௑ܲ,௒ (cf. Section 3.1). This 

is in agreement with the results of Hwang et al. [26], who reported that the differences in estimated 

precipitation were significantly larger in the Alapaha basin than in the Animas basin, while station density 

was 2.7 times higher in the latter basin (Table 4). In summary, our results show that in many cases, when 

precipitation input derived by method ܺ is higher than that derived by method ܻ, it leads to a higher model 

efficiency for method ܺ	than for method ܻ. For any catchment, true areal precipitation is unknown and 

each interpolation method provides only its approximation. However the results may suggest that better 

model performance is associated with more correct approximation, while worse results with 

underestimated precipitation. 

One of the problems associated with this type of input data evaluation is compensation for possibly 

wrong input by model calibration. This problem was described in more detail and exemplified with a set 

of meaningful cases by Heistermann and Kneis [57]. Wagner et al. [28] partly overcome this issue by 

not calibrating the model to observed rainfall-runoff events but using parameter values based on regional 

knowledge, literature review or just set to default. Most of the authors listed in Table 4 [23,25,26] did 

perform formal model calibration for each of evaluated interpolation schemes, so their results might be 

biased by the “compensation” issue. In contrast, Haberlandt et al. [22] and Shen et al. [27] performed 

calibration for only one method and then applied the identified parameter set for other methods. Such an 

approach carries the risk of advantaging the method for which calibration was performed, though. Hence, 

the approach used in this paper lies somewhere in between: we did apply semi-automated calibration 

program, SUFI-2, but used only one iteration per interpolation method and kept the same parameter 
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ranges throughout all iterations. It probably does not eliminate the parameter compensation problem 

totally, but we believe that it is partly eliminated due to the fact that further SUFI-2 iterations with adjusted 

parameter ranges would have inevitably led to more pronounced parameter compensation issues. 

Moriasi et al. [52] suggested the thresholds for the goodness-of-fit criteria for hydrological models, 

indicating that the values of PBIAS higher than 25% in terms of absolute values yield the model 

unsatisfactory. In our study, PBIAS was not at all used as an objective function, but it was calculated for 

all parameter sets providing the best fit with observed values, for all combinations of objective functions 

and temporal aggregations (Figure 7). PBIAS was highly dependent on the type of objective function 

and temporal aggregation, e.g., for ܰܵܧௗ  (Figure 7C) all values shown in the box plots were lower  

than 25% in terms of the absolute values. In contrast, for ܾܴௗଶ (Figure 7B) for all interpolation methods 

majority of catchments had unsatisfactory model performance in terms of PBIAS according to criteria 

of Moriasi et al. [52]. However, as emphasised by Moriasi et al. [52], the criteria should always be 

adjusted to the project goals, and in our case model calibration and application was not the goal, but it 

was testing of different input alternatives. Furthermore, other studies with a similar scope (e.g.,  

Masih et al. [23], Wagner et al. [28]) also reported very high PBIAS values for certain catchments. 

We have also evaluated the best fit parameter sets using RMSE, in a similar manner as for PBIAS. For 

the objective functions ܰܵܧௗ, ܰܵܧ௠ and 	ܾܴௗଶ, the results for RMSE (Figure 8A–C) supported the results 

showed in Figure 6A–C. In contrast, for 	ܾܴ௠ଶ , even though Figure 6D showed that IDW, TP and OK 

outperformed Def, the relative changes in RMSE shown in Figure 8D do not confirm this. The reason is 

that there were a few catchments for which a method X outperformed a method Y in terms of ܾܴ௠ଶ , but at 

the same time method Y outperformed method X in terms of RMSE and PBIAS. This is a well-known, 

inherent problem of multi-objective calibrations: moving from one solution to another results in the 

improvement of one objective function (in this case ܾܴ௠ଶ ) while causing a deterioration in the value of 

at least one other objective function (in this case RMSE or PBIAS) [58]. 

4. Conclusions 

In this study, the effect of daily precipitation interpolation methods on the semi-distributed SWAT 

model efficiency of daily and monthly discharge simulation over a 30-year period was examined in 11 

meso-scale catchments in central Poland. The results showed that the most complex OK method 

outperformed other methods in terms of NSE, whereas OK, IDW and TP outperformed Def in terms of 

bR2, regardless of temporal aggregation. The difference between these three interpolation methods and 

Def was, however, spatially variable and a part of this variability was attributed to catchment properties: 

catchments characterised by low station density, low coefficient of variation of daily/monthly flows and 

a higher interpolated precipitation estimation experienced more pronounced improvement as a result of 

using interpolation methods. The implication of this study is that appropriate consideration of spatial 

precipitation variability (often neglected by model users) that can be achieved applying interpolation 

methods can significantly improve the reliability of model simulations across different scales. Ordinary 

Kriging should be considered as the optimal method, however we recommend testing various methods, 

as the results tend to be catchment-specific. From the practical point of view, this study identified certain 

circumstances (sparse precipitation gauge networks, catchments with stable flow regimes, higher 
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precipitation estimation) under which one can expect a larger improvement in model efficiency criteria 

by applying precipitation interpolation schemes. 
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