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In many real-world complex systems, the time-evolution of the network’s structure and the dy-
namic state of its nodes are closely entangled. Here, we study opinion formation and imitation
on an adaptive complex network which is dependent on the individual dynamic state of each node
and vice versa to model the co-evolution of renewable resources with the dynamics of harvesting
agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth
models and we mainly find that in such systems, the rate of interactions between nodes as well
as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the
system’s equilibrium state. We derive a macroscopic description of the system which provides a
general framework to model and quantify the influence of single node dynamics on the macroscopic
state of the network. The thus obtained framework is applicable to many fields of study, such as
epidemic spreading, opinion formation or socio-ecological modeling.

PACS numbers: 89.75.Fb, 89.75.Hc, 89.65.-s, 87.23.Ge

I. INTRODUCTION

Complex network theory has proven to be a powerful
tool for studying properties, dynamics and evolution of
many real-world complex systems [1, 2]. Of particular in-
terest is to investigate adaptive or temporal networks and
their respective dynamics [3–5]. Typical processes stud-
ied in this field are epidemic spreading [6–8] or opinion
formation, e.g., based on the adaptive voter model [9, 10].
Interactions are modeled by randomly picking a pair of
linked nodes and, with fixed probabilities, either chang-
ing the state of one of the two nodes or modifying their
neighborhood structure by adaptive rewiring. However,
recent results have emphasized that opinion formation
and imitation processes in fact do not take place with
fixed probabilities but can depend on the payoff or per-
formance of different opinion-related choices made by the
agents or nodes involved [11–13].

In addition to the structure and dynamics of networks
there has been a variety of studies on the dynamics on
networks, where nodes in the network represent indi-
vidual dynamical systems and links indicate directed or
symmetric interactions between them [14, 15]. It has
been suggested that the interplay between the dynamics
of and on networks should be much more investigated,
since the dynamics of each of the coupled subsystems is
expected to change significantly when compared to their
autonomous time-evolution [3].
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In this work, we propose a model that combines both
aspects. For this purpose we refine the adaptive voter
model so that there is no fixed probability for pairs of
nodes to either imitate each other’s opinion or adaptively
rewire their acquaintance structure. Instead, each node
also represents a dynamical system which, for illustra-
tion, is chosen here to be simple and easily understood
if treated in an isolated fashion. In particular, we choose
a logistic growth model, which is a paradigm for the dy-
namics of a bounded renewable resource [16]. Whenever
interactions between nodes take place, the states of the
respective dynamical systems are also taken into account.
As a consequence, imitation processes depend explicitly
on the nodes’ states as well as on the current network
structure. At the same time each of the nodes’ opinions
influences a parameter of the local dynamical system.

The proposed model serves as a narrative for possi-
bly emerging dynamics in co-evolutionary human-nature
interactions [17–19]. It complements conceptual stud-
ies on the effects of economic growth on the ecospheric
state [20, 21] as well as work on resource exploitation
models that take into account the co-evolution of stylized
resource dynamics with a similarly paradigmatic popu-
lation growth model [22, 23]. The proposed model, for
the first time, takes into account individual pairwise in-
teractions of agents on a social network when studying
the stability and dynamics of such intertwined systems.

So far, in the context of sustainability science [24],
studies on the effect of different exploitation strategies
on the state of a certain ecospheric component have been
carried out by, e.g., studying the extraction of water in
rivers by a network of interconnected harvesters [25–27].
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However, no systematic analysis of the underlying net-
work structure and resulting dynamics was performed.
In addition, no network dynamics, such as adaptation or
imitation processes, were included in these studies and
the focus was mainly set on studying the state of the eco-
sphere for different harvesting strategies that were evolv-
ing deterministically in order to optimize all harvesters’
payoffs.

In contrast, imitation dynamics with high numbers of
agents or players have been studied in the context of
evolutionary game theory [12, 13, 28, 29]. However, in
no such cases the dynamics of resources or other exter-
nalities has been taken into account and, hence, no co-
evolution of different subsystems has been studied. Here,
the proposed model serves to illustrate the rich dynam-
ics that may emerge from the coupling of these different
subsystems, even though the complexity in each of the
subcomponents remains manageable.

After the introduction of all key components and pro-
cesses constituting the model in Sec. II we perform nu-
merical simulations of the system. In Sec. III we first
study the case of a static network and no is adaptation
taking place. We find that the system converges into
either a state where all logistic growth models, e.g., re-
sources, converge into a state of full depletion or into a
state of positive stock. The latter is to be interpreted
as the more sustainable and, hence, desired outcome of
the model. We uncover that the likelihood to converge
into either of the two states is mainly determined by the
frequency of interactions between nodes.

In Sec. IV we then study the effect of network adap-
tation and show that the stability of the system changes
in dependence on the choice of the adaptation frequency.
Specifically we deduct that for each interaction frequency
there exists an appropriate rate of network adaptation,
such that the system can be guided into a sustainable
state.

Finally, we derive a low-dimensional set of rate equa-
tions for variables that approximate the model’s macro-
scopic state in Sec. III B for the static and in Sec. IV for
the adaptive case. These equations are generally appli-
cable to any study of opinion formation or spreading if
the probabilities of changes in node states by imitation
are appropriately chosen. Finally, conclusion are drawn
in Sec. V.

II. MODEL DESCRIPTION

Assume a temporal network G(V,L(t)) consisting of a
fixed set of N nodes V = {v1, v2, . . . , vN} and an evolving
set of links L(t). It is represented by the time-dependent
adjacency matrix A(t). Each node vi represents a re-
newable resource stock si(t) that obeys a logistic growth
model and is harvested with an effort level Ei(t) [16],

d

dt
si(t) = aisi(t)(1− si(t)/Ki)− qisi(t)Ei(t). (1)

For this study, we set the growth rates ai = 1, capacities
Ki = 1 and catch-coefficients qi = 1 for all i = 1, . . . , N
and measure the time and stocks in dimensionless quan-
tities. Treating all stocks si as evolving under identical
conditions is a strong assumption of the model but allows
us to solely focus on the interplay between network and
stock dynamics and its dependence on a few key param-
eters.

The effort is a time-dependent quantity assigned to
each node vi which defines its current behavioral pattern
and changes through imitation of other nodes. On the
one hand, nodes can adopt a high effort level E

+
> 1,

causing each stock to converge to a stable fixed point
s+ = 0 implying full depletion of the resource. Alter-
natively, nodes can choose a low effort level E− ∈ (0, 1)
providing less harvest per unit time initially but avoid-
ing depletion of the resource stocks since each individual
stock si then converges to a stable positive fixed point
s− = 1−E− > 0. The two possible choices of effort level,
E− (low) and E

+
(high), are the same for all nodes and

are parameterized by ∆E ∈ (0, 1) such that E− = 1−∆E
and E

+
= 1 + ∆E. At each time t there are N−(t) nodes

with Ei(t) = E− and N
+

(t) = N − N−(t) nodes with
Ei(t) = E

+
. The effort then yields for each node vi an

individual harvest hi(t) = si(t)Ei(t), which constitutes
the second term in Eqn. (1). From now on we omit the
explicit time dependence of the stocks si, efforts Ei, the
adjacency matrix A and the number of low and high ef-
fort nodes N± , in our notation.

Initially, for each node vi, an individual waiting time Ti
is drawn at random from a Poissonian distribution with
density

p(Ti) = T−1 exp(−Ti/T ), (2)

which is a typical choice for modeling interaction rates in
social systems [30]. T denotes the expected waiting time
between two interactions initiated by the same node vi.
Starting from this:

(i) The system as given in Eqn. (1) is integrated for-
ward in time for the minimum of all current waiting
times Ti. Then, for the corresponding node vi (with
the smallest Ti) a neighboring node vj is drawn uni-
formly at random.

(ii) If the efforts Ei and Ej of vi and vj differ:

(a) With a rewiring probability 0 ≤ φ ≤ 1, vi breaks
its link with vj such that Aij = 1 becomes
Aij = 0. Then, a new link between vi and an-
other randomly drawn node vk with the same
effort level (Ei = Ek) is established such that
Aik = 0 becomes Aik = 1. This network adap-
tation process mimics generally observed tenden-
cies to form clusters of individuals with similar
behavior or social traits. Note that, in contrast
to earlier work, rewiring only takes place if a ran-
domly drawn neighbor vj of vi shows a different
effort, e.g., behavioral pattern [10].
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(b) If vi does not adapt its neighborhood, imitation
may happen instead (with probability 1−φ). The
difference in current harvest ∆hij = hj − hi is
computed and the node vi imitates the current
effort level of vj with a probability given by a
sigmoidal function p(Ei → Ej) = p(∆hij) which
generally is required to be monotonic and contin-
uously differentiable. Additionally it must fulfill
p(∆hij) → 0 for ∆hij → −∞, p(∆hij) → 1
for ∆hij → ∞ and p(0) = 0.5. This repre-
sents the increasing likelihood of imitation pro-
cesses to take place with an increase in the ex-
pected payoff difference [13]. For our model we
set p(Ei → Ej) = 0.5(tanh ∆hij+1) which obeys
all of the above requirements.

(iii) A new waiting time Ti is drawn at random for vi
according to Eq. (2) and step (i) is repeated as long
as the model has not reached a steady state.

(iv) The model reaches (with probability one) a steady
state at some time tf when the network divides into
one or more components in each of which only one
choice of effort level is left.

Initially the two possible effort levels are distributed
evenly among the nodes with ratios n−(0) = N−(0)/N =
n
+

(0) = N
+

(0)/N = 0.5. Initial stocks are set to si(0) =
1 for all i = 1, . . . , N . In the following, we consider ini-
tially Erdős-Rényi random networks with N = 400 nodes
and a linking probability of ρ = k/(N −1), where k = 20
is the average degree of nodes in the network.

III. STATIC NETWORK

We first study the case of a static network structure
with φ = 0 (hence, modeling step (ii)(a) is not imple-
mented at first) and simulate the model numerically for
different combinations of T and ∆E. From this, we de-
rive a macroscopic approximation of the model consti-
tuted from a set of three coupled differential equations
and show its good agreement with the numerical results.

A. Numerical simulations

Numerical simulations for different combinations of T
and ∆E provide insights into this system’s dynamics.
Figure 1 (A) shows the mean fraction f−(tf ) of model
runs that converge to a state where all nodes show a low
effort Ei(tf ) = E− ∀ i = 1, . . . , N (using an ensemble
of n = 500 simulations). For small T (fast interactions)
there is a high probability for the system to converge to
a state where only nodes with a high effort level E

+
are

present. In this case all resource stocks converge to the
stable fixed point s+ = 0 and become fully depleted.
With increasing T , the system’s expected equilibrium
state undergoes a phase transition in f−(tf ). For suf-
ficiently large T (slow interactions), the system is likely

to converge to a state where all nodes adopt the effort
level E− and all stocks converge to a stable fixed point
s− = 1−E− > 0. This indicates that the rate of interac-
tions between nodes plays a crucial role in determining
the system’s expected equilibrium state.

The resulting dynamics can be qualitatively under-
stood by considering the limiting cases of T → 0 and
T → ∞. In the first case, interactions between nodes
are expected to happen very fast. Given that initially all
stocks carry the same value si(0) = s0 we expect that for
t� 1 the harvest h− (h

+
) of nodes with low (high) effort

follows h−(t � 1) ∝ E−s0 (h
+

(t � 1) ∝ E
+
s0). This im-

plies that the difference in harvest between the two differ-
ent types of nodes is expected as h

+
(t� 1)−h−(t� 1) ∝

(E
+
− E−)s0 = 2∆Es0. If interactions happen very fast,

the system likely converges into its equilibrium state at
tf � 1. Since in this situation we expect h

+
> h− , nodes

with low effort are more likely to imitate the high effort
rather than the other way around and, hence, we expect
f−(tf )→ 0 for T → 0 (as can be seen in Fig. 1 (A)).

In contrast, for T → ∞ we expect updates between
nodes to happen preferably at times t� 1. In this case,
the stocks of nodes with high (low) effort can be assumed
to have already converged to a fixed point of s+ = 0
(s− = 1−E

+
= ∆E) as interactions between nodes start

to take place. Hence, the difference in harvest is expected
as h−(t � 1) − h

+
(t � 1) = ∆E − ∆E2. Thus, for

all ∆E ∈ (0, 1) the harvest of low-effort nodes exceeds
that of nodes with high effort and the system is likely to
converge into a state where all nodes show the low effort
and, hence, f−(tf ) → 1 (red/dark area in Fig. 1 (A) for
high values of T ).

We note, that h−(t � 1) − h+(t � 1) = ∆E − ∆E2

varies with ∆E. Specifically, in the limiting cases ∆E =
0 and ∆E = 1 we find that the difference h−(t � 1) −
h+(t � 1) = 0 vanishes and, hence, the system becomes
equally likely to converge into either a state with only
low-effort nodes or only high effort nodes present (see
lower right corner and the shift of the transition point
towards higher T with increasing ∆E in Fig. 1 (A)).

B. Macroscopic approximation

Abstracting from pairwise microscopic interactions, we
now look at the system from a macroscopic point of view.
Assuming the network to be large and fully connected
at first, the time evolution of the system’s state can be
characterized by rate equations for three quantities: (1)
the fraction of nodes n− with effort level E− , (2) the mean
resource stock µ− = 〈si|Ei = E−〉i of nodes with effort
level E− and (3) the mean resource stock µ

+
= 〈si|Ei =

E
+
〉i of nodes with effort level E

+
. The fraction of nodes

n
+

with effort level E
+

follows from n
+

= 1− n− .
The time evolution of n− is governed by nodes that

change from the low to the high effort level and vice versa.
In particular, in the time interval (t, t+ dt) an infinitesi-
mal fraction of dn−→+

(dn
+→−) nodes change their effort
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FIG. 1. (Color online) (A) The mean fraction f−(tf ) of nu-
merical simulations that converge to a state where all nodes
show a low effort level Ei(tf ) = E− ∀ i = 1, . . . , N computed
over n = 500 runs for different choices of T and ∆E for a
static network with φ = 0. (B) The value n−0

of the sta-
ble fixed point for the fraction n− of nodes with effort level
E− computed from Eqs. (16)–(18). The dashed line indicates
the critical expected waiting time Tc which separates the two
regimes (predominance of nodes using E+ (yellow/light) and
E− (red/dark)).

from E− (E+) to E+ (E−) which decreases (increases) the
fraction of nodes with low effort n− ,

dn− = dn
+→− − dn−→+

. (3)

The interactions between nodes that govern the rates of
changes in effort are driven by the following quantities:

1. The expected waiting time T for a node vi to inter-
act with a randomly drawn neighboring node vj .
Correspondingly, the rate of node interactions is
taken to be τ = 1/T .

2. If a node vi interacts with its neighboring node vj ,
an imitation of effort only takes place if Ei 6= Ej .
Hence, for a node vi with Ei = E− (Ei = E

+
) there

is to define a probability P
+

−
(P
−

+
) that a randomly

drawn neighboring node vj has Ej = E+ (Ej = E−).
Since a large fully connected network is assumed,
this probability is given exactly by the current frac-
tion n+ (n−) of nodes with high (low) effort E+ (E−)

and, hence, P
+

−
= n+ (P

−

+
= n−).

3. If a node vi with Ei = E− (Ei = E+) interacts with
a neighboring node vj with Ej = E+ (Ej = E−),
there is a probability p−→+ (p+→−) that vi takes up
the effort level Ej of vj . This probability is gov-
erned by the difference in harvest ∆hij between
vj and vi. For the macroscopic description, the
individual pairwise interactions are replaced by ag-
gregated quantities. Therefore p−→+

(p
+→−) is com-

puted as the expected probability for a node vi with
low (high) effort to adopt the high (low) effort given
that it interacts with a node vj that currently has

Ej = E+ (Ej = E−). This quantity is then depen-
dent on the expected stocks at nodes with low and
high effort, which is derived below in detail.

This yields dn−→+ and dn+→− as the product of all three
factors introduced above,

dn−→+
= n−τn+p−→+

dt (4)

dn
+→− = n

+
τn−p+→−dt (5)

⇒
dn−
dt

= τn−n+(p+→− − p−→+). (6)

The two quantities still remaining to be evaluated, are
the expected probabilities p

+→− (p−→+
) for nodes with a

high (low) effort level to change to the opposite level. It
is obtained as the expected probability for nodes in the
network to take up its neighbor’s effort,

p+→− = 〈P (Ej → Ek) | Ej = E+ , Ek = E−〉j,k
= 0.5〈tanh(∆hjk | Ej = E

+
, Ek = E−)〉j,k + 0.5

∼= 0.5〈∆hjk | Ej = E
+
, Ek = E−〉j,k + 0.5

= 0.5(E−〈sk | Ek = E−〉k − E+
〈sj | Ej = E

+
〉j)

+ 0.5

= 0.5(E−µ− − E+µ+) + 0.5 (7)

p−→+
= 0.5(E

+
µ
+
− E−µ−) + 0.5. (8)

Here, we performed a linear expansion of the hyperbolic
tangent, tanhx = x + O(x3), assuming that differences
in harvest remain small.

The time evolution of either of the two average stocks
µ− and µ

+
is governed by two terms. First, each individ-

ual stock si follows the logistic growth model and so do
the average quantities. Second, the value of each of the
two average stocks changes according to the fact that the
nodes modify their effort from E− to E

+
and vice versa

during the time interval (t, t+ dt). This yields

dµ− = d〈sk | Ek = E−〉k
= 〈dsk | Ek = E−〉k
= dt 〈sk(1− sk)− Eksk | Ek = E−〉k + δ−

= dtµ− − dt〈s2
k | Ek = E−〉k − dtE−µ− + δ−

= dt(µ−(1− µ− − E−)− µ(2)
−

) + δ− (9)

dµ
+

= dt(µ
+

(1− µ
+
− E

+
)− µ(2)

+
) + δ

+
. (10)

Here µ(2)
−

and µ(2)
+

denote the variances in the two types

of stocks. δ− (δ+) indicate the net change in the average
stock as nodes with high (low) effort change their effort
to the opposite choice during (t, t + dt). The fraction of
nodes dn+→− (dn−→+) that change their effort from E+

to E− (E− to E
+

) during (t, t+dt) is assumed to be small
compared to the fraction of nodes which already hold the
low (high) effort, dn

+→− � n− (dn−→+
� n

+
). Hence,

the respective contribution to the dynamics of µ− (µ
+

)
as nodes change their effort is also assumed to be small,
dn

+→−µ+ � n−µ− (dn−→+
µ− � n

+
µ
+

). This allows for a
first-order expansion of the stock’s time evolution, such
that



5

µ− + δ− =
(n− − dn−→+

)µ− + dn
+→−µ+

n− − dn−→+
+ dn

+→−

∼=
(n− − dn−→+

)µ− + dn
+→−µ+

n− − dn−→+ + dn+→−

∣∣∣∣
(dn−→+

,dn
+→− )=(0,0)

+
−µ−(n− − dn−→+

+ dn
+→−) + ((n− − dn−→+

)µ− + dn
+→−µ+)

(n− − dn−→+
+ dn

+→−)2

∣∣∣∣
(dn−→+

,dn
+→− )=(0,0)

dn−→+

+
µ
+

(n− − dn−→+
+ dn

+→−)− ((n− − dn−→+
)µ− + dn

+→−µ+)

(n− − dn−→+
+ dn

+→−)2

∣∣∣∣
(dn−→+

,dn
+→− )=(0,0)

dn
+→−

=
n−µ−
n−

+
−µ−n− + n−µ−

n2
−

dn−→+ +
µ
+
n− − n−µ−
n2
−

dn+→− = µ− +
µ
+
− µ−
n−

dn+→− (11)

⇒ δ− = (µ
+
− µ−)n

+
τp

+→−dt (12)

δ+ = (µ− − µ+)n−τp−→+dt. (13)

Putting this back into (9) and (10) yields

dµ− = dt(µ−(1− µ− − E−)− µ(2)
−

)

+ dt(µ
+
− µ−)n

+
τp

+→− (14)

dµ
+

= dt(µ
+

(1− µ
+
− E

+
)− µ(2)

+
)

+ dt(µ− − µ+)n−τp−→+ . (15)

In the scope of this work, in to order to close the set
of equations that describe the systems dynamics, we as-
sume the respective variances µ(2)

−
and µ(2)

+
to vanish.

Taking into account higher moments in the dynamics of
the stocks and investigate its influence on the resulting
fixed points remains as a task for future research.

In summary, we find a set of three coupled ordinary

differential equations that define the time evolution of
the static network model:

dn−
dt

= τn+n−(p+→− − p−→+) (16)

dµ−
dt

= µ−(1− µ− − E−) + τ(µ
+
− µ−)n

+
p
+→− (17)

dµ+
dt

= µ
+

(1− µ
+
− E

+
) + τ(µ− − µ+)n−p−→+

. (18)

C. Fixed points and stability

We obtain all fixed points Pi = (n−0
, µ−0

, µ+0
) of the

dynamical system given in Eqs. (16)–(18) as:

P1 =

(
n−0

= 0, µ−0
=

1− E− − 0.5τ

1 + 0.5τE−
, µ

+0
= 0

)
(19)

P2 =

(
n−0

= 1, µ−0
= 0, µ+0

=
1− E

+
− 0.5τ

1 + 0.5τE+

)
(20)

P3 =

n−0
=

2(E−
1−0.5τ
E−+E

+
+ E+ − 1)

τ(
E
+

E−
− 1)

, µ−0
= E

+

1− 0.5τ

E− + E
+

, µ
+0

= E−
1− 0.5τ

E− + E
+

 (21)

P4 =

n−0
= 1, µ−0

= 1− E− , µ+0
=
−b
2a

+

√(
b

2a

)2

+
c

a

 (22)

P5 =

n−0
= 1, µ−0

= 1− E− , µ+0
=
−b
2a
−

√(
b

2a

)2

+
c

a

 (23)

a = 0.5(−2− E
+
τ)

b = 1− E
+

+ 0.5τ((1− E−)E
+

+ E− − E2
−
− 1)

c = 0.5τ(1− E−)(E− − E2
−
− 1).
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In addition, there exists a manifold which also satisfies
dn−
dt =

dµ−
dt =

dµ
+

dt = 0 and is defined by

Pα = (n−0
= α, µ−0

= 0, µ+0
= 0), α ∈ [0, 1] (24)

For all fixed points given above we compute the largest
eigenvalue λ1 of the corresponding Jacobian matrix eval-
uated at the respective point. Only the two fixed points

P3 and P4 have a negative largest eigenvalue λ1 < 0
and, hence, are stable for choices of parameters ∆E and
T > 0.5 (note that again: E− = 1 −∆E, E+ = 1 + ∆E
and τ = 1/T ) (Fig. 2).

To investigate the system’s dynamics in the regime T <
0.5, the stability on the 1-dimensional manifold defined
by all points that fulfill Eq. (24) is assessed. Analytically
computing the three eigenvalues of the Jacobian matrix
on the manifold as a function of the parameter α yields

λ0 = 0 (25)

λ±(α) = 1−
E

+
+ E−
2

− τ

4
± 1

2

√
2αE+τ − 2αE−τ + E2

+
− 2E+E− − E+τ + E2

−
+ E−τ +

τ2

4
. (26)

A first observation is that λ+(α) ≥ λ−(α) holds. Since
λ0 = 0, it is obvious that not all eigenvalues can be neg-
ative. However, if λ0 = 0 is the largest eigenvalue of the
system, all choices of α for which λ+(α) ≤ λ0 define a
center manifold,

λ+(α) ≤ 0 if α ≤ 1

2
− T∆E (27)

Hence,

ν(α) = (ns0 = α, µs0 = 0, µn0 = 0) (28)

α ∈
[
0,

1

2
− T∆E

]
defines a center manifold where the system’s stability
cannot be assessed by linear stability analysis. A de-
tailed study of the system’s stability in this regime is be-
yond the scope of this work and not necessarily needed to
understand the general dynamics of the macroscopic de-
scription proposed here. Numerically integrating the sys-
tem for choices of parameters taken from the center man-
ifold, however, reveals good agreement between the mi-
croscopic and macroscopic model representation (Fig. 1).
An investigation by means of a higher-order stability
analysis might, however, yield further insights into the
processes that cause both resource stocks µ−0

= µ
+0

= 0
to be fully depleted in the regime of the center manifold.

In conclusion, we note that for each choice of param-
eters only one of the fixed points P3 and P4 can be the
unique stable fixed point of the system (Fig. 2). Fig-
ure 1 (B) displays the value of the stable fixed point’s
n−0

-component as a function of T and ∆E. The results
are in good agreement with the numerical findings (Fig. 1
(A)). Due to the first-order approximation, the transition
from a predominance of nodes with E+ to nodes with E−
with increasing T is not as sharp as for the numerical
simulations. However, a good estimate for the critical
value Tc of T at which the transition takes place can be
found by setting n−0

(Tc) = 0.5 in Eq. (21) which yields

Tc(∆E) = 1+∆E2

2−2∆E2 (dashed line in Fig. 1).
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FIG. 2. (Color online) The largest eigenvalue λ1 for the two
fixed points P3 (A) and P4 (C) (see also Eqs. (21) and (22))
depending on ∆E and T . The black area in (B) indicates
the domain in parameter space for which λ1 computed for
P3 is negative and, hence, P3 is stable. (D) shows the same
properties for P4. The regimes for which either of the two
fixed points is stable are complementary. Further it should
be noted that for T < 0.5 neither of the two fixed points is
stable, but center manifold as given in Eqn. (28) exists in this
regime.

IV. ADAPTIVE NETWORK

In the following, we consider additionally network
adaptation processes with φ > 0 (hence, modeling steps
(ii)(a) and (b) both take place with a relative frequency
depending on the rewiring probability φ). For all results
presented from here on, the two available choices of effort
levels are fixed by setting ∆E = 0.5.
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A. Numerical simulations

Numerical simulations with the same initial conditions
as in the static case for different combinations of φ and
T reveal a division of the parameter space into regimes
of different expected outcomes as the model reaches its
steady state (Fig. 3 (A)). As for φ = 0, fast interactions
(i.e., low values of T ) lead to a large fraction of nodes
carrying E

+
. The transition between the two behavioral

patterns with increasing T remains sharp. However, de-
pending on the choice of φ, the value of the critical wait-
ing time Tc, at which the system transfers from a state
with a predominance of nodes with low effort to a state
with a predominance of nodes with high effort, decreases
with increasing φ. Conversely, this implies that for all
T >∼ 0.3 there is an appropriate choice of φ ∈ [φc1 , φc2 ]
so that all nodes are likely to adopt the effort level E− .
In the limiting case of φ = 1 the expected fraction of
nodes with E− equals the initial fraction n−(0) = 0.5 for
all choices of T due to the network’s fragmentation into
components of nodes sharing the same effort.

B. Macroscopic approximation

The macroscopic approximations (16)–(18) can be ex-
tended to also include the effects of network rewiring. For
this, we introduce two additional variables describing the
macroscopic state of the network. The time evolution of
the fraction of nodes n− with low effort is recalled (anal-
ogously to Eq. (6)) as

dn−
dt

= τ(n
+
P
−

+
p
+→− − n−P

+

−
p−→+

). (29)

Given that a node vi initializes an interaction and the
randomly drawn neighboring node vj employs a different
effort, Ei 6= Ej , there exists the adaptive rewiring prob-
ability φ ∈ [0, 1] for vi to break its connection with vj
and establish a link with another randomly drawn node
vk in the network that is employing the same effort as
vi (Ek = Ei) and is not yet connected to node vi. With
probability 1 − φ, imitation of efforts takes place which
has already been implemented in the macroscopic de-
scription of the static network. To account for the adap-
tive rewiring process, the interaction rate τ needs to be
refined such that it no longer represents the rate of node
interactions alone, but the rate of interactions which lead
to imitation,

τ =
1− φ
T

. (30)

Likewise the ratio ρ of all node interactions that lead to
adaptive rewiring needs to be defined. Since each node
is expected to interact at a rate 1/T it follows that

ρ =
φ

T
. (31)

0.5 1.0 1.5 2.0
T

0.2

0.4

0.6

0.8

φ
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φc1

A
0.5 1.0 1.5 2.0

T

φc2

φc1

B 0.00

0.25

0.50

0.75

1.00

FIG. 3. (Color online) (A) Mean fraction of nodes f−(tf )
with effort level E− = 1 − ∆E = 0.5 for different choices of
T and φ obtained from an ensemble of n = 500 numerical
simulations as the system reaches its steady state. (B) Value
of the stable fixed point for the fraction of nodes with effort
level E− computed from the set of differential equations (59)–
(63).

For adaptive rewiring to take place, the network cannot
be fully connected. Therefore, the previous definitions

of P
−

+
= n− and P

+

−
= n

+
for two nodes of different ef-

fort to interact no longer hold for the derivations to be
performed here.

The total number of M links in the network splits into
M− (M

+
) links connecting two nodes with low (high) ef-

fort and M
+− links connecting two nodes of different ef-

forts, such that

M =
Nk

2
= M− +M

+
+M

+− (32)

⇒ dM

dt
=
dM−
dt

+
dM

+

dt
+
dM

+−

dt
= 0. (33)

Additionally let

K
−

−
=

2M−
N−

(34)

denote for nodes with low effort the average number of
neighbors with the same effort. Likewise,

K
+

−
=
M+−

N−
(35)

represents for nodes with low effort the average number
of neighbors with high effort. These two quantities con-
stitute the average degree of nodes with low effort as

K− = K
−

−
+K

+

−
=
M+− + 2M−

N−
. (36)

Likewise the average degree K
+

of nodes with high effort
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is obtained from

K
+

+
=

2M+

N
+

(37)

K
−

+
=
M+−

N+

(38)

K+ =
M+− + 2M+

N+

. (39)

For a node vi currently having a low effort Ei = E− the

probability P
+

−
(vi) to draw a neighbor vj with different

effort at random is given as

P
+

−
(vi) =

k
+

−
(vi)

k(vi)
. (40)

k
+

−
(vi) is the number of neighbors of node vi that employ

the high effort. k(vi) denotes the degree of node vi. Since
for the macroscopic description the pairwise microscopic
interactions between nodes are approximated by the av-

erage dynamics, we compute the average probability P
+

−
for a node vi with low effort to interact with a node em-
ploying the high effort. Since the network is initialized as
an Erdős-Rényi random network and it is further equally
likely for all nodes with the same effort to connect to
or disconnect from other nodes by random rewiring, we
perform a heterogeneous mean-field approximation and
assume the average degree k(vi) to be the same for all
nodes with low effort, k(vi) = K− ∀ i ∈ {1, . . . , N | Ei =
E−} [31, 32]. Thus

P
+

−
= 〈P

+

−
(vi) | Ei = E−〉i =

〈
k
+

−
(vi)

k(vi)

∣∣∣∣∣ Ei = E−

〉
i

=

〈
k
+

−
(vi)

K−

∣∣∣∣∣ Ei = E−

〉
i

=
K

+

−

K−

=
M

+−

2M− +M
+−

. (41)

Instead of the actual number of M links in the network
we define the corresponding per node link density

m =
M

N
=
M

+−

N
+
M−
N

+
M

+

N

=
k

2
= m

+− +m− +m
+

(42)

which is independent of the number of nodes N in the
network. The probability for a node with low (high) ef-
fort to interact with a node of high (low) effort is then
given by

P
+

−
=

m+−

2m− +m+−

(43)

P
−

+
=

m
+−

2m
+

+m
+−

(44)

i
j

i
j

Imitat ion

Inter
act io

n

+

-

-

-

-

-

+ +

FIG. 4. (Color online) Illustration of the influence of the
imitation of effort on the different numbers of link types in
the network. A node vi with the high effort Ei = E+ (in-
dicated in orange) interacts with a node vj with low effort
Ej = E− (red/dark). Node vi may then imitate the effort of
node vj , Ei → E− . The number of links between nodes with
low (high) effort M− (M+) then increases (decreases) by the

number k
−

+
(vi) (k

+

+
(vi)) of neighbors of vi that show the low

(high) effort.

and is fully determined by the per node densities of links
m

+− , m
+

and m− .
Generally, the time evolution of the total number of

links between nodes of low effort is governed by imita-
tion and adaptation. First, we focus on the process of
adaptation. Since links between nodes of the same effort
can only be established but not removed via the process
of adaptation, the contribution of this process to the total
number of links between low-effort nodes M− only causes
it to increase. This positive contribution is

dM−
dt
∼ ρN−P

+

−
(45)

and is explained as follows: In each time interval (t, t+dt)
there is a total number of N− nodes, which with prob-
ability ρ initiate an interaction that leads to adaptive
rewiring. Adaptive rewiring then takes place if a ran-
domly drawn neighbor vj of the considered node vi em-
ploys the high effort. As defined above, this happens with

probability P
+

−
.

The second contribution to the time evolution of M−
is given by imitation, which takes place at rate τ . Gen-
erally, there is one term causing an increase in links be-
tween nodes with low effort and one term causing its
decrease. First, assume a node vj with Ej = E+ to imi-
tate the low effort E− from one of its neighboring nodes
vi with Ei = E− . The number of links between nodes

of low effort then increases by the number k
−

+
(vj) of all

neighbors of node vj that employ the low effort (Fig. 4).
Again, by performing a heterogeneous mean-field approx-
imation and assuming the number of neighbors for indi-
vidual nodes to be represented by the respective average
number of neighbors, we set

k
−

+
(vj) = K

−

+
=
M+−

N+

. (46)

Now, it holds that each of the N+ nodes with high effort

interacts with a node of low effort with probability P
−

+
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at rate τ . Then, with probability p
+→− a node with high

effort takes up the low effort. This causes the number of
links between pairs of nodes with low effort to increase by
the number of neighbors with low effort of the formerly
high-effort node,

dM−
dt
∼ τN

+
P
−

+
p
+→−K

−

+
. (47)

A third term that governs the time evolution of M−
is given by its decrease caused by nodes with low effort
that imitate the high effort. If a node vi with the low
effort Ei = E− interacts with a node vj having the high
effort Ej = E

+
and vi then imitates the effort of vj , the

total number of links connecting two nodes with low ef-
fort decreases by the number of vi’s neighbors vk that
are showing the low effort Ek = E− as well. Following
from an analogous argument as given above, this num-

ber is given by k
−

−
(vi). Again we assume the number of

neighbors vk with Ek = E− of a node vi with Ei = E− to
be approximated by its average,

k
−

−
(vj) = K

−

−
=

2M−
N−

. (48)

With rate τ each of the N− nodes with low effort interacts
with a node showing the high effort E

+
with probability

P
+

−
. With probability p−→+

a node with low effort imi-
tates the high effort which causes a decrease in M− by the

average number of low-effort neighbors K
−

−
of the node

that is imitating the high effort,

dM−
dt
∼ −τN−P

+

−
p−→+K

−

−
. (49)

Putting together Eqs. (45), (47) and (49) gives the time
evolution of the number of links between nodes of low
effort as

dM−
dt

= τ(N
+
P
−

+
p
+→−K

−

+
−N−P

+

−
p−→+

K
−

−
)

+ ρN−P
+

−
. (50)

Plugging the definitions of K
−

−
(Eq. (34)) and K

−

+

(Eq. (38)) into Eqn. (50) and normalizing with the to-
tal number of nodes N yields the time evolution of the
per node density of links between nodes of low effort

dm−
dt

= τ(P
−

+
p
+→−m+− − 2P

+

−
p−→+

m−) + ρn−P
+

−
(51)

which is again independent of N . Due to the symmetry of
the system, the time evolution of the per node density m+

of links between nodes with high effort then immediately
follows as

dm
+

dt
= τ(P

+

−
p−→+

m
+− − 2P

−

+
p
+→−m+

) + ρn
+
P
−

+
. (52)

For the time evolution of the average stock of nodes
with low and high effort µ− and µ

+
we already found in

Eqs. (9) and (10) that

dµ− = dt(µ−(1− µ− − E−)− µ(2)
−

) + δ− (53)

dµ+ = dt(µ+(1− µ+ − E+)− µ(2)
+

) + δ+ . (54)

The general forms of δ− and δ
+

are (see Eq. (12) and (13))

δ− =
µ
+
− µ−
n−

dn
+→− (55)

δ+ =
µ− − µ+
n+

dn−→+ . (56)

For the case of an adaptive network, dn
+→− (dn−→+

) is
given by the first (second) term in Eq. (29):

δ− =
µ
+
− µ−
n−

τn+P
−

+
p+→− (57)

δ
+

=
µ− − µ+
n
+

τn−P
+

−
p−→+

, (58)

with the probabilities P
−

+
and P

−

+
(Eqs. (43) and (44)) as

defined above and p
+→− and p−→+

being the same as for
the static model (Eqs. (7) and (8)).

To summarize, the set of five coupled differential equa-
tions that represent the adaptive network model’s macro-
scopic dynamics is given as

dn−
dt

= τ(n
+
P
−

+
p
+→− − n−P

+

−
p−→+

) (59)

dm−
dt

= τ(P
−

+
p
+→−m+− − 2P

+

−
p−→+

m−) + ρn−P
+

−
(60)

dm
+

dt
= τ(P

+

−
p−→+m+− − 2P

−

+
p+→−m+) + ρn+P

−

+
(61)

dµ−
dt

= µ−(1− µ− − E−) + τ
n
+

n−
(µ

+
− µ−)P

−

+
p
+→− (62)

dµ+
dt

= µ
+

(1− µ
+
− E

+
) + τ

n−
n
+

(µ− − µ+)P
+

−
p−→+

. (63)

It is important to note that in most previous works on
adaptive networks a closed set of macroscopic equations
is obtained by assuming that links in the network are
drawn at random and interactions take place between
nodes that are connected by them [6, 33]. In this work
nodes, not links, are randomly drawn and initiate an in-
teraction with its neighboring nodes. This subtle dif-
ference changes the effective time scale of the system.
Specifically, in our model only a maximum of N out of
all M links are affected by interactions between nodes
during the same time as all M links would be considered
if interactions take place by randomly drawing links in
the network. In other words, in our model it takes M/N
times longer to achieve the same number of updates, as
one would obtain by considering per-link interactions.

For this system, the stable fixed point’s n−0
-component

can be obtained numerically for different combinations
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of φ and T (Fig. 3 (B)). The results are again in good
agreement with the numerical simulations and imply that
for every choice of T > 0 there actually exists an ap-
propriate choice of φ ∈ [φc1 , φc2 ] so that all nodes are
likely to adopt the effort level E− . The lower bound
of the optimal rewiring probability φc1 can be obtained
by utilizing Eq. (21) and the linear relationship between
φc1 and T for a fixed rate of social updates τ that
lead to imitation as given in Eqn. (30). We thus find

φc1(T,∆E) = φc2(1 − 2−2∆E2

1+∆E2 T ) ∀ 0 < T < 1+∆E2

2−2∆E2

and φc1(T,∆E) = 0 otherwise. The upper bound φc2 at
which the network fragments is obtained from a numer-
ical bifurcation analysis as φc2 ≈ 0.89. The result is in
good agreement with previous findings on the fragmen-
tation threshold in adaptive networks for similar average
degree k [34, 35]. We find, however, that the computed
fragmentation threshold φc2 is larger than what is ex-
pected from the numerical simulations (Fig. 3 (A)). This
can either be due to the fact that moment closure as
well as mean-field approximations are known to provide
only rough estimates of the fragmentation threshold [33]
or because finite size effects in the numerical simulations
cause the system to fragment for smaller values of φ than
it would be expected for the limiting case N →∞ that is
considered in the macroscopic approximations. A more
detailed study of the network fragmentation and the cor-
responding threshold φc2 is a subject of future research.

C. Consistency between approximations

To illustrate the consistency of the set of differential
equations describing the static setting (16)–(18) and the
adaptive case (59)–(63), we set φ = 0 in the latter, com-
pute its fixed points numerically and compare them with
the static setting’s fixed points (21) and (22). Figure 5
(A-C) shows the different components of the stable fixed
points as a function of the control parameter T for a
fixed ∆E = 0.5. The components n−0

, µ
+0

and µ−0
align

perfectly well for the static and the adaptive case. The
gray shaded area in Fig. 5 (A) indicates a center mani-
fold for which the system’s stability cannot be assessed
by standard linear stability analysis. However, numer-
ically integrating the set of differential equations yields
the expected behavior of n−(0) → 0 as T → 0. Fig-
ure 5 (D) displays again the n−0

-component of the adap-
tive model’s stable fixed point for φ = 0 and different
combinations of T and ∆E. The results match those of
Fig. 1 (B). Hence, the system of dynamic equations (59)–
(63) can be interpreted as a consistent generalization of
Eqs. (16)–(18).

V. CONCLUSIONS

We have introduced a model to describe emerging
structure formation from the interplay of dynamics of
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FIG. 5. (Color online) (A)–(C) The dependence of the adap-
tive (solid lines) and static model’s (transparent scatter) sta-
ble fixed point on the expected waiting time T for fixed pa-
rameters φ = 0 and ∆E = 0.5. (D) The adaptive model’s
stable fixed point’s n−0

-component indicating the fraction of
nodes with effort E− in the consensus state as a function of
the two parameters T and ∆E again for φ = 0. The dashed
line indicates the value of the critical waiting time Tc obtained
from the set of differential equations (16)–(18).

and on networks manifested by the co-evolution of so-
cial dynamics on the one hand and resource dynamics
on the other hand. An adaptive voter model has been
coupled to a set of logistic growth models, such that the
state of the dynamic variables influences the imitation
(i.e. social trait adoption) processes in the underlying so-
cial network which take place according to differences in
harvest or payoff. We have derived rate equations for the
system’s macroscopic variables and demonstrated that
the resulting system of differential equations yields sta-
ble fixed points which are in good agreement with the
results from numerical simulations.

Our paradigmatic example illustrates that the inter-
play between both types of network dynamics gives rise
to a variety of new phenomena, which have not been
observed so far when only studying either of the two as-
pects. We have mainly found that the rate of interactions
in the network determines the expected linear stability of
the growth model’s fixed points. However, for each choice
of interaction rate there exists an appropriate range of the
adaptive rewiring frequency so that the expected fraction
of, e.g., nodes with effort E− can be maximized. Notably,
the subset of differential equations (59)–(61) provides a
general description of imitation and adaptation dynamics
on a social network with binary states of nodes and sym-
metric imitation rules. Hence, it is applicable to study
many other problems as long as the imitation probabil-
ities p−→+ and p+→− , which do not have to be constant
for all times, are chosen appropriately.

The proposed model also raises questions that need
to be addressed in future research. In the course of
the macroscopic approximation we have assumed all mo-
ments of higher order in stocks and network structure to
vanish such that the set of differential equations could
be closed. The results have been shown to be in good
agreement with numerical simulations. However, a more
in-depth analysis of whether the inclusion of higher order
moments would enable us to reproduce the steep transi-



11

tion between the two regimes of predominance of low- or
high-effort nodes remains a relevant research questions.
We also aim to estimate more thoroughly the critical
waiting time Tc at which the observed phase transition
takes place and therefore investigate the expected time
at which the low effort provides more harvest than the
high effort given that no interaction between the nodes
took place so far. Finally, we aim to obtain data from
agricultural studies on, e.g., water usage or harvest ex-
ploitation of resources, to test the findings and insights
that we have obtained from our co-evolutionary model
with respect to real-world phenomena.
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