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Abstract
A faithful modeling of real-world dynamical systems necessitates model evaluation. A re-

cent promising methodological approach to this problem has been based on complex net-

works, which in turn have proven useful for the characterization of dynamical systems. In

this context, we introduce three local network difference measures and demonstrate their

capabilities in the field of climate modeling, where these measures facilitate a spatially ex-

plicit model evaluation. Building on a recent study by Feldhoff et al. [1] we comparatively an-

alyze statistical and dynamical regional climate simulations of the South American

monsoon system. Three types of climate networks representing different aspects of rainfall

dynamics are constructed from the modeled precipitation space-time series. Specifically,

we define simple graphs based on positive as well as negative rank correlations between

rainfall anomaly time series at different locations, and such based on spatial synchroniza-

tions of extreme rain events. An evaluation against respective networks built from daily sat-

ellite data provided by the Tropical Rainfall Measuring Mission 3B42 V7 reveals far greater

differences in model performance between network types for a fixed but arbitrary climate

model than between climate models for a fixed but arbitrary network type. We identify two

sources of uncertainty in this respect. Firstly, climate variability limits fidelity, particularly in

the case of the extreme event network; and secondly, larger geographical link lengths ren-

der link misplacements more likely, most notably in the case of the anticorrelation network;

both contributions are quantified using suitable ensembles of surrogate networks. Our

model evaluation approach is applicable to any multidimensional dynamical system and es-

pecially our simple graph difference measures are highly versatile as the graphs to be com-

pared may be constructed in whatever way required. Generalizations to directed as well as

edge- and node-weighted graphs are discussed.
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Introduction
The study of complex system dynamics by means of complex network theory has thrived in re-
cent years [1, 2]. Applications cover many branches of science as virtually any multidimension-
al dynamical system may be considered as a network of dynamically interacting components.
For example, climate or brain functional networks are thought to consist of nodes representing
climate dynamics or neural activity in different geographical or brain regions and links between
them characterizing interregional covariabilities [3–7].

Recently, Feldhoff et al. [8] have proposed to use complex networks for climate model eval-
uation comparing functional networks built from simulated and observed climate data. In con-
trast to most commonplace methods, this approach offers a multivariate evaluation perspective
and the authors have demonstrated its complementarity to traditional univariate methods
based on mean values and variances. Beyond climate science, the fundamental idea of a model
evaluation based on functional networks applies to numerous kinds of real-world dynamical
systems. For instance, it could be used to evaluate models of social dynamics [9], financial mar-
kets [10], neural activity [11, 12] or genetic regulatory systems [13, 14].

A quantification of modeling accuracy following the new paradigm requires measures of
difference between complex networks with known node correspondence. Those put forward
thus far usually compare community [15, 16] or neighborhood [8, 17–19] structures and boil
down network dissimilarities to one single number. While this is advantageous from a model
rating point of view it is of limited use when an evaluation aims at model improvement. In that
latter context a more detailed account of network differences is required in order to identify
those system components whose interaction with the rest of the system is simulated most defi-
ciently. This motivates the work on local network difference measures presented in this article.

There already have been methods proposed in the literature to quantify the structural simi-
larity of network nodes. The older and simpler concept of structural equivalence considers
nodes similar if they have many common network neighbors [20, 21] while the more recent
concept of regular equivalence considers nodes similar if the nodes they are connected to are
themselves similar [22, 23]. The latter concept requires transitivity of similarity through net-
work links and therefore does not apply to networks where links represent dissimilarity. Since
such networks can occur in the model evaluation context as exemplified in the application sec-
tion we define local network difference measures in accordance with the concept of structural
equivalence. To our knowledge, we are the first to employ this concept to quantify the structur-
al (dis)similarity of nodes from different networks.

To illustrate the general scope of application of the new evaluation approach, let us consider
an N-dimensional dynamical system of which we know the time evolution within a certain
time frame, i.e. we know xi(t) for i = 1, . . ., N and t = 1, . . .,M. A description of the system dy-
namics according to the complex network approach is then based on statistical relationships
between the time series as quantified by some measure of statistical dependence. Measures that
have been used for this purpose include linear correlations [24, 25] as well as nonlinear mea-
sures of synchronization [26, 27] and mutual information [4, 28]. The dependence measure of
choice is calculated for every pair of time series, which yields an N × Nmatrix of relationship
coefficients rij.

Translated into network language, the N different components or dimensions of the system
are the nodes or vertices of a network and the coefficients rij constitute links or edges of varying
strength between them. This identification enables the application of network structure analy-
sis tools, aiming at an improved understanding of the collective dynamics of the system under
study. To simplify the analysis, the matrix of relationship coefficients is frequently mapped to a
binary adjacency matrix with components aij = 1 if nodes i and j are connected and aij = 0
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otherwise [29, 30]. These unweighted links are typically assigned according to the significance
of the respective statistical relationship.

Now let us consider the system to be a real-world one that is to be modeled, i.e. let us assume
we have xAi ðtÞ from measurements and xBi ðtÞ from model simulations and that we want to as-
sess how close the simulated dynamics are to the observed. Then the complex network ap-
proach allows for an evaluation of the interdimensional covariabilities of the system by
comparing ðrAij Þ with ðrBijÞ or ðaAij Þ with ðaBijÞ.

In the following section we define local difference measures between complex networks rep-
resented by matrices of the (rij) and (aij) type. We then demonstrate the capabilities of these
measures in a climate model evaluation case study. Potential generalizations of our theory and
applications beyond climate model evaluation are discussed at the end.

Local network difference measures
In this section, after briefly recalling some basic graph theoretical notions, we first define a
local version of the Hamming distance [29, 31] between binary adjacency matrices, describe a
practical problem coming along with its application, and present a solution, which culminates
in the definition of a new local network difference measure. Subsequently, we discuss the cases
of edge-weighted and node-weighted networks. For the sake of simplicity, only undirected net-
works are considered throughout this section; a generalization to directed graphs is mentioned
in the discussion section.

We use the superscripts A and B to discriminate between the networks to be compared. Ac-
cording to the model evaluation context we assume that these networks share a common set of
N nodes, and that they have been constructed from (A) observed and (B) simulated data fol-
lowing the same recipe, as outlined in the introduction and exemplified in the application sec-
tion. Because the diagonal elements of the (rij) and (aij) matrices encode statistical
relationships between identical time series, they are disregarded by all difference measures
defined hereafter.

Simple graphs
Based on the above, let us consider two networks represented by symmetric binary adjacency
matrices ðaAij Þ and ðaBijÞ with diagonals set to zero. Such networks are known as simple graphs in

the mathematical literature. Nodes which are connected are called neighbors. The set of all
nodes connected to node i is i’s neighborhood. The number of its neighbors is i’s degree and
can be written as

ki ¼
XN
j¼1

aij: ð1Þ

The average degree over all nodes, divided by N − 1, is called the link density ρ of the network.
The global Hamming distance (GHD) between two simple graphs A and B has been defined

to be [29, 31]

HðA; BÞ ¼
XN
i;j¼1

aAij XOR aBij; ð2Þ

aAij XOR aBij ¼ aAij � aBij

� �2

¼ aAij þ aBij � 2 aAij a
B
ij: ð3Þ

Local Network Differences and Dynamical SystemModel Evaluation

PLOS ONE | DOI:10.1371/journal.pone.0118088 April 9, 2015 3 / 28



We define its local version by

HiðA;BÞ ¼
XN
j¼1

aAij XOR aBij; ð4Þ

relating the neighborhoods of node i in both networks. The local Hamming distance (LHD)
Hi(A, B) counts the number of nodes, which are either a neighbor of i in network A but not in
B or vice versa. Global and local Hamming distances are related byH(A, B) = ∑i Hi(A, B). Dif-
ferently from [29], we refrain from normalizing the LHD to the number of nodes in this sec-
tion, because it would make the following mathematics less convenient.

Fig. 9(j) shows LHDs between climate networks over South America with degree fields dis-
played in Figs. 4(i) and 4(j). (We are going to elaborate on the background of these networks in
the application section; for the moment the reader is asked to take them as given.) We observe
large LHDs in locations with large degree discrepancies, for example around 10°S, 50°W.
Moreover, larger LHDs tend to occur in locations with larger degrees. For instance, small de-
grees coincide with small LHDs along the western coast of South America.

These observations indicate that the LHD is not an ideal local network difference measure.
Imagine two nodes i, j with kAi ¼ kBi 6¼ kAj ¼ kBj . Equal LHD values at these nodes would mean

different relative agreements of neighborhoods. It is therefore difficult to interpret LHD values
without considering the degrees. We would like to have a more intuitive difference measure
which quantifies the dissimilarity of neighborhoods relative to their size. An equivalent prob-
lem has been encountered by those studying vertex similarity concepts [21]. While, to our
knowledge, this community has always made do with ad hoc renormalizations [32–34], we
take a different approach in the following.

Our point of departure is a statistical null model which explains the observed LHD-degree
dependence: Let i be some fixed node with degrees kAi in graph A and kBi in graph B, and let us
assume i’s neighborhoods in A and B to be statistically unrelated. This can be modeled consid-
ering aAij and a

B
ij (j 6¼ i) to be random binary variables that are statistically independent between

networks and equal to one with identical probability within networks. Using Eq. (3), this null
model yields an LHD expectation value of hHiðA;BÞi ¼ kAi þ kBi � 2 kAi k

B
i =ðN � 1Þ.

Beyond illustrating the relationship between LHD and degree, this null model can be used
to define a new local network difference measure, which is degree-independent. To that end,
we relate the actually measured LHD valueHi(A, B) to the null model probability distribution
of possible LHD values for the degrees kAi and k

B
i . More specifically, Hi(A, B) is mapped to its

null model p-value, i.e. to the probability of the LHD to take a value less than or equal to
Hi(A, B), if i’s neighborhoods of size kAi in A and kBi in B were statistically unrelated.

We now derive a formula for those p-values, i.e. we derive the cumulative distribution func-
tion (CDF) of LHDs generated by our null model. According to Eq. (3) we can write

HiðA;BÞ ¼ kAi þ kBi � 2
X
j 6¼i

aAij a
B
ij: ð5Þ

The sum in Eq. (5) counts the number of common neighbors of i in A and B. We denote this
number by Ni(A, B) and have

NiðA;BÞ ¼
1

2
kAi þ kBi � HiðA;BÞ
� �

: ð6Þ

For fixed kAi and k
B
i , this implies a one-to-one correspondence between Ni(A, B) andHi(A, B),

with changes of the former by +1 corresponding to changes of the latter by −2. Let us denote
the null model generated LHDs by h ¼ kAi þ kBi � 2n in the spirit of Eq. (6). The null model
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probability of node i to have exactly n common neighbors in the two networks is equal to the
probability of having exactly n successes in kBi draws without replacement from a population of
size N − 1 containing kAi successes. This probability is given by

P n; kAi ; k
B
i ;N

� � ¼ kAi

n

 !
N � 1� kAi

kBi � n

 !
N � 1

kBi

 !�1

; ð7Þ

the probability density function (PDF) of a hypergeometric distribution [35, 36]. Note that

P n; kAi ; k
B
i ;N

� �
is symmetric with respect to exchanging kAi with kBi .

The desired p-value formula results from Eq. (7) via

p HiðA; BÞ; kAi ; kBi ;N
� �
¼ P h � HiðA;BÞ; kAi ; kBi ;N

� �
¼ P n � NiðA;BÞ; kAi ; kBi ;N

� �

¼
Xmin kAi ;k

B
if g

n¼NiðA;BÞ
P n; kAi ; k

B
i ;N

� �
:

ð8Þ

In order to numerically evaluate this complementary CDF of a hypergeometric distribution, we
use the HyperQuick algorithm [37]. This algorithm has the advantage of being easily logarith-
mized, which is important because of the following observation. The p-values of LHDs between
climate networks on observational and modeled rainfall data studied in the application section
turn out to typically be many orders of magnitude smaller than one. In other words, the climate
models studied here are much better than our null model. Since the latter corresponds to the
Configuration Random Network Model [1], this confirms the GHD findings by Feldhoff et al.
[8]. To still be able to visualize p-values, we move to their logarithms. The agreement of our an-

alytical result for p HiðA;BÞ; kAi ; kBi ;N
� �

and its Monte Carlo simulation is depicted in Fig. 1.

Fig 1. Null model p-values of Hi(A, B) for k
A

i = 120, kB

i = 100,N = 1000, both from 10000 Monte Carlo
trials (solid lines) and from Eq. (8) (dashed lines). The dotted line is the log p approximation given in
Eq. (16).

doi:10.1371/journal.pone.0118088.g001
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Unfortunately, log p is degree-dependent, again. For instance, for its minimum value

min
h

log p h; kAi ; k
B
i ;N

� � ¼ log P min kAi ; k
B
i

� �
; kAi ; k

B
i ;N

� �

¼
Xmin kAi ;k

B
if g�1

i¼0

log
max kAi ; k

B
i

� �� i

N � 1� i
ð9Þ

we find that, per simultaneous increment of both degrees, minh log p decreases by approxi-
mately −log ρ for small link densities ρ. To overcome this problem, we rescale log p by its mini-
mum value, thus defining a new local network difference measure

DiðA;BÞ ¼ 1� log pðHiðA; BÞ; kAi ; kBi ;NÞ
minh logpðh; kAi ; kBi ;NÞ ; ð10Þ

which we call the degree-conditional neighborhood dissimilarity (DND). Note that Di(A, B) is
only defined if kAi and k

B
i are both positive. The definition is independent of the base of

the logarithm.
The DND can only take values in [0, 1], with a value of zero (one) meaning maximally (min-

imally) overlapping neighborhoods of node i in the two networks, given the degrees. Note that
Di(A, B) = 0 does not imply a local agreement between networks. Rather, it means the greatest
possible agreement for given degree differences. The DND should therefore always be consid-
ered together with either the LHD or the degrees of the compared networks.

In the case of a comparison of spatially embedded networks, the LHD shows embedding ar-
tifacts such as boundary effects [38], which are inherited from the degree. Since the transforma-
tion of LHDs to DNDs frees the former of its degree dependence, the latter does not show the
according artifacts. As an example, compare the LHDs between regional climate networks in
Fig. 9(i-l) with their respective DNDs in Fig. 9(m-p).

Edge-weighted graphs
As outlined in the introduction, simple graphs describing complex system dynamics usually re-
sult from a binarization of a matrix of statistical relationship coefficients rij. Such a procedure
artificially degrades the network information content. Moreover, it usually involves the intro-
duction of binarization parameters, which many properties of the resulting simple graphs
depend on.

In the model evaluation context it may be desirable to omit this problematic procedure, i.e.
to directly evaluate the simulation accuracy with respect to the (rij) matrix. To that end a local
network difference measure of such matrices is needed. We will now introduce one for rij being
Pearson correlation coefficients.

In formal analogy to the (normalized) local Hamming distance, we define the local correla-
tion distance (LCD) by

CiðA;BÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N � 1

X
j 6¼i

F rAij

� �
� F rBij

� �� �2
s

; ð11Þ

F: ð�1; 1Þ ! ð�1;1Þ; r 7!arctanh r: ð12Þ
The use of the Fisher transformation [39] F in the LCD definition is motivated as follows. The
confidence interval width of Pearson correlation estimates depends on their value. An rij value
around 0 usually has a wider confidence interval than a value close to ±1. Therefore, at correla-
tion coefficient values around 0, we expect j rAij � rBij j to be greater than at values close to ±1.
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The use of Fisher transformed coefficients balances this disparity. For normally distributed
time series, the standard estimation error of F(rij) is approximately independent of rij [39–42].
Thus, in the definition of Eq. (11), differences of rij values close to ±1 contribute as much to
Ci(A, B) as those at values around 0.

Furthermore, using the non-transformed correlation coefficients in Eq. (11) would make
Ci(A, B) dependent on

P
j6¼ir

X
ij , X = A, B, analogously to the LHD-degree dependence on simple

graphs. Employing the Fisher transformation prevents this dependence and renders a DND an-
alog for edge-weighted graphs unnecessary.

For later reference, we define the global correlation distance (GCD) by C(A, B) = ∑i Ci(A, B)/N.
Basically, the ansatz just outlined for the Pearson correlation may be applied to any depen-

dence measure. However, as we have tried to argue, prior to any distance calculation, depen-
dence coefficients should be transformed such that their uncertainties become value-
independent. This should be seen as an incentive to develop currently lacking estimation error
theories for statistical dependence measures.

Node-weighted graphs
To conclude this section, we shortly discuss a generalization of our approach to networks fea-
turing node weights wi, which we assume to be equal in networks A and B. For instance, nodes
of a climate network may represent differently sized portions of the earth’s surface.

Given such networks, it is desirable to define network measures, that take node weights into
account. Following a general solution to this problem proposed in [43], we obtain the node-
weighted version H�

i of the LHD,

H�
i ðA;BÞ ¼

XN
j¼1

wj aAij XOR aBij

� �
: ð13Þ

AveragingH�ðA;BÞ ¼PiwiH
�
i ðA;BÞ yields the node-weighted version of the GHD [8]. Analo-

gously, we can define a node-weighted LCD by

C�
i ðA;BÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Wi

X
j 6¼i

wj F rAij

� �
� F rBij

� �� �2
s

ð14Þ

withWi = ∑j 6¼ i wj.
Deriving a node-weighted version of the DND is less straightforward. In formal analogy to

Eq. (10), D�
i ðA;BÞ should be a function of H�

i ðA;BÞ and the node-weighted degrees kA�i ; kB�i
with [43]

k�i ¼ wiþ
X
j6¼i

wjaij: ð15Þ

In contrast to ki though, any rearrangement of i’s neighborhood potentially changes k�i , de-
pending on the spectrum of node weights. The combinatoric null model approach that led
from LHD to DND is thus unsuitable for a derivation of D�

i ðA;BÞ. We could numerically com-
pute the node-weighted null model CDF using Monte Carlo techniques, but a general closed-
form analytical solution appears to be out of reach.

As the node-weighted DND should equal the DND in the case of constant node weights, we
can nevertheless provide an approximation to the unknown D�

i ðA;BÞ based on an approxima-

tion to Di(A, B): In Fig. 1 we observe that the function logp h; kAi ; k
B
i ;N

� �
may be approximated

by a straight line through its extreme points, preserving its strict monotonicity and range of
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values. Substituting log p in Eq. (10) accordingly yields

DiðA; BÞ �
HiðA;BÞ �min h
max h�min h

ð16Þ

with minimum and maximum LHD values for fixed degrees of minh ¼j kAi � kBi j and
maxh ¼ kAi þ kBi , respectively, thus

DiðA;BÞ �
HiðA; BÞ � jkAi � kBi j

2min fkAi ; kBi g
ð17Þ

¼ 1� NiðA;BÞ
min fkAi ; kBi g

: ð18Þ

Since the hypergeometric distribution is log-concave [44], logp h; kAi ; k
B
i ;N

� �
is a concave func-

tion in h [45]. Consequently, the approximate DND values are always less than or equal to
their true counterparts. Expression (18) shows that the DND is approximately equivalent to
the structural vertex similarity measure introduced in [34].

For fixed node-weighted degrees, the minimum and maximum node-weighted LHDs are
minh� ¼j kA�i � kB�i j and maxh� ¼ kA�i þ kB�i � 2wi, respectively. Hence, an approximation to
the node-weighted DND is given by

D�
i ðA;BÞ �

H�
i ðA;BÞ � jkA�i � kB�i j

2ðmin fkA�i ; kB�i g � wiÞ
: ð19Þ

Application to climate model evaluation
As alluded to in the introduction, Feldhoff et al. [8] have demonstrated the complex networks
approach to climate model evaluation, comparing the performance of two regional climate
models (RCMs) over South America. Specifically, the authors constructed networks of 2m tem-
perature, precipitation, 500hPa geopotential height and sea level pressure time series from
hindcast climate simulations and ERA-Interim reanalysis data [46]. The GHD between model
and reanalysis networks was employed as the error measure, with respect to which the statisti-
cal model STARS outperformed the dynamical model CCLM for all variables except the
500hPa geopotential height.

The ERA-Interim reanalysis data are the result of a 12-hourly assimilation of historical
meteorological observations and their integration by a numerical weather prediction (NWP)
model. The data quality varies from variable to variable and depends on the relative influences
of the observations and the NWP model [47–49]. Among the variables considered by Feldhoff
et al. [8], precipitation is the most uncertain one as it is difficult to model and since no precipi-
tation measurements are included in the assimilation of ERA-Interim.

Therefore, in the following, we reevaluate the quality of networks of precipitation time series
modeled by CCLM and STARS, this time with respect to networks of observed precipitation
data, and using our new local network difference measures. Before discussing results, we briefly
introduce the models and the observational dataset, specify the precipitation climatology to be
modeled, and describe our network construction methodology.

Models
The RCMs CCLM [50, 51] and STARS [52, 53] differ fundamentally in their approach to cli-
mate modeling. While the statistical model STARS takes climate data as input and

Local Network Differences and Dynamical SystemModel Evaluation

PLOS ONE | DOI:10.1371/journal.pone.0118088 April 9, 2015 8 / 28



stochastically resamples them such that a prescribed trend of some variable is matched, the dy-
namical model CCLM is the climate version of a NWP model, i.e. it numerically solves the dif-
ferential equations governing the dynamics of the atmosphere under prescribed external
drivers such as the solar radiative forcing and greenhouse gas concentrations.

For detailed descriptions of both models and the experimental setup of the evaluation see
[8] and references therein. In short, ERA-Interim reanalysis data was used to force both mod-
els. With STARS, daily mean value time series from 1979 through 1995 were resampled in
order to reproduce the 1996–2011 temperature trends. CCLM was run on the CORDEX South
America domain [54, 55], simulating 1979 through 2011 to ensure a proper model spin-up
during the first half of the simulation period. The daily mean precipitation time series were
then conservatively interpolated [56] back to the ERA-Interim grid in order to enable network
constructions on a common node set. We also include the ERA-Interim reanalysis data (ERAI)
in our reevaluation.

While there is only one CCLM run and one reanalysis dataset, with STARS an ensemble of
200 climate realizations was generated. All quantities evaluated in the following are calculated
for each realization individually and then averaged across the ensemble, i.e. any STARS result
shown represents the respective ensemble average.

Precipitation data and climatology
Arguably the best observational precipitation dataset available for tropical South America is
the Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 daily satellite product, which starts
in 1998 and comes at a native resolution of 0.25° [57]. The product is based on measurements
by radar, infrared and microwave sensors aboard numerous satellites, and calibrated by station
data. While it is available up to 50° latitude, the TRMM precipitation radar data only extend to
36° latitude so that we constrain our analysis to latitudes north of 40°S, where the data are most
reliable. To facilitate a proper network comparison, the TRMM data are conservatively re-
mapped to the native ERA-Interim grid which has a resolution of about 0.7°.

We concentrate our analysis on the austral summer season DJF, when a monsoon system
develops over tropical South America and provides for most of the annual precipitation
[58–60]. The region under study tightly encompasses the South American mainland and is de-
picted in Fig. 2, where we show the DJF mean values and 90th percentiles of daily precipitation
amounts as measured by TRMM and modeled by CCLM, ERAI and STARS from 1998 through
2011. The TRMM data exhibit the typical pattern of abundant rainfall in the Intertropical and
the South Atlantic Convergence Zone (ITCZ and SACZ, respectively), and along the eastern
slopes of the Andes.

These main rainfall patterns are replicated by the models but we find substantial differences
in intensities. Regarding the seasonal mean values, CCLMmostly underestimates rainfall,
while ERAI and STARS are closer to TRMM except along the Andes, where we find strong
overestimations. The 90th percentiles, which quantify the intensity of extreme rain events, are
mostly and substantially underestimated by all models. While TRMM shows values greater
than twice the respective mean values throughout the study region, the models simulate a
smaller ratio at most locations. Such intensity underestimations of extreme rainfall events are
shared by many climate models [61].

Network construction
Climate networks are constructed from space-time series of daily precipitation amounts during
the 1998–2011 austral summer seasons. Since we discard the incomplete seasons January-
February 1998 and December 2011 from our analysis, this implies time series lengths of
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M = 1170 days. Our domain/network comprises N = 5460 grid cells/nodes. We focus on net-
works without node weights to enable an application of the DND. This is reasonable since
LHD and GHD results do not change qualitatively when node weights representing grid cell
sizes are introduced, which is because grid cells do not vary much in size within the domain.
To capture different aspects of the precipitation dynamics, we apply two statistical dependence
measures—the Event Synchronization (ES) [62] and the Spearman Rank correlation coefficient
(SR) [63].

The ES may be used to analyze the spatial synchronicity structure of extreme precipitation
events [27] which has been done over South America based on the TRMM data used in this
study [64]. We adopt the network construction methodology described in the latter study. It is
based on a transformation of precipitation time series to binary extreme event time series as de-
picted in Fig. 3. At each location, daily precipitation above the 90th percentile of its climatolog-
ical (DJF 1998–2011) distribution is defined as an extreme event. Grid cells at which the 90th
percentile is zero in any of the observed or simulated datasets [hatched in Fig. 2(e-h)] are dis-
carded from the analysis. Between two extreme event time series at different locations, the ES
then quantifies the degree of event synchronization, with two events contributing to ES if they
can be uniquely associated within a maximum period of 3days. Since no variance-stabilizing
transformation is known for ES, we confine the ES network evaluation to the respective simple
graph whose links represent the ρ = 2% highest ES values and which we call ESp.

Besides focusing on extremes, we also aim at evaluating the general spatiotemporal precipi-
tation dynamics. To that end we employ the SR approach proposed by Feldhoff et al. [8],

Fig 2. DJF 1998–2011 mean values (top) and 90th percentiles (bottom) of daily precipitation amounts in mm/day asmeasured by TRMM and
modeled by CCLM, ERA and STARS (from left to right).Note that the 90th percentiles have been divided by 2 to fit into the same scale as the mean
values. Grid cells with 90th percentiles equal to zero in any of the observed or simulated datasets are hatched in (e-h). The locations of the Andes (solid), the
Amazon basin (dash-dotted), the ITCZ (dotted) and the SACZ (dashed) are sketched in (a).

doi:10.1371/journal.pone.0118088.g002
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which requires preprocessing of the original precipitation values to anomalies with respect to
the 1998–2011 climatology (Fig. 3). We first apply a 3-day moving average filter to the daily
precipitation time series so as to make them represent synoptic weather situations. In order to
prevent trivial correlations due to seasonality, these smoothed time series are then rendered ap-
proximately stationary in mean and variance. We achieve this by rescaling the time series of
each individual DJF season to their respective climatological (1998–2011) average smoothed by
a 7-day Gaussian filter (blue curve in Fig. 3). We prefer this division by climatological daily val-
ues over their more conventional subtraction, because only the scaling guarantees a common
rank of all zero precipitation events. To avoid division by zero we define a minimum climato-
logical value of 0.1mm/day, which customarily is referred to as the smallest measurable daily
precipitation amount. Statistical dependences between the resulting anomaly time series are
then quantified by the SR at lag zero; ties are handled according to the mid-rank method [65].
From the matrix of rank correlation coefficients we derive three networks. The matrix as it
stands defines an edge-weighted network, which we denote by SR. Simple graphs representing
the 2% most positive and the 2% most negative SR values are defined to disentangle these two
different kinds of correlation, and are denoted by SRp and SRn, respectively.

Altogether and schematically, our networks are constructed as follows:

ðxiðtÞÞ 7!P ðyiðtÞÞ 7!S ðrijÞ 7!T ðaijÞ; ð20Þ

where xi(t) are the local daily precipitation time series, P represents their preprocessing to
anomaly or extreme event time series yi(t) (cf. Fig. 3), S = SR, ES marks the application of a sta-
tistical dependence measure to all pairs of time series which results in a matrix (rij) of correla-
tion or synchronization strengths, and T denotes the thresholding that yields the simple graph
adjacency matrices (aij) according to

aij ¼
Y½tðrÞ � rij� for SRn;

Y½rij � tðrÞ� � dij for SRp; ESp;

8<
: ð21Þ

Fig 3. Schematic of local precipitation time series preprocessing to yield extreme event and anomaly time series.We start with daily precipitation
values from the austral summer seasons DJF of 1998 through 2011 (dark orange, top middle) and their 3-day moving averages (dark cyan, top middle). The
90th percentile of all of those daily values (red, top left) is the threshold used to define extreme events (bottom left). The phase-averaged 3-day moving
averages, further smoothed by a 7-day Gaussian filter (blue, top right) serve as a climatological DJF time series, to which we scale the 3-day moving
averages of each individual season to obtain anomalies (bottom right).

doi:10.1371/journal.pone.0118088.g003
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with the Heaviside functionY, the Kronecker delta δij, and the threshold τ set such as to obtain
the desired link density ρ.

It should be noted that the modeling accuracy of these networks is, in principle, indepen-
dent of general rain amount biases. Two pairs of time series can have the same correlations
even if standard deviations or means of the time series differ. Similarly, two pairs of (extreme)
event time series can agree in synchronicity despite disagreement in the event defining
threshold. Therefore, the discrepancies between observed and modeled precipitation mean val-
ues and 90th percentiles we see in Fig. 2 do not preclude agreement in the SR or ES
network structures.

Network topologies
Prior to an application of our novel network difference measures we investigate the individual
network topologies starting with mean Fisher transformed rank correlations,

fi ¼
1

N � 1

X
j6¼i

FðrijÞ; ð22Þ

and simple graph degrees as shown in Fig. 4. The fi field is mostly positive which shows that
positive correlations between anomaly time series predominate. The few locations of negative fi
differ in position between datasets. Spatial contrasts between fi values are least pronounced for
TRMM and most for CCLM.

Although SRn and SRp links encode fundamentally different statistical relationships, the de-
gree fields of the respective networks roughly agree in exhibiting and locating three distinct re-
gions of enhanced degree indicated by colored boxes in Fig. 4(i). All models reproduce this
general pattern. As to the climatological interpretation of the SRp network we notice that the
regions of large degree are adjacent to the zones of most abundant seasonal rainfall (cf. Fig. 2),
while over those zones themselves (Amazon basin, ITCZ, SACZ) degrees are low, just like over
the very dry southern hemisphere Pacific coast. This is explained as follows. Precipitation time
series in very dry regions are mostly constant and can therefore not be correlated to other more
rainy, less constant time series. The abundant rainfall in the convergence zones is associated
with frequent localized convective rain events [59], hence the low correlation levels here. In
contrast, wet and dry periods alternate in the intermediately wet regions adjacent to the con-
vergence zones, which causes large intraregional correlations there. We show below that the
SRp network links are indeed purely intraregional. There we also give a climatological interpre-
tation of the SRn network. For a detailed climatological interpretation of the ESp network we
refer the reader to [64].

We proceed by analyzing the dependence of mean correlations and simple graph link prob-
abilities on the geographical distance of nodes (Fig. 5). While it is known that correlations be-
tween precipitation time series decay with distance [66] and a similar behavior has been found
for synchronizations of extreme precipitation events [27], details of the SR and ES decays have
not yet been compared and we do not know at which distance to expect the anticorrelations
represented by the SRn network.

Fig. 5(b) shows an approximately exponential decay of F(rij) values with node distance for
short distances, followed by predominating anticorrelations for intermediate distances from
about 15° to 55°. The distribution of F(rij) values becomes bimodal at distances beyond 60°,
with positive and negative modes representing correlations and anticorrelations between
anomaly time series in the diagonally opposite corners of the domain; deviations of mean F(rij)
values from zero at those distances are therefore not statistically significant. While all models
reproduce these characteristics, STARS and particularly CCLM overestimate the absolute
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Fig 4. Mean Fisher transformed SRs [top, Eq. (22)] and degrees [Eq. (1)] of SRn, SRp and ESp simple graphs (from top to bottom) from rainfall data
measured by TRMM andmodeled by CCLM, ERA and STARS (from left to right). Degrees are shaded according to the lower color scale and have been
rescaled to their average (N−1)ρ; note further that the ESp and SRp degrees have been multiplied by 2 to fit them into one scale with the SRn degrees. The
three colored 7° × 7° boxes in (i) define the regions referred to in the text and in Fig. 6.

doi:10.1371/journal.pone.0118088.g004
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values of both the most positive and the most negative correlations; ERAI follows the TRMM
observations more closely. We find corresponding deviations in the rank correlation thresholds
defining the SR simple graphs: The 2nd and 98th percentiles of SR are -0.16/-0.24/-0.18/-0.23
and 0.43/0.58/0.48/0.47 for TRMM/CCLM/ERAI/STARS, respectively.

For the three simple graphs, the link probability as a function of geographical node distance
is shown in Fig. 5(c); the respective absolute number distribution of node distances is depicted
in Fig. 5(a). Most of the 2% strongest anticorrelations turn out to connect anomaly time series
10° to 40° away from each other. SRp and ESp link probabilities decay differently for distances
beyond about 10°. In line with F(rij) values, SRp link probabilities go to zero around 15°, while
some nodes much farther apart are linked in the ESp graph. Distinctly positive general rainfall
anomaly correlations are hence confined to be short ranged, while some of the 2% strongest

Fig 5. Dependence of rank correlations (b) and simple graph link probabilities (c) on geographical
node distance for TRMM, CCLM, ERA and STARS networks, based on binned node distances and
their absolute number distribution (a). The link probabilities in (c) are the conditional probabilities of finding
two nodes linked given their distance. A great-circle distance of 10° corresponds to a geographical distance
of approximately 1113km.

doi:10.1371/journal.pone.0118088.g005
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extreme rainfall event synchronizations over South America are found between locations thou-
sands of kilometers apart. Across graph types, CCLM produces too many short- and too few
long-range links, which means that the model underestimates the strength of teleconnections
relative to local anomaly correlations and event synchronizations. ERAI and STARS show less
coherent deviations from TRMMwith the reanalysis following the observations most
closely, overall.

To shed some more light on the network topologies, Fig. 6 depicts RGB color coded connec-
tivities to the three regions C, M, Y defined by colored boxes in Fig. 4(i). In the TRMM SRn
graph, we find nodes south of Y connected to C and nodes in and northeast of C connected to
Y. Moreover, we find nodes north of Y connected to M and nodes west of M connected to Y.
Rainfall dipole patterns underlying these regional connectivities have been studied in the cli-
matological literature. The M-Y anticorrelation has been associated with active and break

Fig 6. Connectivities to the regionsmarked by colored boxes in Fig. 4(i) for the TRMM, CCLM, ERAI and STARS (from left to right) SRn, SRp and
ESp (from top to bottom) graphs. For each node i, the connectivity to the three regions [marked again by black boxes in (e)] is transformed to an RGB color
with additive color mixing. We use cyan, magenta and yellow for links to C, M and Y, respectively, with color intensities proportional to the number of links
between i and the respective region. In formulas, if i is connected to nC, nM and nY nodes in boxes C, M and Y, respectively, we calculate an 24-bit RGB color
code of (255 nC/100, 255 nM/100, 255 nY/100) as all boxes contain exactly 100 nodes, and apply an additional hue shift by 180° [67]. Note that, since the
hypothetical case of a node connected to all C, M and Y nodes does not occur, white has a purely decorative meaning.

doi:10.1371/journal.pone.0118088.g006
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phases in the South American monsoon system [68]. The C-Y one corresponds to the well-
studied SACZ seesaw pattern, which is caused by middle-latitude frontal systems propagating
into the tropics [69, 70]. In contrast to SRn, the SRp and ESp graphs are dominated by short-
range links and no interregional connections are found. The models reproduce the general pat-
terns of connectivity to the regions C, M, Y for every graph type, yet with reduced accuracy for
SRn compared to SRp and ESp. In particular, anticorrelations between C and the maritime
SACZ are underestimated by every model (cf. Fig. 4), and CCLM overestimates the strength of
the M-Y anticorrelation.

Network differences
We now study deviations of modeled from observed precipitation networks as quantified by
the difference measures introduced above. Yet before going local we take a look at global net-
work differences to analyze variations in climate model performances with network type and
to connect to the Feldhoff et al. [8] results.

Global network differences. Global correlation and Hamming distances of modeled
to TRMM precipitation networks are depicted in Fig. 7. Like Feldhoff et al. [8], we relate
climate model performances to those of random network models which preserve certain
properties of the respective TRMM network. The GHDs in Fig. 7 have been renormalized by
2ρ(1 − ρ)N(N−1), the expected GHD to an Erdős-Rényi random network with the same link
density [8, 29, 71]. This type of random graph represents the performance of the worst possible
climate model, i.e. one that simulates graphs that have nothing in common with the TRMM
graph except the link density.

As a second reference we employ the Spatially Embedded Random Network (SERN) model
to account for spatial embedding effects on the network topology [38, 72]. Graphs generated

Fig 7. Global correlation and Hamming distances of modeled to TRMM precipitation networks for the
four different network types SR, SRn, SRp, ESp (from left to right). The left and right scales apply to the
GCDs and GHDs, respectively. The latter have been renormalized by the expectation value of the GHD to an
Erdős-Rényi random network with the same link density [8, 29, 71]. For ensemble networks (TRMMb,
CCLMb, ERAIb, STARS, SERN, 200 realizations each), the range of ±1 standard deviation around the
ensemble mean is shaded. Lines without uncertainty shading represent single realization networks (CCLM,
ERAI). The uncertainties of H(TRMM, SERN) are invisibly small.

doi:10.1371/journal.pone.0118088.g007
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by this model have the same distribution of geographical link lengths as the respective TRMM
graph. We have seen that the climate models basically reproduce those distributions with their
network-type dependent character [cf. Fig. 5(c)]. The SERN model performance quantifies
what could be expected from a correct such reproduction alone; the smaller the GHD between
SERNs and the respective TRMM network, the more topological information on the latter is
contained in its link length distribution. We generate an ensemble of 200 SERNs.

When comparing CCLM and ERAI performances with the average STARS performance,
one should take into account a disadvantage the statistical model has ab initio. Its resampling
algorithm does not preserve the time order of its input data, which implies that, even if
STARS was fed with data from the evaluation period, its output would only have the true
chronology with negligibly small probability. In contrast, CCLM in its present application
and ERAI are aimed at reproducing the actual weather history of the evaluation period.
Therefore, while some of the differences between TRMM and STARS networks are due to
climate variability represented by the ensemble of climate realizations generated with the
statistical model, deviations of this origin are precluded between the TRMM, CCLM and
ERAI networks.

To estimate the fraction of network differences that arises from interannual climate variabil-
ity, we introduce ensembles of networks from resampled TRMM, CCLM and ERAI precipita-
tion time series. We resample according to the bootstrapping method described by Feldhoff
et al. [8], i.e. seasonal blocks of data are drawn at random with replacement and concatenated
such that the lengths of bootstrapped and original time series are equal. To ensure spatial co-
herence, every draw is done synchronously at all locations. We construct ensembles of each
200 TRMMb, CCLMb and ERAIb networks from the respective bootstrapped space-time se-
ries. This approach is inspired by STARS’ resampling algorithm which, in its first step, does
just such a bootstrapping with annual blocks of data [8, Fig. 1].

Fig. 7 reveals that performance differences between CCLM and CCLMb or ERAI and
ERAIb are minor which shows that CCLM and ERAI global network differences to TRMM
mainly reflect model deficiencies. Nevertheless, in the following we will compare STARS net-
work errors to those of CCLMb and ERAIb only and thereby facilitate a fairer model
intercomparison.

From the bootstrap network ensemble spread of GCDs and GHDs we can also learn some-
thing about the interannual variability present in each dataset. Irrespective of their type, net-
works from bootstrapped observational data feature spreads about twice as large as those from
bootstrapped reanalysis data and even less variability is present in the CCLMb and STARS en-
semble data. The SRp graph exhibits the smallest interannual variability of all simple
graphs—a persistence that is arguably due to the predominance of short-range links in this
network [73].

Coming back to the SERN model, we observe that its performance varies considerably be-
tween graph types. These variations are associated with differences between the respective geo-
graphical link length distributions [cf. Fig. 5(c)]. In case of the SRp graph, the distribution is
highly informative about the network topology. It allows to infer that only short-range links
exist in the network and that geographical neighbors are most likely also topological neighbors.
Aside from the existence of several long-range links, this also holds true for the ESp graph,
hence the superiority of the SERN model over the Erdős-Rényi model for these two graph
types. Analogously, the contrastingly poor SERN model performance for the SRn graph is due
to the flatness of the respective link length distribution.

Conspicuously, SERN and climate model performances vary quite similarly between graph
types. Since SERNs and climate model networks have nothing in common but their link length
distribution [cf. Fig. 5(c)], the similarity must have something to do with the latter. Yet the
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explanation of the performance differences between graph types cannot be the same for the
random network model and the climate models since CCLM, ERAI and STARS place links in a
manner that is clearly not random (cf. Fig. 6). We think that the differences in climate model
performances between graph types can be explained by mean geographical link length differ-
ences between graph types in connection with the conjecture that in our networks long-range
links are statistically more susceptible to misplacement than short-range links. In Fig. 8(b) we
give a numerical validation of this conjecture for our SR networks; an analogous validation for
the ES network is unfeasible at this point as no variance-stabilizing transformation is known
for the ES. A heuristic motivation of the conjecture is possible with the help of an analog from
psychology, regarding the network nodes in Fig. 8(a) as grown-up humans, for which, owing to
the developmental process of perceptual narrowing [74], it is easier to discriminate between fa-
miliar than between unfamiliar types of perceptual stimuli: Because nodes j, k are more similar
to the close node i than to the distant node l, it is easier for i than for l to distinguish between j,
k. Thus, in terms of links, j-l is more likely to be confused with k-l than i-j with i-k. The connec-
tion between node similarity and link dissimilarity that is implicit to this analog is established
via the statistical dependence measures SR and ES and constitutes the core of the conjecture.

In simple terms, the SRn graph is harder to reproduce than the other simple graphs because
its links are longer. We propose to account for this purely geometric-statistical effect by relating
climate model performances to the respective SERN model performance which nicely quanti-
fies the effect. And just as H(TRMM, SERN) represents a worst case performance scenario, the
GCDs and GHDs between TRMM and TRMMb networks constitute optimal performance lim-
its for CCLMb, ERAIb and STARS. In the sense of [76], relating climate model performances
to these benchmarks yields a more informative measure of the actual climate model skills when
comparing performances for different network types. We thus define a model skill score taking

Fig 8. Why in our networks long-range links are statistically more susceptible to misplacement than short-range links. (a) Schematic of a simple
graph where the color of a node represents the time series behind it with similarity between colors corresponding to similarity between time series. Note that
just like the networks studied, this schematic graph features roughly constant nearest geographical neighbor distances and decreasing node similarity with
increasing geographical node distance. (b) Mean absolute differences between Fisher transformed correlation coefficients rij, rik for geographically close
nodes j, k versus dij, the geographical distance between nodes i, j. Since the estimation errors of the Fisher transformed rank correlations are value-
independent [41, 42], plot (b) shows that with increasing dij, correlation differences rij − rik for geographically close nodes j, k become less robust with respect
to the estimation errors of rij, rik. As rij − rik becomes less robust, so does the relative ranking of rij, rik and, hence, the thresholding of rij, rik to aij, aik [Eq. (21)].
Therefore, in the SRn and SRp graphs, the misplacement of a long-range link [j-l versus k-l in (a)] is more likely than the misplacement of a short-range link [i-j
versus i-k in (a)]. To give an idea of link misplacement likelihoods, probabilities of false relative rankings of rij, rik at different σ levels are marked in (b). The σ
levels were calculated using a BART estimator for the effective sample sizeM0 <M to account for autocorrelations in the anomaly time series [75].

doi:10.1371/journal.pone.0118088.g008
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both benchmarks into account by

SðA;R;O; PÞ ¼ HðR; PÞ � HðR;AÞ
HðR; PÞ � HðR;OÞ ð23Þ

for model A with reference R = TRMM, optimum O = TRMMb and pessimum P = SERN.
This yields average (over CCLMb, ERAIb and STARS) model skill scores of 0.480(8)/0.624(4)/
0.606(11) for SRn/SRp/ESp, respectively. Like Fig. 6, this suggests that the SRn graph is hardest
to model, even after taking the link length effect into account. As per Welch’s t-test [77], the av-
erage SRp and ESp skill scores are not significantly different at the 5% α level. Compared to the
untransformed GHDs, the skill scores display considerably increased similarity between net-
work types which means that large parts of the performance differences between network types
can be attributed to type-specific network uncertainties due to climate variability and
spatial embedding.

A model performance intercomparison for the individual network types is permitted as all
differences between ensemble mean GCD or GHD values are significant at the 5% α level ac-
cording to Welch’s t-test. We find that STARS performs worse than ERAI for every network
type considered. The best models are ERAI for the edge-weighted SR network and the SRp
graph, and CCLM for the SRn and ESp graphs. The poor SR performance of CCLM is in line
with its abovementioned overestimation of absolute correlation values [cf. Fig. 5(b)].

Local network differences. We now come to the application of the new local network dif-
ference measures. LCDs, LHDs and DNDs between TRMM and model precipitation networks
are depicted in Fig. 9. We do not show the LHDs between ESp graphs because they are domi-
nated by the degree dependence which motivated the introduction of the DND, nor the DNDs
between SRn graphs since they are undefined in many locations due to a multitude of isolated
nodes in these graphs.

Starting with the LCD, we find virtually no spatial variability in Ci(TRMM, TRMMb),
which is due to the use of the Fisher transformation in the LCD definition [Eq. (11)] if we con-
sider differences between TRMM and TRMMb correlations to quantify estimation errors. The
contrasting spatial dependence of climate model LCDs hints at model deficiencies with spatial-
ly inhomogeneous consequences. Higher correlation differences common to all models can be
observed along the Andes, in northeastern Brazil and over the Pacific south of 20°S while lower
values occur over the Atlantic south of the SACZ. We observe LCD contrasts along the coasts
and find a larger LCD spread across models over land than over sea. The largest correlation dis-
tances to TRMM are produced by CCLM over central Brazil.

The LHDs of SRn and SRp simple graphs are clearly degree-dependent (cf. Fig. 4). We see
that high LCDs may coincide with high LHDs as for instance over the Pacific off the Chilean
coast for STARS or over central and northeastern Brazil for CCLM. Yet where correlations are
not strong enough to be represented by links in the simple graphs, high LCDs may come along
with low LHDs as can be observed along the Andes.

Hatching in Fig. 9(e-t) visualizes the respective relative local SERN model performances.
Light hatching indicates insignificantly different local network differences at the 5% α level ac-
cording to Welch’s t-test [77] while heavy (no) hatching indicates a significantly better (worse)
local performance by the random network model. In line with GHD results (cf. Fig. 7), the cli-
mate models perform better in most locations. Yet there are areas where mere knowledge of
the observed all-domain link length distribution allows for a better neighborhood prediction
than the use of a climate model. With the LHD, these areas differ considerably
between models.
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Fig 9. Ensemble mean local differences of TRMMb, CCLMb, ERAIb and STARS (from left to right) to TRMM precipitation networks. SR (a-d) network
LCDs [Eq. (11)], SRn (e-h) and SRp (i-l) graph LHDs [Eq. (4)], SRp (m-p) and ESp (q-t) graph DNDs [Eq. (10)]. Note that the LHDs have been renormalized
by (N−1)ρ, analogously to the degrees (Fig. 4). The color scale next to (p) is also applicable to (q-t). Hatching in (e-l) puts LHDs in relation to Hi(TRMM,
SERN) of the respective graph type; same for DNDs in (m-t); light hatching indicates insignificantly different values at the 5% α level according to Welch’s t-
test [77]; heavy (no) hatching indicates a significantly better (worse) local performance by the random network model.

doi:10.1371/journal.pone.0118088.g009
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A more coherent picture only emerges with the DND, shown for SRp and ESp graphs in
Figs. 9(m-p) and 9(q-t), respectively. We observe larger DNDs over land than over sea and find
particularly high values in the Guyana Highlands and along the Andes. DNDs between TRMM
and TRMMb are much larger for the ESp than for the SRp graph. Climatic uncertainties of ex-
treme event synchronizations are most pronounced in the Amazon basin and along the eastern
slopes of the Andes, which is consistent with the outstanding noisiness of TRMM’s ESp degree
field in those areas [cf. Fig. 4(m)]. In line with the respective GHDs (Fig. 7), the ESp DNDs to
TRMM increase slightly from TRMMb to CCLMb to ERAIb to STARS while their spatial pat-
terns do not vary much across datasets. This shows that most of the differences between
TRMM and climate model ESp graphs can be explained with interannual climate variability.

In this context, note that, generally, the local network difference fields based on the original
CCLM and ERAI time series do not differ much from the respective bootstrap ensemble mean
fields. The latter are smoother and feature slightly larger values but apart from that show the
same spatial patterns. Hence, where climate model bootstrap network differences to TRMM
clearly exceed the corresponding difference between TRMM and TRMMb, network imperfec-
tions cannot be explained by climatic uncertainty but must be due to model deficiencies.

Discussion
With the present study we advance the complex network approach to climate model evaluation
recently put forward by Feldhoff et al. [8]. We do so in three ways, going from the general to
the particular. Firstly, we expose the wider scope of application of the approach outlining how
it can be used to evaluate models of real-world multidimensional dynamical systems of any
background; secondly, we define local versions of the global network difference measures intro-
duced by Feldhoff et al. [8] to facilitate spatially explicit network comparisons in the climate
model evaluation context; and thirdly, we apply both local and global network difference mea-
sures in a sample climate model evaluation where we highlight intricacies of the approach relat-
ed to comparisons of model performances across network types.

The first local network difference measure we define is a local version of the global Ham-
ming distance (GHD) between simple graphs. We demonstrate that the local Hamming dis-
tance (LHD) comes with a disadvantageous degree dependence, which we propose to
overcome using a suitable statistical null model, relating the actual LHD value to the null
model probability distribution of possible LHD values given the degrees of the respective node.
This way a second local network difference measure is defined which we call the degree-condi-
tional neighborhood dissimilarity (DND).

Our ansatz to render the LHD degree-independent via a statistical null model goes beyond
existing ad hoc renormalization methods used by the vertex similarity community to solve the
equivalent problem occurring when comparing different nodes of the same network [21]. As
our ansatz has the virtue of an explicit probabilistic motivation and is easily transferred to the
equivalent vertex similarity problem, we propose it to supersede the ad hoc approaches com-
mon in that field.

By definition, the relationship between network LHDs and DNDs is similar to the one be-
tween absolute and relative precipitation biases. Large LHDs can coincide with small DNDs
and vice versa. The two network difference measures should therefore always be considered
conjointly to prevent misinterpretations. Notably, while zero LHDs imply zero DNDs, the con-
verse is not true. Rather, a vanishing DND indicates the greatest possible
neighborhood overlap.

We also examine the case of edge-weighted graphs represented by matrices of statistical re-
lationship coefficients. It is argued that difference measures for such graphs should account for
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estimation uncertainties inherent to the coefficients. For this purpose we propose to employ
variance-stabilizing transformations like the Fisher transformation in the case of correlations.
Using the latter we define the local and the global correlation distance (LCD, GCD) between
correlation matrices in formal analogy to the LHD and the GHD between simple graphs.

Generalizations of our local network difference measures to node-weighted graphs are pre-
sented as well. Computing LHDs and DNDs between directed graphs is straightforwardly done
by separating ingoing and outgoing links, i.e. by defining H�

i and in turn D�
i via kA�i ; kB�i . The

new difference measures are therefore highly versatile and can be used to compare networks of
any functional or structural background as long as these have a common set of nodes. They
might be useful additional tools for investigations of network evolution, such as in [73, 78],
or for studying the impact of disorders and disasters on network topologies, similar to
[79–82].

In a sample climate model evaluation we apply the network difference measures to compar-
atively analyze statistical and dynamical regional climate simulations of the South American
monsoon system. We focus on climate networks constructed from DJF precipitation space-
time series and use satellite data provided by the Tropical Rainfall Measuring Mission
(TRMM) 3B42 V7 as a reference. We also include the ERA-Interim (ERAI) reanalysis data in
the evaluation since they where used to drive the simulations of both the statistical model
STARS and the dynamical model CCLM.

Different types of networks are constructed to capture distinct aspects of the spatiotemporal
precipitation dynamics. Based on spatial rank correlations between anomaly time series we de-
fine an edge-weighted graph called SR and two simple graphs with links representing the 2%
most positive and the 2% most negative correlations called SRp and SRn, respectively. Another
simple graph called ESp is based on the 2% strongest spatial synchronizations between extreme
event time series. We show that the ESp and SRp graphs are dominated by short-range links
while teleconnections prevail in the SRn graph. Visualizing these teleconnections using an
RGB color model we reveal that they represent the two major rainfall dipoles of the South
American monsoon system.

Global distances between TRMM and ERAI/CCLM/STARS simple graphs vary strongly
across network types, which allows us to uncover how climate variability and spatial embed-
ding effects pose limits to the fidelity of network reproduction. It is shown that as geographical
link lengths increase, so does the likelihood of their misplacement, which explains why GHDs
are much larger for the SRn than for the SRp and ESp graphs. We employ spatially embedded
random networks (SERNs) to model this effect. The fraction of network differences due to in-
terannual climate variability is quantified using a bootstrap approach. In agreement with the
fickle nature of extreme events, we find the ESp graph most affected by this source of uncer-
tainty. Based on SERN and bootstrap network differences to TRMM, a model skill score is de-
fined that accounts for the named uncertainties. According to this score, the SRp and ESp
graphs are reproduced with similar and higher fidelity than the SRn graph. This result makes
sense inasmuch as more than the former graphs, the latter contains nontrivial information
about the system dynamics.

Comparing performances across reanalysis and climate models, we find that CCLM beats
ERAI at two out of four network types, while STARS performs worse than ERAI in all cases. As
both CCLM and STARS were driven by ERAI data, this suggests that dynamical downscaling
may retain value at the resolution of the driving data while statistical resampling can only im-
pair data quality. Interestingly, for the SRp graph, our evaluation against the independent
TRMM data yields a relative performance ranking of CCLM versus STARS that is opposite to
the one obtained in an evaluation against the driving reanalysis data [8].
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From the ensemble spread of bootstrap network distances to TRMMwe infer that ERAI
and even more so CCLM and STARS underestimate the interannual variability of the precipita-
tion dynamics encoded in our networks. As for the reanalysis, this finding complements docu-
mented deficiencies in reproducing the variability of spatiotemporal totals of tropical rainfall
over land [83, 84]. The loss of large-scale variability in the CCLM simulations might have been
prevented by spectral nudging [85, 86]. In case of STARS we conclude that its resampling
algorithm tends to reduce the variability present in its input data. We suspect deficiencies in
cloud physics parameterizations of contributing substantially to the variability underestima-
tions by ERAI and CCLM as simulated precipitation characteristics over monsoon season
South America are highly sensitive to modifications of these parameterizations [55] while they
are known to lack flexibility in reacting to variations in the large-scale environment [83, 87].
Another factor are model parameters that in reality vary from year to year but are represented
by climatological values in ERAI [46, 88] and CCLM [89, 90], like aerosol concentrations, for-
est albedos or leaf area indices, which means that the models are unable to account for interan-
nual variabilities in aerosol or land-atmosphere feedbacks due to, e.g. volcanic eruptions,
bushfires or droughts.

Finally, our new local difference measures are employed to study the spatial distribution of
network dissimilarities. In doing so, the DND proves to be most useful to identify commonali-
ties across datasets. Larger DNDs over land than over sea are consistent with land surface-
atmosphere interactions being more complex than sea surface-atmosphere interactions, and
relatively high DNDs in the Guyana highlands and along the Andes confirm model deficiencies
in simulating precipitation over complex terrain [91, 92]. Using the DND we also reveal that
for the given observational record length, differences between ESp graphs are dominated by
the interannual variability of extreme events, which prevents a reasonable evaluation of their
spatial synchronizations at this point.

The situation is different for the correlation networks and we find model-specific spatial
patterns in the LHD and LCD fields. The largest SR, SRn and SRp network distances of CCLM
to TRMM are found over central and northeastern Brazil. We suppose these biases to be associ-
ated with a less severe underestimation of precipitation over this region relative to over the
western Amazon basin, and with an erroneous northward displacement of the SACZ [55]. For
STARS, the largest correlation network distances to TRMM occur over the Pacific off the Chil-
ean coast. During DJF this region is controlled by a subtropical high that is occasionally dis-
turbed by troughs carried along by the Westerlies of the Southern Hemisphere. Considering
that STARS’ simulation domain in fact extents to the southern tip of South America [8], we
suppose that the statistical model inadequately resamples the synoptic features that govern the
austral summer climate over the southern Pacific Horse Latitudes. A common deficiency of
ERAI, CCLM and STARS is an underestimation of the relative strength of the maritime part of
the SACZ precipitation seesaw. As both the reanalysis and the dynamical model employ pre-
scribed sea surface temperatures [46, 55], this might be due to an imperfect ocean-atmosphere
coupling [93].

Supporting Information
S1 Data. TRMM 3B42 V7 daily precipitation estimates over South America from 1998 to
2011, conservatively interpolated to the ERA-Interim grid.
(ZIP)

S2 Data. COSMO-CLM 4.25.3 model output of daily precipitation over South America
from 1998 to 2011, conservatively interpolated to the ERA-Interim grid.
(ZIP)
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S3 Data. ERA-Interim reanalysis daily precipitation over South America from 1998 to
2011.
(ZIP)

S4 Data. ERA-Interim reanalysis daily precipitation over South America from 1979 to
1995 and 200 day-to-day mappings from 1996–2011 to 1979–1995 generated with
STARS 2.4. From these data it is possible to reconstruct the ensemble of STARS precipitation
space-time series used in this study.
(ZIP)
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