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Short running-title: Simulation of crop phenology at global scale 46 

 47 

ABSTRACT 48 

Aim: To derive location-specific parameters that reflect the geographic differences among 49 

cultivars in vernalization requirements, sensitivity to day length (photoperiod) and 50 

temperature, which can be used to simulate phenological development of wheat and maize at 51 

the global scale. 52 

 53 

Location: Global 54 

 55 

Methods: Based on crop calendar observations and literature describing the large-scale patterns 56 

of cultivar phenological characteristics, we developed algorithms to compute location-specific 57 

parameters to represent this large-scale pattern. Vernalization requirements were related to 58 

winter duration and coldness, sensitivity to day length was assumed to be represented by the 59 

minimum and maximum day lengths occurring at a location, and sensitivity to temperature was 60 

related to temperature conditions during the vegetative development phase of the crop. 61 

 62 

Results: Application of the derived location-specific parameters resulted in high agreement 63 

between simulated and observed lengths of the cropping period. Agreement was especially high 64 

for wheat, with mean absolute errors of less than three weeks. In the main maize cropping 65 

regions, cropping periods were over- and underestimated by 0.5 to 1.5 months. We also found 66 

that interannual variability in simulated wheat harvest dates, was more realistic when 67 

accounting for photoperiod effects. 68 
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 69 

Main conclusions: The presented methodology provides a good basis for modelling phenological 70 

cultivar characteristics at the global scale. We show that current global patterns of growing 71 

season length as described in cropping calendars can be largely reproduced by phenology 72 

models if location-specific parameters are derived from temperature and day length indicators. 73 

Maize growing seasons cannot be modelled as good as wheat growing seasons, especially in 74 

warm regions. Our method to compute parameters for phenology models from temperature and 75 

day length offers opportunities to improve the simulation of crop productivity by crop 76 

simulation models developed for large spatial areas and for long-term climate impact 77 

projections that account for adaptation in variety selection. 78 

 79 

Keywords: Agricultural management, crop calendars, global crop modelling, global harvest 80 

dates, phenology, cultivar/variety characteristics 81 

 82 

INTRODUCTION 83 

The phenological development of crops determines the duration and timing of essential periods 84 

for crop growth and thus the quality and quantity of crop yields to a large extent (Porter & 85 

Semenov, 2005). In the scientific literature it is well established that temperature (directly and 86 

in case of winter cultivars also indirectly via vernalization requirements) and day length (also 87 

referred to as photoperiod) are the main components determining crop development. 88 

Development rate shows a positive linear correlation to temperature (Slafer & Rawson, 1994). 89 

Vernalization is the influence of cold temperatures on the timing of flowering (Raven et al., 90 

2005): development is delayed as long as the plant has not experienced sufficient days with 91 

vernalizing temperatures (Miralles & Slafer, 1999). Finally, photoperiodism is the response to a 92 

change in the proportions of light and darkness in a 24-hour cycle. For long-day plants (e.g. 93 

wheat) development accelerates when photoperiod increases, for short-day plants (e.g. maize) 94 

development accelerates when photoperiod decreases (Raven et al., 2005). Moreover, crop 95 

development will be synchronized among years due to photoperiodism, buffering the impact of 96 

interannual variability in weather conditions (Hay & Kirby, 1991; Gouesnard et al., 2002; 97 

Craufurd & Wheeler, 2009). Crops like wheat and maize are cultivated in a wide range of 98 

environments (Gouesnard et al., 2002; Trethowan et al., 2006). This is possible due to a variety 99 

of cultivars that respond differently to temperature and photoperiod and farmers can therefore 100 

choose a cultivar that is well adapted to local temperature and photoperiod conditions (Olesen 101 

et al., 2012).  102 

Observed climatic warming has resulted in changes in crop phenology, which is described 103 

for Europe (Menzel et al., 2006), China (He et al., 2015), and the US (Twine & Kucharik, 2009), 104 

with associated consequences for crop productivity. To assess the impact of climate change on 105 

crop productivity, crop simulation models are suitable tools. The accuracy of simulated crop yield 106 

is determined to a large extent by the accuracy of the phenological module of the model (Wheeler 107 

et al., 2000). Moreover, potential adaptations of farmers to climate change through cultivar and 108 

sowing date selection should be considered within climate change impact assessments (Olesen et 109 
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al., 2012). Accordingly, static crop calendars, e.g. based on observations, should not be used as 110 

input for adaptation or climate impact studies. 111 

Given the widely reported sensitivity of crops to photoperiod, its role as key determination of 112 

crop adaptation to local conditions, and its synchronizing function, it seems important to consider 113 

its effects in phenological modules of crop models (Craufurd & Wheeler, 2009). Vernalization is 114 

often but not always considered in field scale (Asseng et al., 2013) and global scale (Rosenzweig et 115 

al., 2014) wheat models, while photoperiodism is covered by many field scale models for wheat 116 

(Asseng et al., 2013) and maize (Bassu et al., 2014) but typically not in global scale models 117 

(Rosenzweig et al., 2014). One reason is certainly the lack of information required to parameterize 118 

photoperiodism and vernalization responses of crops in phenology models applied at global scale. 119 

Consequences of omitting photoperiodism and vernalization relations for phenology simulations, 120 

e.g. on the interannual variability of the length of the simulated cropping periods, have not 121 

evaluated at the global scale to date. 122 

As stated above, farmers choose cultivars adapted to local conditions, but also as adaptation 123 

strategy to changing climatic conditions. Most global crop growth models use climate data to 124 

define sowing dates (see e.g. Waha et al., 2012), thus accounting for possible adaptation strategies. 125 

However, to date, equivalent methods to define model parameters necessary to account for 126 

cultivar selection as adaptation strategy are lacking for the global scale. This limits simulation of 127 

phenological development and consequently hinders simulation of accurate crop yields and 128 

variety-related adaptation strategies, especially within climate impact assessments. 129 

The objectives of this study were therefore: (1) to compare phenology models differing with 130 

regard to consideration of vernalization and/or photoperiod responses, (2) develop algorithms 131 

to define location-specific crop variety parameters for these phenology models; and (3) to 132 

investigate the interannual variability in simulated growing period lengths based on the 133 

different phenology models. Wheat and maize are used as example crops accounting for 134 

approximately 30% of the total harvested global crop area (FAO, 2012). We thus hypothesize 135 

that farmers’ selection of crop varieties is mainly aiming to optimize the growing period as 136 

defined by local climatic conditions and that the parameters for phenology models can be 137 

derived from simple climatic indicators. 138 

The outcomes of this study can help to improve simulations of crop phenology in crop 139 

growth models applied at large spatial areas. This will make an important contribution to 140 

climate impact studies on global crop productivity. 141 

 142 

METHODS 143 

Phenological model AFRCWHEAT2 144 

To simulate phenological development of wheat and maize we used the well-established 145 

concept of heat units as implemented in the model AFRCWHEAT2 (Weir et al., 1984; Porter, 146 

1993; Ewert et al., 1996). Daily temperature (𝑇𝑖,,°C) is accumulated above a base temperature 147 

(𝑇b, , °C), resulting in a heat unit sum (𝐻𝑈sum, °Cd) until the required heat units from emergence 148 

to physiological maturity (𝐻𝑈req, °Cd) are reached. The increment in heat units is modified by 149 

the effects of photoperiod (photoperiod factor, 𝑃f𝑖
, -), and in case of winter wheat by the effects of 150 
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vernalization (vernalization factor, 𝑉f𝑖
, -). The crop is harvested when the heat unit sum 151 

accumulated for the period since sowing 𝐻𝑈sum becomes equal or larger than 𝐻𝑈𝑟𝑒𝑞 :  152 

 153 

𝐻𝑈sum = ∑ (𝑇𝑖 − 𝑇b) ×𝑁
𝑖=1 𝑃f𝑖

× 𝑉f𝑖
   if 𝐻𝑈sum ≤ 𝐻𝑈req   (Eq. 1) 154 

 155 

with 𝑁 the simulated length of the cropping period in days. The simulation of maize was in 156 

addition stopped when temperatures dropped continuously below the base temperature. Further 157 

details on the phenology model and the required parameters are provided in Appendix S1 in the 158 

Supporting Information. 159 

 160 

Data 161 

Datasets of observed cropping periods 162 

Global dataset MIRCA2000 163 

To derive regression parameters for estimating heat unit requirements and to test how well 164 

application of the obtained regression equations at global scale could reproduce spatial patterns 165 

of observed phenology, we used the global dataset MIRCA2000 (Portmann et al., 2010). 166 

MIRCA2000 reports monthly growing areas of 24 irrigated and rainfed crops at a spatial 167 

resolution of 5' × 5' for the period around the year 2000. The data were aggregated to the 168 

resolution of the weather data used in this study (30' × 30'). 169 

Up to five possible cropping periods per grid cell are indicated in MIRCA2000, reflecting 170 

different cultivars of wheat and multiple-cropping systems with maize. For each grid cell, the 171 

cropping period with the maximum reported area was selected for this study. We assumed that 172 

sowing was at the first day of the reported sowing month, also applied by Portmann et al. 173 

(2010), and harvest at the last day of the reported harvest month. Day of emergence was set 174 

equal to the sowing date and the harvest date was assumed to correspond with physiological 175 

maturity.  176 

A dataset similar to MIRCA2000 was developed by Sacks et al. (2010) but they did not 177 

differentiate between rainfed and irrigated crops. Since cropping periods often differ between 178 

irrigated and rainfed crops we used MIRCA2000 for this study. 179 

 180 

Point observations of winter wheat harvest dates 181 

Information on the interannual variability of harvest dates was derived from the Pan European 182 

Phenology Database (PEP725) which provides time series of harvest dates of winter wheat 183 

observed for several European countries (PEP725 Pan European Phenology Data). From this 184 

database we first selected countries that had data available for at least 10 successive years. Next 185 

we selected within these countries only locations with at least 5 observations within a 10 year 186 

period (the 10 year period was kept constant per country). 187 

 188 

Photoperiod and temperature 189 

Daily photoperiod (𝑃𝑖, h d-1) was calculated based on latitude and day of the year (Monteith and 190 

Unsworth, (1990) and monthly mean temperature data on a 30' × 30' resolution was extracted 191 
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from the Climate Research Unit (TS3.0 dataset, Mitchell & Jones, 2005), using linear 192 

interpolation to obtain daily temperature values.  193 

 194 

Computation of location-specific phenological parameter values 195 

For the computation of the location-specific phenological parameter values, we assumed (i) that 196 

location-specific parameters represent cultivars that are best adapted to local climatic and 197 

photoperiodic conditions and (ii) that farmers base their cultivar selection on experiences with 198 

climatic conditions in previous years, using exponentially weighted moving averages of monthly 199 

temperatures (𝑇𝑚,𝑦  , °C, see Appendix S2). These location-specific parameters can be applied to 200 

regions currently not used for the cultivation of the crop and to estimate how crop cultivar 201 

selection may change under climate change. 202 

 203 

Vernalization requirements of winter wheat cultivars 204 

Ewert et al. (1996) indicated that both the effectiveness of temperature on the vernalization 205 

process and the vernalization requirements are different among winter cultivars. Because of data 206 

scarcity we assumed however equal temperature effectiveness for all cultivars and only varied the 207 

vernalization requirements (𝑉sat and 𝑉b, d, see Appendix S1) to characterize cultivars. 208 

Due to the exposure of winter wheat to vernalizing temperatures tolerance to below-209 

freezing temperatures is built up. Once the vernalization requirements are met the tolerance 210 

gradually disappears (Mahfoozi et al., 2001). Vernalization requirements of cultivars grown at 211 

locations with a long and cold winter are higher than of cultivars grown at locations with milder 212 

winters (Iwaki et al., 2001). Therefore, we used the temperatures of the five coldest months of 213 

the year to characterize winter duration and coldness, assuming that in winter wheat growing 214 

regions the frost-period is at most five months long. By considering the five coldest months 215 

separately, influences of possible relatively warm months were minimized (Appendix S3). We 216 

excluded higher latitudes regions where MIRCA2000 indicated a sowing date during spring time, 217 

since this sowing date suggests use of spring wheat cultivars. 218 

 219 

Photoperiodism sensitivity 220 

To simulate differences among wheat and maize cultivars with respect to photoperiod, we 221 

adapted 𝑃opt values to local conditions as described below, while 𝑃b was kept constant among 222 

the cultivars, using values from literature (see Table S1, Appendix S1). 223 

 224 

Wheat 225 

Wheat cultivars originating from high latitudes (e.g. UK or Finland) are true photoperiod 226 

sensitive cultivars (Worland et al., 1994), while modern cultivars grown in lower latitudes such 227 

as in the Mediterranean region and north Africa are photoperiod insensitive (Ortiz Ferrara et al., 228 

1998). Miralles and Slafer (1999) indicated that for wheat cultivars with different sensitivities to 229 

photoperiod optimum photoperiod differs significantly, ranging from ca. 15 to 21 h d-1. For 230 

Argentinean wheat cultivars the optimum photoperiod was found to be 13.4 h d-1 (Miralles et 231 

al., 2007), which approximately coincides with the maximum photoperiod (𝑃max, h d-1, i.e. 𝑃 at 232 

December 21st) on average in the main wheat growing area in Argentina. We characterized 233 
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sensitivity to photoperiod by setting 𝑃opt to the location-specific 𝑃max, i.e. 𝑃 at June 21st and 234 

December 21st in the northern and southern hemisphere, respectively. 235 

 236 

Maize 237 

The difference in photoperiod between two successive days is smaller at lower latitudes than at 238 

higher latitudes. It is therefore plausible that tropical cultivars of short-day plants like maize are 239 

most sensitive to photoperiod (Summerfield et al., 1997). Indeed, maize cultivars adapted to 240 

temperate regions (i.e. cool, long-day environments) show lower or no photoperiod sensitivity 241 

in comparison with tropical cultivars (Bonhomme et al., 1994; Birch et al., 1998). Similar to 242 

wheat cultivars, also maize cultivars differ in their optimum photoperiod (Birch et al., 1998). 243 

Rood and Major (1980) found optimum photoperiods varying from < 14 h d-1 to 24 h d-1. 244 

Location-specific 𝑃opt values for maize were established as follows: 245 

𝑃opt = max (0, 𝑃max  ×  (1 −  
1

𝑃max− 𝑃min
))      (Eq. 2) 246 

 247 

where 𝑃min (h d-1) is the minimum photoperiod possible on a certain location, i.e. 𝑃 at December 248 

21st and June 21st in the northern and southern hemisphere, respectively. 249 

 250 

Heat units required from emergence to maturity 251 

Heat units from emergence to maturity (𝐻𝑈req, °Cd) could not be derived from literature in a 252 

general fashion applicable to global-scale studies, because estimates from case studies are 253 

model specific, depending on whether sensitivity to photoperiod and vernalization was 254 

considered and depending on which parameters were used to describe this sensitivity. We 255 

therefore estimate 𝐻𝑈req with linear regression models between 𝐻𝑈req calculated by using 256 

observed MIRCA2000 crop calendar data as dependent variable and as independent variable 257 

available heat units during an estimated vegetative cropping period (𝐻𝑈sum veg−period, °Cd), in 258 

line with Bignon (1990). Due to the spatial resolution of MIRCA2000, sowing dates are also 259 

reported in grid cells which are too cold for growing maize. We therefore excluded grid cells 260 

with 𝐻𝑈sum year < 750 °Cd from the regression analysis. To account for differences between 261 

temperate and tropical maize cultivars, we calculated separate linear regression models for 262 

maize cultivars grown in warm regions (𝐻𝑈sum year ≥ 3000 °Cd) and for maize cultivars grown 263 

in cold regions (𝐻𝑈sum year  < 3000 °Cd). 264 

Regression models were established separately for a thermal model, taking into account 265 

only temperature effects and a photo-thermal model, taking into account temperature effects 266 

combined with photoperiod effects, including the cultivar differences as described above. For 267 

winter wheat two additional regression models were distinguished: temperature effects 268 

combined with vernalization effects (vernal-thermal model) and temperature effects combined 269 

with vernalization and photoperiod effects (vernal-photo-thermal model). For these 270 

calculations, it was assumed, that wheat and maize are sensitive to photoperiod until flowering 271 

and winter wheat was assumed to be sensitive to vernalization until 𝑉sat requirements are met. 272 

To calculate available heat units during the vegetative cropping period (𝐻𝑈sum veg−period, °Cd) 273 

we assumed a vegetative period from May to July in the northern and November to January in 274 
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the southern hemisphere for maize and from March to June in the northern and September to 275 

December in the southern hemisphere for wheat, respectively. Regression parameters and R2 276 

are shown in Table 1 for each of the models.  277 

 278 

TABLE 1 279 

 280 

Assessment of different phenological models 281 

Assessment of regression model skill 282 

Three area-weighted indices of agreement were computed to assess the degree of agreement 283 

between simulated and observed cropping period lengths: the mean absolute error (MAE, 284 

month), the root mean square error (RMSE, month), and the Willmott coefficient of agreement 285 

(W, dimensionless, ranging from 0 to 1, with 1 showing perfect agreement) (Willmott, 1982). 286 

MAE and RMSE indicate the global average error between simulations and observations. In 287 

addition, W is a relative measure for the differences (Willmott, 1982). 288 

 289 

MAE =
∑ |𝑂𝑖−𝑆𝑖|×𝐴𝑖

𝑁
𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

         (Eq. 3) 290 

RMSE =  √
∑ (𝑂𝑖−𝑆𝑖)2×𝐴𝑖

𝑁
𝑖=1

∑ 𝐴𝑖
𝑁
𝑖=1

        (Eq. 4) 291 

W =  1 −
∑ (𝑂𝑖−𝑆𝑖)2×𝐴𝑖

𝑁
𝑖=1

∑ (|𝑆𝑖−𝑂̅|+|𝑂𝑖−𝑂̅|)2×𝐴𝑖
𝑁
𝑖=1

        (Eq. 5) 292 

 293 

where 𝑆𝑖  (months) is the simulated and 𝑂𝑖  (months) the observed length of the cropping period 294 

in spatial unit 𝑖, 𝑂̅(months) the mean observed length of the cropping period based on all spatial 295 

units, 𝐴𝑖  (ha) the cultivated area of the crop in spatial unit 𝑖, and 𝑁 (-) the number of spatial 296 

units. 297 

 298 

Comparison of simulated interannual variability in harvest dates 299 

To assess if accounting for the effects of photoperiod and vernalization results in less 300 

interannual variability in the length of simulated wheat cropping periods than simulation of 301 

phenology based on thermal requirements only, we used the different phenology models 302 

(thermal, photo-thermal, vernal-thermal, vernal-photo-thermal) that were parameterized with 303 

location-specific parameters derived from the linear regression analysis, to simulate the lengths 304 

of the cropping period for the period 1996 to 2005. As an indicator for interannual variability 305 

we calculated for each grid cell and model the differences between the latest and earliest of the 306 

simulated harvest dates in that period. 307 

To compare the interannual variability in observed and simulated harvest dates we 308 

calculated per location selected from the PEP725 database the standard deviation of the 309 

observed harvest dates (Fig. S2, Appendix S4). Next we calculated the country average of these 310 

standard deviations and the average standard deviations of simulated harvest dates from the 311 

different models.  312 

 313 
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RESULTS 314 

Calculated phenological model parameters 315 

Vernalization requirements 316 

For cultivars grown in large parts of Russia, Western Europe, the northern USA, and north-east 317 

Asia the maximum possible required duration of exposure to vernalizing temperatures were 318 

computed. South of these regions lower vernalization requirements were simulated (Fig. 1). 319 

 320 

FIGURE 1 321 

 322 

Heat units required from emergence to maturity 323 

The simulated heat units that are required for the phenological development from emergence to 324 

maturity show a clear trend from north to south: southern regions grow varieties that require 325 

more heat units from emergence to maturity than the varieties in northern regions (Fig. 2 326 

shows the 𝐻𝑈req for the vernal-photo-thermal wheat model and the photo-thermal maize 327 

model). The range in 𝐻𝑈req is larger for wheat than for maize. 328 

 329 

FIGURE 2 330 

 331 

Comparison of simulated and observed cropping periods 332 

Wheat 333 

For wheat, the agreement between observed and simulated cropping periods was in the same 334 

range for the different phenological models (Table 2), with the vernal-thermal model giving the 335 

highest and the photo-thermal the lowest agreement. The mean simulated lengths of the 336 

cropping periods were in the same range as the observed mean; the spatial heterogeneity was 337 

slightly lower in the simulated cropping periods in comparison with the observed cropping 338 

periods. Agreement between observed and simulated lengths of cropping periods of countries 339 

with large wheat cropping areas, such as Russia, Canada, and Turkey, was high (Fig. 3(a) gives 340 

results of the vernal-photo-thermal model, scatterplots for the other models look similar and 341 

are not shown). 342 

 343 

TABLE 2 344 

 345 

Maize 346 

For maize, agreement between observed and simulated cropping periods was slightly higher 347 

based on the thermal model than based on the photo-thermal model but both were lower than 348 

for wheat. The simulated cropping periods underestimated the observed cropping period on 349 

average by approximately one week; also the spatial heterogeneity in cropping period was 350 

underestimated by the simulations (Table 2). The scatterplot (Fig. 3(b) for the photo-thermal 351 

model) indicates that in countries situated in warmer regions, e.g. Mexico and Nigeria, the 352 
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lengths of the cropping period were overestimated, while in cooler regions, e.g. the USA and 353 

Russia, the lengths of the cropping period were underestimated.  354 

 355 

FIGURE 3 356 

 357 

Comparison of simulated interannual variability in harvest dates 358 

As indication for the interannual variability in simulated harvest dates we calculated per 359 

gridcell the differences between the latest and earliest of the 10 simulated harvest dates. For 360 

comparison we plotted in Fig. 4 the cumulative frequency distributions of these differences per 361 

model. The initially steeper slopes of the vernal-photo-thermal and photo-thermal model for 362 

wheat in Fig. 4(a) indicate that accounting for especially photoperiodism results in less 363 

variability in harvest dates among years. Accounting for vernalization reduced only slightly the 364 

interannual variability in harvest dates. We also mapped the spatial distribution of the 365 

difference between the latest and earliest of the simulated harvest dates of the thermal (Fig. 366 

5(a)) and vernal-photo-thermal model (Fig. 5(b)) in the period 1996 till 2005. To quantify the 367 

interannual variability in temperature conditions the coefficient of variation of the available 368 

𝐻𝑈sum veg−period within the same period was calculated (Fig. 5(c)). The maps indicate that 369 

especially in areas with high interannual variability in temperature conditions, combined with 370 

cultivars sensitive to photoperiod, e.g. north-eastern USA, north and western Europe, 371 

interannual variability in harvest dates decreases due to inclusion of photoperiod effects. 372 

For maize we found that including the effects of photoperiodism only slightly changed the 373 

interannual variability of simulated harvest dates (Fig. 4(b)). 374 

 375 

FIGURES 4 AND 5 376 

 377 

A direct quantitative comparison between the interannual variability in observed and simulated 378 

wheat harvest dates was not possible due to various reasons. First of all, the spatial scale of the 379 

observed and simulated harvest dates differed (point vs. 0.5° × 0.5° resolution). Secondly, 380 

besides variation in observed harvest dates due to variation in interannual weather conditions, 381 

it is likely that in the real-world observations additional variation occurs due to several other 382 

factors, e.g. delay in harvesting due to unfavourable soil conditions or lack of machinery for 383 

timely harvesting. Despite these differences, the values in Table 3 show that for 4 out of the 6 384 

countries interannual variability in harvest dates was simulated more in line with observed 385 

variations with models including photoperiod in comparison with thermal-only models.  386 

 387 

TABLE 3 388 

 389 
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DISCUSSION  390 

Comparison of simulated and observed cropping periods at the global 391 

scale 392 

We present in this study an evaluation of the effects of including photoperiod and temperature 393 

(directly and indirectly) effects in crop phenology simulations for the global scale. We 394 

developed algorithms to compute location-specific parameter values that account for 395 

differences among cultivars in vernalization requirements and sensitivity to photoperiod and 396 

temperature. Accounting for photoperiod and vernalization effects in the phenology model 397 

decreases the spatial heterogeneity of heat units required from emergence to physiological 398 

maturity for wheat, a result in line with Miralles and Slafer (1999) who reported that 399 

differences in development rate among wheat cultivars mainly originate from differences in 400 

sensitivity to photoperiod and vernalization requirements. 401 

The accuracy of simulated cropping period lengths did not improve if the phenology models 402 

accounted for the effects of photoperiod and/or vernalization (Table 2). However, accounting 403 

for effects of photoperiod and vernalization decreased the simulated interannual variability in 404 

lengths of cropping periods, especially for wheat (Fig. 4). As such, we concluded from the 405 

comparison to the PEP725 data set that the interannual variability in wheat harvest dates was 406 

likely simulated more realistically by the models including photoperiod. The comparison is 407 

complicated, however, by not accounting for the variability in sowing dates in the simulations. 408 

Still, we consider the reduced variability in cropping periods make a strong case for considering 409 

photoperiod in phenology models which are applied for large spatial areas. For maize we could 410 

not determine whether including photoperiodism has added value, because there is no 411 

observational data set as PEP725 for maize available for tropical regions. Also growing seasons in 412 

the tropics are often determined by non-climatic factors that a comparison is deemed to be 413 

difficult here. 414 

The indices of agreement (Table 2) and the scatterplots (Fig. 3) indicated that in general, 415 

agreement between simulations and observations was higher for wheat than for maize. This 416 

reduced agreement despite good fits of the regression models for maize especially in the cooler 417 

regions (Table 1) can be explained by the differences in harvest seasons between wheat and 418 

maize. In temperate regions, wheat is normally harvested during the warmest period of the 419 

year, while maize is harvested in autumn, when temperatures approach the base temperature of 420 

maize. As a consequence, an equal over- or underestimation of the heat unit requirements leads 421 

to higher deviations in simulated harvest dates for maize than for wheat. 422 

 423 

Calculated vernalization requirements 424 

The pattern of simulated vernalization requirements (Fig. 1) corresponds with information found 425 

in the literature, e.g. in the south-eastern border of the Australian wheat belt winter wheat is 426 

grown, while in rest of the belt spring wheat is grown (Fisher, 1999). Also the low computed 427 

vernalization requirements for wheat in west Asia (e.g. Yemen and Saudi Arabia) and north 428 

Africa are in line with results of previous studies (see e.g. Ortiz Ferrara et al., 1998). Kato and 429 

Yokoyama (1992) determined vernalization requirements of traditional cultivars originating 430 
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from various countries. They found vernalization requirements of approximately 31 days for 431 

landraces originating from western Turkey, Italy, and Greece; 35 days for landraces from 432 

Afghanistan, Pakistan, Nepal, and Bhutan; 56 days for landraces from Georgia, east Turkey, and 433 

north and east Iran; 28 days for landraces from Armenia; and 7 and 14 days for landraces from 434 

Egypt and Ethiopia. This pattern is reflected in our results and builds trust in the relatively 435 

simple relationship between vernalization days and temperatures of the coldest 5 months of the 436 

year. 437 

 438 

Simulated interannual variability in harvest dates 439 

To evaluate the effect of vernalization and photoperiod on the interannual variability of harvest 440 

dates we compared time series of harvest dates, simulated with different phenology models, to 441 

observations from six European countries (Table 3). We found that in particular the 442 

consideration of photoperiod resulted in a decrease of the interannual variability of winter 443 

wheat harvest dates. However, the mean standard deviation of simulated winter wheat harvest 444 

dates was even smaller when using the photo-thermal-model or the vernal-photo-thermal 445 

model as compared to the observations, in particular for the two countries where most of the 446 

observations were obtained (Germany and Slovakia). An explanation for this difference could be 447 

that the observations were collected by a network of voluntary observers so that observation 448 

errors (e.g. due to confusion of crops, data handling, low frequency of field visits) in the 449 

observation dataset are likely. It is very difficult to distinguish "true" from potentially "wrong" 450 

observations but the corresponding outliers may contribute substantially to the standard 451 

deviation in the observed harvest dates. Therefore, standard deviation of harvest days is likely 452 

overestimated in the observations. 453 

The small differences in interannual variability of simulated maize harvest dates between 454 

the thermal- and photo-thermal model, is a consequence of low sensitivity to photoperiod in 455 

areas with high interannual variability in temperature conditions (e.g. western Europe), while 456 

cultivars with high sensitivity to photoperiod are grown in areas with lower interannual 457 

variability in temperature conditions (tropical regions). 458 

 459 

Practical implications of our research 460 

Our approach yields two major advantages to large-scale crop modelling studies. Firstly, the 461 

simple but robust relationship between cultivar parameters that determine the length of the 462 

growing period and simple climatic indicators allow for out-scaling of crop cultivar parameters 463 

to areas currently not used for cultivation of these crops. This is important to inform 464 

simulations of gridded crop models that feed data to economic land use models (Müller & 465 

Robertson, 2014). Secondly, our approach also allows for assessing possible changes in cultivar 466 

choice under climate change, as crop cultivar parameters can be derived from climatic 467 

indicators and can thus inform climate adaptation studies and provide information that cannot 468 

be derived from observed cropping calendars (see Appendix S5 for a comparison between 469 

growing periods lengths simulated for future climatic conditions based on non-adapted inputs 470 

and inputs based on our methodology). Moreover, our methodology can be applied in 471 

combination with the methodology developed by Waha et al. (2012) to determine sowing dates 472 
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using climatic data, to be independent of fixed cropping calendars such as MIRCA2000 or Sacks 473 

et al. (2010). 474 

 475 

Limitations of our methodology and directions for further research 476 

Only two datasets (Portmann et al., 2010; Sacks et al., 2010), with roughly the same data 477 

sources, report on global sowing and harvest dates but only Portmann et al. (2010) distinguish 478 

between irrigated and rainfed crops. Literature reporting reasonable ranges of observed 𝐻𝑈req 479 

across the world is not available and case studies are difficult to compare, given differences in 480 

underlying phenology models. Calibration of the different phenology models was therefore 481 

carried out for 𝐻𝑈req values based on the dataset of Portmann et al. (2010) and evaluation how 482 

well the global scale application of the regression equations shown in Table 1 reproduced the 483 

spatial pattern in observed crop phenology was done with the same dataset.  Being aware of this 484 

limitation, we still found it valid to test whether observed patterns of harvest dates could be 485 

reproduced when cultivar-specific parameters are computed based on average climatic 486 

conditions only. Clearly, we did not aim to evaluate the concept of heat units itself but our 487 

methodology to compute location-specific cultivar parameters used within the heat unit 488 

concept. 489 

We assumed in this study that cultivar selection is made only based on local photoperiod 490 

and temperature conditions. The choice of farmers to grow a certain cultivar with specific 491 

characteristics is, however, also dependent on numerous other reasons, including production 492 

system specifics such as multiple-cropping systems that require cultivars with a specific 493 

cropping period length (Tao et al., 2014), the demand for specific cultivars for quality reasons, 494 

such as durum wheat in Italy (Dettori et al., 2011), or to avoid pests and diseases (Kouressy et 495 

al., 2008). Currently this complex system of cultivar choice is not well understood and therefore 496 

we could not include these factors in our methodology. Insights in the complex issues of cultivar 497 

choice will help to improve simulation of crop phenology for large spatial areas, but could also 498 

assist in improving studies related to possible adaptation measures to climate change, see e.g. 499 

Olesen et al. (2012). Finally the interaction of simulated sowing dates (see e.g. Waha et al., 2012) 500 

with simulated cultivar traits, including the effects of irrigation, needs further evaluation as e.g. 501 

soil temperature warming. 502 

Our approach allows for deriving parameters for wheat phenology models with good 503 

accuracy, but for maize the approach has larger limitations. This can be due to a more complex 504 

phenological response to temperature in maize (Kumudini et al., 2014) too simple assumptions 505 

on the development phase that is sensitive to photoperiod (Birch et al., 1998), as well as to 506 

overestimating the effect of photoperiod in tropical regions where longest and shortest days are 507 

not very different (see equation 2 and Table 1). These limitations for maize need to be 508 

considered when employing the approach and we suggest using the thermal model for maize. 509 

However, the thermal model approach may still be a valid alternative to assuming static variety 510 

distributions in long-term climate impact assessments or even simpler temperature based 511 

response functions (Rosenzweig et al., 2014)  512 

 513 
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A limitation of MIRCA2000 was the temporal resolution of a month. By assuming sowing to 514 

be on the first day and harvest to be on the last day, it is likely that we have overestimated the 515 

simulated and observed growing periods, possibly with two months. To further improve the 516 

simulation of crop phenology for the globe we therefore stress continuously expanding datasets 517 

such as MIRCA2000 over time and including more spatial detail. Moreover, to make it possible 518 

to understand the complex system of cultivar choice, we stress the importance of collection of 519 

cultivar characteristics, including timing of vulnerable stages such as anthesis, and cultivar use 520 

for as much as possible (contrasting) locations.  521 

 522 

ACKNOWLEDGEMENTS 523 

We would like to thank the members of the PEP75 project for providing the point observations 524 

of the winter wheat harvest dates and Felix Portmann for making available the MIRCA2000 data 525 

set. Comments of two anonymous referees greatly improved a previous version of the 526 

manuscript. CM acknowledges financial support from the MACMIT project (01LN1317A) and 527 

the FACCE MACSUR project (031A103B) funded through the German Federal Ministry of 528 

Education and Research (BMBF). 529 

 530 

REFERENCES 531 

Asseng, S., Ewert, F., Rosenzweig, C., Jones, J. W., Hatfield, J. L., Ruane, A. C., Boote, K. J., Thorburn, P. J., Rotter, R. P., 532 
Cammarano, D., Brisson, N., Basso, B., Martre, P., Aggarwal, P. K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, 533 
A. J., Doltra, J., Gayler, S., Goldberg, R., Grant, R., Heng, L., Hooker, J., Hunt, L. A., Ingwersen, J., Izaurralde, R. C., 534 
Kersebaum, K. C., Muller, C., Naresh Kumar, S., Nendel, C., O/'Leary, G., Olesen, J. E., Osborne, T. M., Palosuo, T., 535 
Priesack, E., Ripoche, D., Semenov, M. A., Shcherbak, I., Steduto, P., Stockle, C., Stratonovitch, P., Streck, T., 536 
Supit, I., Tao, F., Travasso, M., Waha, K., Wallach, D., White, J. W., Williams, J. R. & Wolf, J. (2013) Uncertainty in 537 
simulating wheat yields under climate change. Nature Climate Change, 3, 827-832. 538 

Bassu, S., Brisson, N., Durand, J.-L., Boote, K., Lizaso, J., Jones, J. W., Rosenzweig, C., Ruane, A. C., Adam, M., Baron, C., 539 
Basso, B., Biernath, C., Boogaard, H., Conijn, S., Corbeels, M., Deryng, D., De Sanctis, G., Gayler, S., Grassini, P., 540 
Hatfield, J., Hoek, S., Izaurralde, C., Jongschaap, R., Kemanian, A. R., Kersebaum, K. C., Kim, S.-H., Kumar, N. S., 541 
Makowski, D., Müller, C., Nendel, C., Priesack, E., Pravia, M. V., Sau, F., Shcherbak, I., Tao, F., Teixeira, E., Timlin, 542 
D. & Waha, K. (2014) How do various maize crop models vary in their responses to climate change factors? 543 
Global Change Biology, 20, 2301-2320. 544 

Bignon, J. (1990) Agrometeorologie et physiologie du mais grain dans la communaute Europeenne. Commission des 545 
Communautes Europeennes, Luxembourg. 546 

Birch, C. J., Hammer, G. L. & Rickert, K. G. (1998) Temperature and photoperiod sensitivity of development in five 547 
cultivars of maize (Zea mays L.) from emergence to tassel initiation. Field Crops Research, 55, 93-107. 548 

Bonhomme, R., Derieux, M. & Edmeades, G. O. (1994) Flowering of diverse maize cultivars in relation to temperature 549 
and photoperiod in multilocation field trials. Crop Science, 34, 156-164. 550 

Craufurd, P. Q. & Wheeler, T. R. (2009) Climate change and the flowering time of annual crops. Journal of Experimental 551 
Botany, 60, 2529-2539. 552 

Dettori, M., Cesaraccio, C., Motroni, A., Spano, D. & Duce, P. (2011) Using CERES-Wheat to simulate durum wheat 553 
production and phenology in Southern Sardinia, Italy. Field Crops Research, 120, 179-188. 554 

Ewert, F., Porter, J. & Honermeier, B. (1996) Use of AFRCWHEAT2 to predict the development of main stem and tillers 555 
in winter triticale and winter wheat in North East Germany. European Journal of Agronomy, 5, 89-103. 556 

FAO FAOSTAT. Available at: http://faostat.fao.org/default.aspx (Accessed: 2012-04-17) 557 
Fisher, R. A. (1999) Wheat cropping in Australia. Wheat ecology and physiology of yield determination (ed. by E.H. 558 

Satorre & G.A. Slafer), pp 277-294. Food Products Press, New York, NY. 559 
Gouesnard, B., Rebourg, C., Welcker, C. & Charcosset, A. (2002) Analysis of photoperiod sensitivity within a collection 560 

of tropical maize populations. Genetic Resources and Crop Evolution, 49, 471-481. 561 
Hay, R. K. M. & Kirby, E. J. M. (1991) Convergence and synchrony-a review of the coordination of development in 562 

wheat. Australian Journal of Agricultural Research, 42, 661-700. 563 
He, L., Asseng, S., Zhao, G., Wu, D., Yang, X., Zhuang, W., Jin, N. & Yu, Q. (2015) Impacts of recent climate warming, 564 

cultivar changes, and crop management on winter wheat phenology across the Loess Plateau of China. 565 
Agricultural and Forest Meteorology, 200, 135-143. 566 

http://faostat.fao.org/default.aspx


15 
 

Iwaki, K., Haruna, S., Niwa, T. & Kato, K. (2001) Adaptation and ecological differentiation in wheat with special 567 
reference to geographical variation of growth habit and Vrn genotype. Plant Breeding, 120, 107-114. 568 

Kato, K. & Yokoyama, H. (1992) Geographical variation in heading characters among wheat landraces, Triticum 569 
aestivum L., and its implication for their adaptability. Theoretical and Applied Genetics, 84, 259-265. 570 

Kouressy, M., Dingkuhn, M., Vaksmann, M. & Heinemann, A. B. (2008) Adaptation to diverse semi-arid environments 571 
of sorghum genotypes having different plant type and sensitivity to photoperiod. Agricultural and Forest 572 
Meteorology, 148, 357-371. 573 

Kumudini, S., Andrade, F. H., Boote, K. J., Brown, G. A., Dzotsi, K. A., Edmeades, G. O., Gocken, T., Goodwin, M., Halter, A. 574 
L., Hammer, G. L., Hatfield, J. L., Jones, J. W., Kemanian, A. R., Kim, S.-H., Kiniry, J., Lizaso, J. I., Nendel, C., 575 
Nielsen, R. L., Parent, B., Stöckle, C. O., Tardieu, F., Thomison, P. R., Timlin, D. J., Vyn, T. J., Wallach, D., Yang, H. 576 
S. & Tollenaar, M. (2014) Predicting Maize Phenology: Intercomparison of Functions for Developmental 577 
Response to Temperature. Agronomy Journal, 106, 2087-2097. 578 

Mahfoozi, S., Limin, A. E. & Fowler, D. B. (2001) Influence of Vernalization and Photoperiod Responses on Cold 579 
Hardiness in Winter Cereals. Crop Science, 41, 1006-1011. 580 

Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aaasa, A., Ahas, R., Alm-Kübler, K., Bissolli, P., Braslavsá, O., Briede, A., 581 
Chmielewski, F. M., Crepinsek, Z., Curnel, Y., Dahl, Å., Defila, C., Donnelly, A., Filella, Y., Jatczak, K., Måge, F., 582 
Mestre, A., Nordli, Ø., Peñuelas, J., Pirinen, P., Remišová, V., Scheifinger, H., Striz, M., Susnik, A., Van Vliet, A. J. 583 
H., Wielgolaski, F. E., Zach, S. & Zust, A. (2006) European phenological response to climate change matches 584 
the warming pattern. Global Change Biology, 12, 1969-1976. 585 

Miralles, D. J. & Slafer, G. A. (1999) Wheat development. Wheat ecology and physiology of yield determination (ed. by 586 
E.H. Satorre & G.A. Slafer), pp 13-43. Food Products Press, New York, NY. 587 

Miralles, D. J., Spinedi, M. V., Abeledo, L. G. & Abelleyra, D. (2007) Variability on photoperiod responses in Argentinean 588 
wheat cultivars differing in length of crop cycle. Wheat production in stressed environments (ed. by H.T. Buck 589 
& J.E. Nisi & N. Salomón), pp 599-609. Springer Netherlands. 590 

Mitchell, T. D. & Jones, P. D. (2005) An improved method of constructing a database of monthly climate observations 591 
and associated high-resolution grids. International Journal of Climatology, 25, 693-712. 592 

Monteith, J. L. & Unsworth, M. H. (1990) Principles of environmental physics. Arnold, London. 593 
Müller, C. & Robertson, R. D. (2014) Projecting future crop productivity for global economic modeling. Agricultural 594 

Economics, 45, 37-50. 595 
Olesen, J. E., Børgesen, C. D., Elsgaard, L., Palosuo, T., Rötter, R. P., Skjelvåg, A. O., Peltonen-Sainio, P., Börjesson, T., 596 

Trnka, M., Ewert, F., Siebert, S., Brisson, N., Eitzinger, J., Van Asselt, E. D., Oberforster, M. & Van der Fels-Klerx, 597 
H. J. (2012) Changes in time of sowing, flowering and maturity of cereals in Europe under climate change. 598 
Food Additives & Contaminants: Part A, 29, 1527-1542. 599 

Ortiz Ferrara, G., Mosaad, M. G., Mahalakshmi, V. & Rajaram, S. (1998) Photoperiod and vernalisation response of 600 
Mediterranean wheats, and implications for adaptation. Euphytica, 100, 377-384. 601 

PEP725 Pan European Phenology Data. Available at: http://www.zamg.ac.at/pep725/ (Accessed: 2014-07-22) 602 
Porter, J. R. (1993) AFRCWHEAT2: a model of the growth and development of wheat incorporating responses to 603 

water and nitrogen. European Journal of Agronomy, 2, 69-82. 604 
Porter, J. R. & Semenov, M. A. (2005) Crop responses to climatic variation. Philosophical Transactions: Biological 605 

Sciences, 360, 2021-2035. 606 
Portmann, F. T., Siebert, S. & Doll, P. (2010) MIRCA2000-Global monthly irrigated and rainfed crop areas around the 607 

year 2000: a new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical 608 
Cycles, 24, GB1011. 609 

Raven, P. H., Evert, R. F. & Eichhorn, S. E. (2005) Biology of plants. Freeman, New York, NY. 610 
Rood, S. B. & Major, D. J. (1980) Responses of early corn inbreds to pohotopiod. Crop Science, 20, 679-682. 611 
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A. C., Müller, C., Arneth, A., Boote, K. J., Folberth, C., Glotter, M., Khabarov, 612 

N., Neumann, K., Piontek, F., Pugh, T. A. M., Schmid, E., Stehfest, E., Yang, H. & Jones, J. W. (2014) Assessing 613 
agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. 614 
Proceedings of the National Academy of Sciences, 111, 3268-3273. 615 

Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. (2010) Crop planting dates: an analysis of global patterns. Global 616 
Ecology and Biogeography, 19, 607-620. 617 

Slafer, G. A. & Rawson, H. M. (1994) Sensitivity of wheat phasic development to major environmental factors: a re-618 
examination of some assumptions made by physiologists and modellers. Functional Plant Biology, 21, 393-619 
426. 620 

Summerfield, R. J., Ellis, R. H., Craufurd, P. Q., Aiming, Q., Roberts, E. H. & Wheeler, T. R. (1997) Environmental and 621 
genetic regulation of flowering of tropical annual crops. Euphytica, 96, 83-91. 622 

Tao, F., Zhang, S., Zhang, Z. & Rötter, R. P. (2014) Maize growing duration was prolonged across China in the past 623 
three decades under the combined effects of temperature, agronomic management, and cultivar shift. Global 624 
Change Biology, 20, 3686–3699. 625 

Trethowan, R., Morgunov, A., He, Z., De Pauw, R., Crossa, J., Warburton, M., Baytasov, A., Zhang, C., Mergoum, M. & 626 
Alvarado, G. (2006) The global adaptation of bread wheat at high latitudes. Euphytica, 152, 303-316. 627 

Twine, T. E. & Kucharik, C. J. (2009) Climate impacts on net primary productivity trends in natural and managed 628 
ecosystems of the central and eastern United States. Agricultural and Forest Meteorology, 149, 2143-2161. 629 

Waha, K., Van Bussel, L. G. J., Müller, C. & Bondeau, A. (2012) Climate-driven simulation of global crop sowing dates. 630 
Global Ecology and Biogeography, 21, 247-259. 631 

http://www.zamg.ac.at/pep725/


16 
 

Weir, A. H., Bragg, P. L., Porter, J. R. & Rayner, J. H. (1984) A winter wheat crop stimulation model without water or 632 
nutrient limitations. Journal of Agricultural Science, 102, 371-382. 633 

Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R. & Vara Prasad, P. V. (2000) Temperature variability and the yield 634 
of annual crops. Agriculture, Ecosystems & Environment, 82, 159-167. 635 

Willmott, C. J. (1982) Some comments on the evaluation of model performance. Bulletin of the American 636 
Meteorological Society, 63, 1309-1313. 637 

Worland, A. J., Appendino, M. L. & Sayers, E. J. (1994) The distribution, in European winter wheats, of genes that 638 
influence ecoclimatic adaptability whilst determining photoperiodic insensitivity and plant height. Euphytica, 639 
80, 219-228. 640 

 641 

BIOSKETCH 642 
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involved in developing the methodology and discussing the model outputs. L.vB wrote the 648 

model code, ran the models, and prepared the manuscript and the supporting material. All 649 

authors were involved in reviewing and editing the manuscript.  650 
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TABLES 651 

Table 1 652 

Coefficients of determination from the linear regression analysis with the available heat units 653 

during an estimated vegetative cropping period (𝐻𝑈sum veg−period), as well as the accompanying 654 

equations to compute location-specific 𝐻𝑈req values based on 𝐻𝑈sum veg−period. The regression 655 

models were applied at global scale with the same set of parameters. 656 

For maize we estimated the vegetative period from May to July in the northern and November 657 

to January in the southern hemisphere; for wheat from March to June in the northern and 658 

September to December in the southern hemisphere). For maize we distinguished between 659 

warm and cold regions using 𝐻𝑈sum year (we considered a location to be warm if 𝐻𝑈sum year  ≥ 660 

3000 °Cd, if 𝐻𝑈sum year < 3000 °Cd we considered it to be cold).  661 

Crop Equations to calculate 𝐻𝑈req R2 

 Thermal model 𝐻𝑈sum veg−period 

Spring wheat 𝐻𝑈req = 1.06 ×  𝐻𝑈sum veg−period + 815.08 0.75 

Winter wheat 𝐻𝑈req = 1.18 ×  𝐻𝑈sum veg−period + 941.45 0.45 

Maize 

warm region: 

𝐻𝑈req = 1.4 ×  𝐻𝑈sum veg−period + 399.66 

cold region: 

𝐻𝑈req = 1.82 ×  𝐻𝑈sum veg−period − 150.51 

 

0.44 

 

0.92 

 Photo-thermal model  

Spring wheat 𝐻𝑈req = 0.91 ×  𝐻𝑈sum veg−period + 775.27 0.64 

Winter wheat 𝐻𝑈req = 0.66 ×  𝐻𝑈sum veg−period + 1126.49 0.26 

Maize 

warm region: 

𝐻𝑈req = 1.06 ×  𝐻𝑈sum veg−period + 145.04 

cold region: 

𝐻𝑈req = 1.52 ×  𝐻𝑈sum veg−period − 72.08 

 

0.35 

 

0.91 

 Vernal-thermal model  

Winter wheat 𝐻𝑈req = 0.99 ×  𝐻𝑈sum veg−period + 811.52 0.44 

 Vernal-photo-thermal model  

Winter wheat 𝐻𝑈req = 0.87 ×  𝐻𝑈sum veg−period + 907.47 0.36 

  662 
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Table 2 663 

Area weighted means, coefficient of variation of spatial distribution, and indices of agreement 664 

between simulated and observed cropping periods for wheat and maize. 665 

Crop 
Mean 

(months)*  

Coefficient of 

variation (-) 

Mean absolute 

error 

(months)* 

Root mean 

square error 

(months)* 

 Willmott 

coefficient of 

agreement (-) 

Observations 

Wheat 8.7 3.8    

Maize 5.7 2.1    

Thermal model 

Wheat 8.6 3.6 0.73 0.92 0.97 

Maize 5.5 2.1 0.75 0.92 0.54 

Photo-thermal model 

Wheat 8.7 3.6 0.77 0.96 0.97 

Maize 5.5 2.1 0.89 1.03 0.42 

Vernal-thermal model 

Wheat 8.7 3.7 0.66 0.82 0.98 

Vernal-photo-thermal model 

Wheat 9.0 3.6 0.75 0.97 0.97 

*Recalculation from days to months is done by assuming an equal amount of days per month 666 

(i.e. 365/12 = 30.42 days per month) 667 
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Table 3 668 

Observed winter wheat data specifications and standard deviation of observed and simulated harvest dates of winter wheat. Fig. S2 shows the 669 

locations of the observations. 670 

Country 
Time period 

observations 

Total number of 

observations 

Number of 

locations with ≥ 5 

years of 

observations 

Standard deviation observed and simulated harvest dates (d) 

Observations 
Thermal 

model 

Photo-

thermal 

model 

Vernal-

thermal 

model 

Vernal-

photo-

thermal 

model 

Austria 1996 - 2005 178 24 8.08 13.81 10.00 11.01 9.20 

Belgium 1989 - 1998 95 13 7.61 10.98 4.98 9.14 5.09 

Croatia 1996 - 2005 40 4 9.28 8.33 5.11 6.92 5.04 

Czech Republic 2001 - 2010 20 2 6.20 10.22 6.05 8.77 6.45 

Germany 1995 - 2004 11560 1352 8.70 10.85 5.44 10.47 5.82 

Slovakia 2000 - 2009 456 56 8.98 9.14 5.66 7.43 5.81 

 671 
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FIGURE LEGENDS 

Fig. 1 Simulated location-specific vernalization requirements (i.e. required duration of exposure 

to vernalizing temperatures, 𝑉sat, d) for winter wheat, using the Mollweide projection. 

 

Fig. 2. Simulated location-specific heat units from emergence to maturity (𝐻𝑈req, °Cd) for (a) 

the vernal-photo-thermal wheat model and (b) photo-thermal maize model, using the 

Mollweide projection. Patterns reflect that varieties with high heat unit requirements are grown 

in warm locations and varieties with low heat unit requirements are grown in cooler locations. 

 

Fig. 3 Scatterplots of observed versus simulated cropping periods per spatial unit of 

MIRCA2000 for: (a) wheat, based on the vernal-photo-thermal model;( b) maize, based on the 

photo-thermal model. The solid line represents the 1:1 line; The radius of the circles is 

proportional to the cultivated area of the crop in the corresponding spatial unit. 

 

Fig. 4 Relative cumulative frequency distributions of the differences between the latest and 

earliest of the simulated harvest dates in the period 1996 to 2005 for: (a) wheat and (b) maize. 

The lines indicate the different models used to simulate the length of the cropping period. 

The arrows in the wheat plot indicate that if phenological development is simulated including 

photoperiod effects, in 75% of the grid cells the differences between the latest and earliest 

simulated harvest dates within the 10 year period is at most 18 days, while for the thermal 

model this is at most 26 days. 

 

Fig. 5 Differences between latest and earliest of the simulated wheat harvest dates in the period 

1996 to 2005 for the: (a) thermal model and (b) vernal-photo-thermal model; (c) coefficient of 

variation of the available heat units during the estimated vegetative cropping period 

(𝐻𝑈sum veg−period) in the period 1996 to 2005 for wheat (Mollweide projection). The coefficient 

of variation is used to characterize interannual variability in temperature conditions: regions 

with high coefficients of variation are characterized by high interannual variability in 

temperature conditions. 
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SUPPORTING INFORMATION 

Additional Supporting Information may be found in the online version of this article: 

 

Appendix S1: Detailed description of the AFRCWHEAT2 model 

Appendix S2: Calculation of the exponentially weighted moving averages of monthly 

temperatures 

Appendix S3: Detailed description of the computation of the location-specific parameters 

Appendix S4: Locations selected from the PEP725 database 

Appendix S5: Simulated wheat growing period lengths for current (year 2000) and future 

climatic conditions 

 

As a service to our authors and readers, this journal provides supporting information supplied 

by the authors. Such materials are peer-reviewed and may be reorganized for online delivery, 

but are not copy-edited or typeset. Technical support issues arising from supporting 

information (other than missing files) should be addressed to the authors. 

  



27 
 

APPENDIX S1 CALCULATIONS OF PHOTOPERIOD AND VERNALIZATION FACTOR 

The increment in heat units (main Eq. 1) is modified by the effects of photoperiod (photoperiod 

factor, 𝑃f𝑖
, -), and in case of winter wheat by the effects of vernalization (vernalization factor, 

𝑉f𝑖
, -), both as applied in the AFRCWHEAT2 model (Porter, 1993; Ewert et al., 1996). 

 

The photoperiod factor (𝑃f𝑖
, -) for day 𝑖 is calculated as follows: 

𝑃f𝑖
=

𝑃𝑖−𝑃b

𝑃opt−𝑃b
  if 𝑃b ≤ 𝑃𝑖 ≤ 𝑃opt  (for wheat)     (Eq. A1) 

   if 𝑃opt ≤ 𝑃𝑖 ≤ 𝑃b  (for maize) 

 

𝑃f𝑖
= 1   if 𝑃𝑖 > 𝑃opt   (for wheat)     (Eq. A2) 

   if 𝑃𝑖 < 𝑃opt   (for maize) 

 

𝑃f𝑖
= 0   if 𝑃𝑖 < 𝑃b   (for wheat)    (Eq. A3) 

 

with 𝑃𝑖 (h d-1) the daily photoperiod, 𝑃𝑏 (h d-1) base photoperiod (i.e. the longest (shortest) 

photoperiod below (above) which no further photoperiod-induced delay in long-day (short-day) 

plants is observed), 𝑃opt (h d-1) optimum photoperiod (i.e. the shortest (longest) photoperiod 

above (below) which no photoperiod-induced delay in long-day (short-day) plants is observed). 

(Fig. S1a and see Table S1 for the values). 

 

The vernalization factor is incremented daily with values between 0 and 1, depending on the daily 

temperature and their effectiveness for vernalization (Fig. S1b). Its calculation is split in two 

parts, first the vernalization effectiveness (𝑉eff𝑖
, -) of the mean temperature of day 𝑖 is 

determined: 

 

𝑉eff𝑖
=

𝑇𝑖−𝑇v1

𝑇v2−𝑇v1
 if 𝑇v1 ≤ 𝑇𝑖 < 𝑇v2      (Eq. A4) 

𝑉eff𝑖
= 1  if 𝑇v2 ≤ 𝑇𝑖 ≤ 𝑇v3      (Eq. A5) 

𝑉eff𝑖
=

𝑇v4−𝑇𝑖

𝑇v4−𝑇v3
  if 𝑇v3 < 𝑇𝑖 ≤ 𝑇v4      (Eq. A6) 

 

followed by the vernalization factor: 

 

𝑉DD = ∑ 𝑉eff𝑖

𝐾
𝑖=1          (Eq. A7) 

𝑉f𝑖
= 0   if 𝑉DD < 𝑉b       (Eq. A8) 

𝑉f𝑖
=

𝑉DD−𝑉b

𝑉sat−𝑉b
  if 𝑉b ≤ 𝑉DD ≤ 𝑉sat      (Eq. A9) 

𝑉f𝑖
= 1   if 𝑉DD ≥ 𝑉sat  or 𝐷𝑉𝑆 > 𝐷𝑉𝑆dr     (Eq. A10) 

 

with 𝑇𝑖  (°C) the mean temperature of day 𝑖, 𝑇vn (°C) temperatures defining the vernalization 

effectiveness, 𝑉DD the accumulated effective vernalized days, 𝑉b the base accumulated 

vernalized days (d), which was assumed to be one fifth of 𝑉sat (d), the saturated vernalization 
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days (i.e. required duration of exposure to vernalizing temperatures) (Fig. S1c and see Table S1 

for the values). 

 

Fig. S1 (a) Effect of photoperiod on phenological development (photoperiod factor, 

𝑃f𝑖
, , ranging from 0 to 1). The solid black line indicates the response to photoperiod of a wheat 

cultivar from a high-latitude location; the solid grey line indicates the response of a wheat lower-

latitude cultivar. The dashed black line indicates the response to photoperiod of a cultivar from a 

maize high-latitude location; the dashed grey line indicates the response of a maize lower-latitude 

cultivar; (b) daily vernalizing effectiveness (𝑉eff𝑖
, ); (c) effect of vernalizing temperatures on 

phenological development (vernalization factor, 𝑉f𝑖
, , ranging from 0 to 1); figures adapted 

from Ewert et al. (1996).  

 

In the main text four different models are distinguished: 

1. Thermal model, assuming phenological development is not influenced by photoperiod 

or vernalization, i.e. 𝑃f𝑖
 and 𝑉f𝑖

 are always 1; 

2. Photo-thermal model, assuming phenological development is only influenced by 

photoperiod but not by vernalization, i.e. 𝑉f𝑖
 is always 1 and 𝑃f𝑖

 is calculated as indicated 

above; 

3. Vernal-thermal model, assuming phenological development is 𝑃f𝑖
 is always 1 and 𝑉f𝑖

 is 

calculated as indicated above; 

TV2 

(b) (c) 

Pbmaize Pbwheat 

(a) 

TV1 TV3 TV4 Vb Vsat 
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4. Vernal-photo-thermal model, assuming phenological development is influenced by 

photoperiod and vernalization, i.e. 𝑃f𝑖
 and 𝑉f𝑖

 are calculated as indicated above. 

 

The ratio between 𝐻𝑈sum and 𝐻𝑈req indicates the phenological development stage of the plant 

(𝐷𝑉𝑆, -), ranging from 0 (sowing/emergence) to 1 (harvest/physiological maturity) during the 

cropping period. The development scale was used to estimate the timing of the phenological 

stages double ridges (floral initiation) (𝐷𝑉𝑆dr, -) and flowering (𝐷𝑉𝑆f, -). We assumed that the 

rate of development of wheat and maize is sensitive to photoperiod from emergence to 

flowering, as indicated by Craufurd and Wheeler (2009). In addition, the rate of development of 

winter wheat is influenced by the effect of vernalization from emergence to the double ridge 

stage (Slafer & Rawson, 1994). For simplicity we assumed that all wheat cultivars are long-day 

plants, although some wheat cultivars behave as short-day plants (Evans, 1987) or are 

insensitive for photoperiod (Ortiz Ferrara et al., 1998); all maize cultivars were considered 

short-day plants. 

 

Table S1 lists the crop-specific parameters values for the simulation of the length of the cropping 

periods. 

 

Table S1 Crop specific parameter values 

Parameter Spring wheat Winter wheat Maize 

Base temperature (𝑇b,°C) 0a 0a 8a 

Required heat units for maturity 

(𝐻𝑈req, °Cd) 
Location specific Location specific Location specific 

Phenological development scale 

double ridge (𝐷𝑉𝑆dr, -) 
 0.2b  

Fraction of 𝐻𝑈req when flowering 

occurs (𝐷𝑉𝑆f, -) 
0.58c 0.5c 0.7c 

Minimum temperature for 

effective vernalization (𝑇v1 , °C) 
 -4d  

Minimum temperature for optimal 

vernalization (𝑇v2 , °C) 
 3d  

Maximum temperature for optimal 

vernalization (𝑇v3 , °C) 
 10d  

Maximum temperature for 

effective vernalization (𝑇v4 , °C) 
 17d  

Saturated vernalization 

requirement (i.e. required duration 

of exposure to vernalizing 

temperatures, 𝑉sat , d) 

 
Location specific, 

from 0 till 70e 
 

Maximum saturated vernalization 

requirement per month possible 

(𝑉sat max , d) 

 
70/5 = 14 

(d month-1)e 
 

wheat 
maize 

a) 
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Base accumulated vernalized days 

(𝑉b, d) 
 

1

5
× 𝑉sat

f  

Base photoperiod (𝑃b, h d-1) 8 8d 24 

Optimum photoperiod (𝑃opt, h d-1) Location specific Location specific Location specific 

aKiniry et al. (1995); bVan Bussel et al. (2011); cKiniry et al. (1995); dEwert et al. (1996); eThe 

maximum value of 𝑉sat was based on a study by Baloch et al. (2003), they indicated that winter 

wheat cultivars with high vernalization requirements need at least 70 days of optimum 

vernalizing temperatures. We assumed an equal distribution over the five months; fWang and 

Engel (1998). 

 

 

Baloch, D. M., Karow, R. S., Marx, E., Kling, J. G. & Witt, M. D. (2003) Vernalization studies with Pacific Northwest 
wheat. Agronomy Journal, 95, 1201-1208. 

Craufurd, P. Q. & Wheeler, T. R. (2009) Climate change and the flowering time of annual crops. Journal of Experimental 
Botany, 60, 2529-2539. 

Evans, L. T. (1987) Short day induction of inflorescence initiation in some winter wheat varieties. Functional Plant 
Biology, 14, 277-286. 

Ewert, F., Porter, J. & Honermeier, B. (1996) Use of AFRCWHEAT2 to predict the development of main stem and tillers 
in winter triticale and winter wheat in North East Germany. European Journal of Agronomy, 5, 89-103. 

Kiniry, J. R., Major, D. J., Izaurralde, R. C., Williams, J. R., Gassman, P. W., Morrison, M., Bergentine, R. & Zentner, R. P. 
(1995) EPIC model parameters for cereal, oilseed, and forage crops in the northern Great-Plains Region. 
Canadian Journal of Plant Science, 75, 679-688. 

Ortiz Ferrara, G., Mosaad, M. G., Mahalakshmi, V. & Rajaram, S. (1998) Photoperiod and vernalisation response of 
Mediterranean wheats, and implications for adaptation. Euphytica, 100, 377-384. 

Porter, J. R. (1993) AFRCWHEAT2: a model of the growth and development of wheat incorporating responses to 
water and nitrogen. European Journal of Agronomy, 2, 69-82. 

Slafer, G. A. & Rawson, H. M. (1994) Sensitivity of wheat phasic development to major environmental factors: a re-
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APPENDIX S2 CALCULATION OF THE EXPONENTIALLY WEIGHTED MOVING 

AVERAGES OF MONTHLY TEMPERATURES 

We assumed that farmers base their cultivar selection on experiences with previous year's 

climatic conditions. To implement this, we calculated the exponentially weighted moving 

average of monthly temperatures (𝑇𝑚,𝑦), using temperatures of the same month of previous 

years: 

 

𝑇𝑚,𝑦 = 𝛼 × 𝑇𝑚,𝑦 + (1 − 𝛼) × 𝑇𝑚,𝑦−1        (Eq. A11) 

 

where 𝑇𝑚,𝑦  (°C) is the mean monthly temperature of month m in year y and 𝛼 (-) a coefficient 

representing the degree of weighting decrease (a value of 0.05 was used). The calculation was 

initialised by 𝑇𝑚,𝑦=1970  =  𝑇𝑚,𝑦=1970 . 𝑇𝑚,𝑦  were used to compute the location-specific parameter 

values for the coming year, e.g. 𝑇𝑚,𝑦=2004 was used to derive location-specific parameters for the 

year 2005. 

 

Daily mean temperatures (𝑇𝑖,, °C), required by the phenological model, were generated by linear 

interpolation between the monthly means of that specific year, e.g. 𝑇𝑚,𝑦=2005 was used to 

simulated phenological development for the year 2005 (see Van Bussel et al., 2011 for a detailed 

description of the linear interpolation). 

The observed cropping periods from MIRCA2000 refer not to a single year but to a number of 

years around 2000. To evaluate our methodology we therefore used 𝑇𝑚,𝑦=2000 to derive both 

the location-specific parameter values and the daily mean temperatures. 

 

 

Van Bussel, L. G. J., Müller, C., Van Keulen, H., Ewert, F. & Leffelaar, P. A. (2011) The effect of temporal aggregation of 
weather input data on crop growth models' results. Agricultural and Forest Meteorology, 151, 607-619. 
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APPENDIX S3 SIMULATION OF THE REQUIRED VERNALIZATION DAYS 

The required amount of vernalization days in year 𝑦 is calculated as follows: 

 

𝑉sat,𝑦 = ∑ 𝑉sat,𝑚,𝑦
𝑁
𝑚=1   (Eq. A12) 

 

with 

𝑉sat,𝑚,𝑦 = 𝑉sat max  if 𝑇𝑚,𝑦−1 ≤ 𝑇v2 (Eq. A13) 

𝑉sat,𝑚,𝑦 = 0  if 𝑇𝑚,𝑦−1 ≥ 𝑇v3 (Eq. A14) 

𝑉sat,𝑚,𝑦 =
𝑉sat max

𝑇v3−𝑇v2
× 𝑇𝑚,𝑦−1 if 𝑇v2 < 𝑇𝑚,𝑦−1 < 𝑇v3 (Eq. A15) 

 

where 𝑁 (-) represents the five coldest months, 𝑉sat max (d month-1) the maximum possible 

required duration of exposure to vernalizing temperatures per month (see Table S1), 𝑇𝑚,𝑦−1 (°C) 

the average monthly temperature of the previous year (Appendix S3 Eq. A11), and 𝑇v2 and 𝑇v3 

(°C) the minimum and maximum temperatures for optimal vernalization, respectively (Ewert et 

al., 1996). In Eq. A12 monthly temperatures are used as input, therefore only optimal 

temperatures for the vernalizing process were considered in this equation. Based on Eq. A12 we 

computed vernalization requirements for all locations with autumn sown wheat according to 

MIRCA2000. 

 

 

Ewert, F., Porter, J. & Honermeier, B. (1996) Use of AFRCWHEAT2 to predict the development of main stem and tillers 
in winter triticale and winter wheat in North East Germany. European Journal of Agronomy, 5, 89-103. 
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APPENDIX S4 LOCATIONS SELECTED FROM THE PEP725 DATABASE 

 

 

Fig. S2 Observation sites of winter wheat harvest dates. The background displays the coefficient 

of variation of the available heat units during the estimated vegetative cropping period 

(𝐻𝑈sum veg−period) in the period 1996 till 2005 for wheat (see Fig. 5(c)). 

  

Coefficient of variation (-) 

0.00 – 0.03 
0.03 – 0.06 
0.06 – 0.09 
> 0.09 
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APPENDIX S5 SIMULATED WHEAT GROWING PERIOD LENGTHS FOR CURRENT 

(YEAR 2000) AND FUTURE CLIMATIC CONDITIONS 

To demonstrate the added value of using the developed algorithms to compute location-specific 

phenological parameters for climate change impact studies, growing period lengths have been 

simulated for three locations (southern Sweden (58.25°, 14.75°), southern Italy 

(37.25°, 13.75°), and central Ethiopia (8.75°, 38.75°)). Weather data for the year 2000 and for 

future climatic conditions, represented by adding 4°C to the weather data of the year 2000, have 

been used. Growing season lengths for future climatic conditions have been simulated with non-

adapted thermal times, which are based on climatic conditions prior to the year 2000, and for 

adapted thermal times, applying the developed algorithms. This has been done for two 

phenological models: the thermal and vernal-photo-thermal model. Sowing date was kept 

constant for all simulations. 

 

In Table S2 the second and third column indicate for the year 2000 the simulated growing period 

lengths for the three locations resulting from the two models. Reductions in growing period 

lengths under climate change without adaptation to future climatic conditions and with 

adaptation are indicated in columns four and five, and six and seven, respectively. 

 

If thermal times are not adapted to future climatic conditions both models simulate reductions of  

the growing period with 15-67 days, bearing the risk of yield reductions because of less 

intercepted radiation. If thermal times are adapted, the reductions range between no to 35 days 

reduction. These smaller reductions represent more likely lengths of growing periods between 

the extremes of full adaptation (second and third column) and no adaptation (fourth and fifth 

column).  

 

Table S2 Simulated growing period lengths (d) for three locations for climatic conditions 

of the year 2000 and reductions in growing period lengths (d) for future climatic 

conditions, based on non-adapted and adapted thermal times. 

Location/model 

Climatic conditions year 

2000 
Future climatic conditions 

Thermal times 

calculated for the year 

2000 

Non-adapted thermal 

times 
Adapted thermal times 

Thermal 

model 

Vernal-

photo-

thermal 

model 

Thermal 

model 

Vernal-

photo-

thermal 

model 

Thermal 

model 

Vernal-

photo-

thermal 

model 

Sweden 304 330 -67 -32 -35 -10 

Italy 127 115 -18 -15 0 0 

Ethiopia 188 168 -36 -33 -12 -10 

 

 


