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Irregular sampling of data sets is one of the challenges often encountered in time series analysis,
since traditional methods cannot be applied and the frequently used interpolation approach can
corrupt the data and bias the subsequence analysis. Here we present the TrAnsformation-Cost
Time-Series (TACTS) method, that allows us to analyze irregularly sampled data sets without
degenerating the quality of the data set. Instead of using interpolation we consider time series
segments and determine how close they are to each other by determining the cost needed to transform
one segment into the following one. Using a limited set of operations – with associated costs – to
transform the time series segments, we determine a new time series, that is our transformation
cost time series. This cost time series is regularly sampled and can be analyzed using standard
methods. While our main interest is the analysis of palaeo-climate data, we develop our method
using numerical examples like the Logistic Map and the Rössler oscillator. The numerical data
allows us to test the stability of our method against noise and for different irregular samplings. In
addition we provide guidance how to choose the associated costs based on the time series at hand.
The usefulness of the TACTS method is demonstrated using speleothem data from the Secret Cave
in Borneo that is a good proxy for palaeo-climatic variability in the monsoon activity around the
maritime continent.

I. INTRODUCTION

One of the challenges in time series analysis is to de-
tect dynamical changes in the evolution of the underly-
ing system. We consider a dynamical system ~̇x = f(~x, p)
with ~x ∈ Rm and p a control parameter that depends
on time p = g(t). We want to detect in the scalar
time series s(t) = [s0, . . . , sN ] = [M(x0), . . . ,M(xN )],
M : ~x ∈ Rm → s ∈ R dynamical regime changes caused
by the time dependence of p.

There are numerous methods that can be used to de-
tect such regime changes in regularly sampled times se-
ries, i.e. the time resolution ∆t = t(si+1)− t(si) = const
∀i ∈ [0, N − 1], e.g. [1–3]. However in several disciplines
like astrophysics and earth sciences a constant sampling
cannot be ensured. Therefore regularly interpolation as
a preprocessing step is often applied, but this might lead
to a bias of the results [4, 5]. For example, interpola-
tion leads to a positive bias in autocorrelation estimation
(and, thus, an overestimation of the persistence time) and
a negative bias in cross correlation analysis [4].

Here we are exploring a different approach that can
be used for irregularly sampled data without interpola-
tion. Focussing on the palaeo-climate time series, we are
in particular interested in regime changes. Such palaeo-
climate proxy records show a very erratic sampling, with
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the sampling times often Gamma distributed [4, 5] and
in addition the records are subject to measurement noise,
which make interpolation difficult. Instead of interpolat-
ing the time series we determine TACTS between seg-
ments of the original time series which results in a new
transformation cost time series having regular sampling.
This transformation costs time series can then be anal-
ysed by established methods. Wanting to detect regime
changes we apply recurrence plot analysis being one of
the appropriate methods for this purpose [6].

Our new approach is based on a measure introduced by
Victor and Purpura [7] and which was further developed
in order to transform spike trains to real-valued time se-
ries with regular resolution by Hirata and Aihara [8].
The idea of this approach behind is similar to the FLUS
method, that is: if the time series is from one dynamical
regime, the cost of transformation from one segment to
the subsequent one should be similar for each segment of
the data [3]. Since, for example in palaeo-climate proxy
records, we may not have any knowledge about the cur-
rent control parameters, we compute the cost of trans-
forming one segment into the following one. Dramatic
changes in the cost time series indicate a change in the
underlying dynamics.

While recurrence plot based quantification is not di-
rectly applicable to irregularly sampled time series, we
show that identifying regime changes in the dynamics of
the system becomes possible by combining the TACTS
approach with recurrence analysis.

Our paper is organised as follows: In the following sec-
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tion we introduce the technique of our time series anal-
ysis and highlight how the parameters of the cost trans-
formation function can be determined based on mea-
surement data. In Sec. III we apply our method us-
ing numerical data from paradigmatic model systems:
the logistic map and the Rössler system. We evaluate
the performance of our method using irregular sampling
and measurement noise. As an application we analyse a
palaeo-climate record in Sec. IV, which is a speleothem
record from Borneo/Indonesia representing the variabil-
ity of the Indonesian–Australian monsoon over the last
62,000 years. Finally we give some conclusion.

II. TIME SERIES ANALYSIS

A. Metric Analyses

In time series analyses, an important issue is to cal-
culate the distance between two data patterns. This
distance problem frequently occurs for example in re-
currence plots (RP) [6], the estimation of the maximum
Lyapunov exponent [9], scale-dependent correlations [10],
data classification [11] or correlation dimension estima-
tions [12]. When doing these kinds of analyses and the
data has an equidistant time resolution the Euclidean
distance is often used. However, in applications that gen-
erate data with non-regular sampling such an approach
is not directly applicable. Such data sets include almost
all palaeo-climate observations which can have a very er-
ratic almost random time resolution. One way to deal
with such data sets is to interpolate them. Such an in-
terpolation will not only fill the gaps but replace real
measurements with new interpolated data points closeby
that have regular sampling. But this is often not the
optimum method, since the subsequent analysis will be
typically biased [13]. Moreover these interpolated values
have a higher uncertainty than the measured data points
they replace.

For the dynamics of firing neurons, Victor and Pur-
pura [7] showed that the spike time distance is a use-
ful method that applies to irregularly sampled data sets.
The basic idea of this method is a distance metric that
provides information of how easily one data segment can
be transformed into another one. To transform one seg-
ment of data into another segment, three elementary op-
erations are required: adding or deleting of a data point
and moving the data point to a different time. Using
associated costs for these elementary operations, an op-
timal data transformation will be achieved if the cost
of the transformation is minimised. We will illustrate
this method for spike train data below before introducing
our modified method for continuous data that determines
TACTS.

Consider the metric D as a mapping of two pairs of
spike trains or data segments, say Sa and Sb, onto a
real value. In order for D to be metric, it must satisfy
the following three conditions since D is a generalised

distance:

• D(Sa, Sb) ≥ 0 (positive)

• D(Sa, Sb) = D(Sb, Sa) (symmetric)

• D(Sa, Sc) ≤ D(Sa, Sb) + D(Sb, Sc) (triangle in-
equality )[7]

In Figure 1 we give one illustrative example how the
elementary operations transform the spike train Sa into
Sb [7]. When we transform Sa to Sb, the total cost is
the sum of the elementary step’s costs. As we can see
the transformation of Sa to Sb requires 7 distinct steps.
Step 1, 2, 4, 5 and 7 move one spike to a different time
point, while step 3 deletes one spike and in the 6th step
one spike is created. Assigning costs to each of these op-
erations and pairwise checking the segments, Victor and
Purpura [7] analysed different types of spike time series.
They chose the cost of deleting and adding to be the same
pd = pa = 1, while moving a spike is proportional to the
time distance that the data point is moved from ta to tb:
λ0|ta − tb|. Clearly the parameter λ0 is a frequency with
the unit Hz.

So far we only considered spike trains as they are ap-
parent in the analysis of brain dynamics data. Suzuki et
al. [14] have extended this method for continuous marked
data and we follow their approach. The continuous data
set is transformed to an event time series that is very
similar to spike trains, and allows events to have dif-
ferent amplitudes. The transformation from continuous
data to an event time series is done by the system itself
that is event occurrence as earthquakes, data quality as
palaeo-climate time series, extreme events as crisis in fi-
nance etc. We define the cost function in the following
way:

p(c) =
∑

(α,β)∈C {λ0|ta(α)− tb(β)|+
1
m

∑m
k=1 λk|La,k(α)− Lb,k(β)|}+

λS(|I| +|J | − 2|C|), (1)

where I and J are a set of indices of the events in Sa and
Sb, respectively. Note that the summation is over the
pairs (α, β) ∈ C, where C is the set of points that will be
shifted in time. α and β are the αth event in Sa and the
βth event in Sb. The first term with the coefficient λ0 is
the cost to shift some event in time [14]. The second sum-
mation involves the difference |La,k(m)−Lb,k(n)|, where
La,k is the amplitude of the kth event in Sa. There-
fore the parameter λk has the unit of amplitude−1 and
the sum is over the different components of the ampli-
tude. That is, if we are dealing with one dimensional
data m = 1, while for a three dimensional phase space
m = 3. The last terms in the cost function deal with the
events not in C which have to be added or deleted. Note
that | · | denotes the cardinality of the set and λS is the
cost parameter for this operation. Suzuki et al. omitted
this parameter, since they chose a cost of one for such an
operation [14].
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As we can see minimisation of the cost function, eq. (1),
will depend on the choice of λ0,k,S . In [7] and [14] it
was shown that λ0,k can be optimised to get excellent
results in many cases. Here we are more concerned with
time series that a) were produced for a whole control
parameter range (see Sec IIIA & III B) or b) are non-
stationary (see Sec. IV). Instead of trying to optimise
λ0,k for each time series, we suggest two possible new
ways to choose these values and explore one of them in
detail.

Note that in eq. (1) the cost to delete or add a new
data point is equal to λS for each of both operations.
On the other hand shifting and changing the amplitude
is proportional to the difference in time and amplitude.
In order to either the deleting or adding operations are
preferred, a natural choice for λ0,k should be such that
every time shifting and changing cost more than 2λS (to-
tal cost of adding and deleting a point). Consequently
λ0,k should be chosen in such a way that in average both
terms give a contribution of λS . Therefore:

λ0 =
M

total time
(2a)

λk =
M − 1∑M−1

i |La,k − Lb,k|
, (2b)

whereM is the total number of events in the time series.
Hence, our first possibility chooses λ0 as the mean event
frequency and λk as the inverse of the average amplitude
difference.

The second option we are focussing on also uses λ0,k
according to eqs. (2) but optimises the cost of the deleting
and adding operations. That is, while λ0,k are fixed, we
explore the costs for deleting and adding in the range
from λS ∈ [0, 4]. If our time series consist of n + 1
segments of equal length, we therefore can calculate n
costs for each individual transformation of the segments.
Assuming that the costs are linearly independent, the
central limit theorem indicates that the costs should be
normally distributed. Especially when dealing with non-
stationary data, changing λS such that the distribution
becomes normal strongly improves the skill of our time
series analysis method.

Following the outlined method we are able to deter-
mine TACTS for irregularly sampled data. First we di-
vide a time series into equidistant segments and then cal-
culate the costs between each consequent ones. There-
fore TACTS is created for whole time series and using
a constant length of the data segments leads to a con-
stant sampling. This new sampling rate is the length of
the data segment and the value is determined by eq. (1).
Note that this implies another optimisation since a large
segment size will lead to a transformation time series of
short length, while a short segment size might make it
difficult to detect regime transitions.

Assume we have a time series: X =
(xt1 , xt2 , xt3 , ......, xtN ), where N is the number of
points and t2 − t1 6= t3 − t2 6= ... 6= tN − tN−1. We

FIG. 1. Illustration of the transformation of Sa to Sb. In total
Sa undergoes seven steps numbered S1, S2, . . . , S6. Note that
S7 = Sb. The path shown is a minimal-cost path and all the
steps are elementary steps, like moving a spike or deleting and
creating.

divide the time series to a set of segments W which
have equal size. After this, we have n equal windows
W1,W2, ...,Wn and we determine the transformation
costs p(W1,W2), p(W2,W3), ..., p(Wn−1,Wn) for all
sequence windows. This leads to a new equidistant time
series which is our transformation cost time series. By
using RP we detect regime changes in the underlying
dynamics.

An intuitive understanding of the transformation cost
time series method is based on an interpretation of the
cost function (1) and the cost coefficients λ0,k,S (2). As
mentioned above λ0,k are the average amplitude and the
average event frequency while λS penalizes changes in
time and amplitude of an event that are large. These
coefficients weight the local difference between the event
pairs in our cost function (1). Therefore we can perceive
the cost function as balancing the time and amplitude
differences of the events in the two segments (Sa and Sb
in Fig. 1) versus deleting and recreating all events. If
we analyze several segments resulting from a regular dy-
namics the local difference between the segments will be
bounded and the cost time series will show some regu-
larity. If the underlying dynamics on the other hand is
erratic the local difference between the segments can be
large and consequently the cost function shows no obvi-
ous regularity (this property is also used for the FLUS
method [3]). Differencing a (regular) time series (applied,
e.g., as a high-pass filter), xt − xt−1, is a special form of
this approach. To measure regularity in our transforma-
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tion cost time series we apply recurrence quantification
analysis.

B. Recurrence Plot

Recurrence plot was first introduced by Eckman at al.
as a tool to visualize the recurrences of dynamical sys-
tems [15]. Assume we have an m-dimensional system, a
state in thism-dimensional state space is ε-recurrent if its
state vector falls for a certain ε > 0 into the neighbour-
hood of another state vector. For a given trajectory ~xi
(i = 1, . . . , N, ~xi ∈ Rm), the recurrence plot R is defined
as

Ri,j(ε) = Θ(ε− ‖~xi − ~xj‖), i, j = 1, . . . , N, (3)

where Θ(·) is the Heaviside function, and ‖·‖ is a norm
[6]. Therefore, Ri,j ≡ 1 if the states at times i and j are
recurrent, and Ri,j ≡ 0 otherwise.

Clearly on the main diagonal of the RP Ri,i ≡ 1, which
therefore is called the line of identity (LOI). RP matri-
ces are symmetric (if norm is used for calculating the
distance between states to create RP), binary matrices.
Off-diagonal structures which are parallel to the LOI ap-
pear as line segments. These structures represent typical
dynamical properties. For white noise we observe ho-
mogeneously distributed single recurrence points, while
for deterministic dynamics diagonal line segments (par-
allel to the LOI) will dominate. The distribution of the
line length can be used to distinguish between differ-
ent dynamical regimes. Chaotic dynamics causes mainly
rather short line segments and regular (periodic) dynam-
ics causes very long line segments [2, 6].

In order to study the dynamical features of different
systems using the relationship between the system’s dy-
namics and the distribution of line segments, several com-
plexity measures based on line segments have been intro-
duced as recurrence quantification analysis (RQA) [2, 6].
The frequency distribution of diagonal line lengths P (`)
is directly linked with the dynamics, hence related with
the Lyapunov exponent, since P (`) quantifies the diver-
gence behaviour of the dynamical system.

One of the most important measures of RQA is the
determinism (DET) which is quantifying the fraction of
recurrence points Ri,j ≡ 1, that form diagonal lines [6],

DET =

∑N
`=`min

`P (`)∑N
`=1 `P (`)

. (4)

DET is a good measure to detect periodic-chaotic regime
transitions, since the measure based on P (`) is related to
predictability. Given our main motivation to find such
regime transitions in our transformation cost time series
we focus only on determinism although other measures
are appropriate as well [6].

III. NUMERICAL EXAMPLES

In real world applications, especially in the palaeo-
climate data sets, time series are not equidistantly sam-
pled. In order to deal with this kind of difficulties, we
have created prototypical irregularly sampled models.
Moreover, for the high possibility of noise in real world
applications, we have added noise into our study on the
logistic map.

A. Logistic map

As our first application we analyze data from the lo-
gistic map, which is defined as:

xi+1 = rxi(1− xi), xq (5)

for r ∈ [0, 4].
It has been shown [2, 16–19] that analyzing RPs is

an efficient method to detect the regime transitions in
the logistic map’s dynamics. We are going to analyse
the dynamics and its transitions in a control parameter
range of r ∈ [3.5, 4]. For our investigation we sample
the control parameter range with a step size of 0.001
and calculate a time series of 3000 iterations for each
control parameter value. We delete the first 1000 points
to discard transients, resulting in time series consisting
of 2000 points that have been used for all analysis of the
logistic map in this paper.

We investigate the performance of our method for
non-equidistant sampled data by deleting randomly 100
(γ = 5%), 200 (γ = 10%), 300 (γ = 15%) or 400 points
(γ = 20%) from the original time series. For all time
series we choose a segment size of four time steps. This
size can still capture changes in the underlying dynam-
ics even for γ = 20% but also results in a long enough
transformation cost time series that can be analysed us-
ing RP. We determine the transformation cost for each
window pair in the data set using λ0,k given from eqs. (2)
and optimised λS as outlined in Sec.IIA. The value of
λS depends on the particular γ and does decrease with
increasing γ. While one could argue that for each chaotic
regime one should use a different λS , we chose to deter-
mine only one value from the time series generated at
r = 4. There are two reasons for this particular choice:
(i) using one λS for all time series resembles the situation
when no additional information about the control param-
eter is available and (ii) it shows that our method does
not crucially depend on the choice but is stable even if λS
is close enough to the optimum value. For our different
γ levels we determined λS to be: λS = 1.07 (γ = 5%),
1.04 (10%), 0.95 (15%) and 0.93 (20%).

This optimisation results in λS ≈ 1.00 and therefore is
similar to the original values used in [7] and [14]. This
transformation cost time series is then used in the RP to
calculate the determinism eq. (4) with ε = 0.08 for all
r values considered. The ε value needs to be sufficiently
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small [6] and ε = 0.08 is adequately suitable for our phase
space of the transformation cost.

(a)

(b)

(c)

FIG. 2. (color online) RQA analyses for Logistic Map: (a)
Lyapunov exponent of the Logistic Map; (b) - (c) Determin-
ism calculated from TACTS for (b) various levels of deleting;
and (c) two measurement noise levels (σ = 0.05 and 0.1) and
for two different rates of irregularity (γ = 5% and 10%). For
details see text as well as the legends in the figures.

In Fig. 2 we present our results. Panel (a) shows the
Lyapunov exponent calculated from the time series. In
panel (b) the determinism calculated for the time series
is shown for increasingly irregular sampling. Comparison
with the Lyapunov exponent shows that the determin-
ism tracks the transitions of the dynamics for all data
sets. All abrupt drops from positive Lyapunov exponent
to negative ones are clearly shown in the determinism
measure cases. These drops are demonstrated with dot-
ted lines in Fig. 2. We clearly see that randomly deleting
points leads to a distinct drop in the determinism. While
this drop is most pronounced when comparing the refer-
ence line (γ = 0%) with γ = 5% for higher γ values the
determinism does not decrease as much. This is due to
the fact that any deleting will disconnect the long of di-
agonal lines that contribute mainly to eq.(4). Naturally
the results are most conclusive for γ = 0% but even for
γ = 20% we are able to identify the bifurcations in the
logistic map and successfully detect the changes in the
dynamics.

FIG. 3. (color online) Determinism against noise level σ: γ =
10% and r = 3.5 (periodic, black line) and r = 4 (chaotic, red
line) .

In Fig. 2 panel (c), we show that our method cannot
only detect changes in the dynamics for irregular sam-
pling but is also stable if the data is additionally com-
promised by measurement noise. We added Gaussian
white noise (〈ξ〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′)) and the
results shown are for a noise level of σ = 0, 0.05 and 0.1
(γ = 5% and 10%). Note that the σ is scaled relative
to the variance of the time series. Again we clearly see
that for all noise levels considered, our method is able to
identify the changes in the dynamics and closely follows
the Lyapunov exponent.

To further investigate the stability of our method we,
investigate two time series of 2000 points correspond-
ing to r = 3.5 (periodic dynamics) and r = 4 (chaotic
dynamics) using γ = 10% and increase the noise stan-
dard deviation σ in steps of 0.01. Fig. 3 shows that we
can clearly distinguish between periodic dynamics and
chaotic dynamics even for high noise levels. The bul-
lets give the average determinism for a 100 time series
ensemble, while the error bars show the standard deriva-
tion of the ensemble. It should be noted that for these
two extreme chases– periodic and chaotic – the bands are
clearly separated for the whole σ range considered but to
be on the safe side we would not recommend analysing
data with more than σ = 0.2. Nevertheless our method
is quite stable even if corrupted by measurement noise.

B. Rössler Attractor

In order to mimic irregular sampling, we consider the
continuos Rössler system:(

dx

dt
,
dy

dt
,
dz

dt

)
= (−y − z, x+ ay, b+ z(x− c)), (6)

where a, b and c are parameters. In this paper we chose
a = 0.2 and c = 5.7 and vary b ∈ [0, 1.4] with a resolution
of ∆b = 0.01. To achieve an irregular sampling, we use
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the maximum map Ỹ of the y-component, which offers
a natural way to get non-equidistant sampled event time
series in the chaotic regime as well as in the windows
of higher periodicity. For our investigation we generate
a long time series via using the 4th order Runge-Kutta
method with ∆t = 0.01 sampling rate. Then we ne-
glect any transient behavior and consider 5000 maxima
for each control parameter value b. Using a window size
of 3500 time units we calculate TACTS with parameters
λ0,k determined by eqs. (2) for all b values and then op-
timize λS such that the cost distribution is normal.

In addition to the irregular sampling real world data
have some measurement uncertainties. While we know
that our method performs well even with measurement
noise added to the dynamics (c.f. Fig. 3), the Rössler sys-
tem offers an additional opportunity to test for a different
kind of uncertainty. As mentioned above palaeo-climate
proxy records are often Gamma distributed in the time
domain [4, 5]. To let our data reflect this, we first create
a cubic interpolated maximum time series resulting from
Ỹ acting on y. Then we choose Gamma distributed time
events at which we sample the interpolated time series
to create a new time series with higher uncertainty. The
two steps process is illustrated in Fig. 4 for two chosen
skewness values. For our analysis we are using the skew-
ness of the Gamma distribution as 0.3, 0.5, 1.0 and 2.0.
Therefore we generate four additional time series that we
analyze by determining TACTS and determine our RQA
measure DET with ε = 0.05.

The results for the five time series are shown in Fig. 5.
Panel (a) shows the Lyapunov exponent calculated from
the continuous sampled y component. In the panel be-
low we see the data for the five different time series we
considered. Clearly our technique is able to identify the
dynamical regime changes (dotted lines in Fig. 5) for all
data sets. Just like with increasing noise intensity in the
logistic map the changes are not so pronounced anymore
for higher skewness, but even for a skewness of 2.0, the
chaotic regime can be clearly distinguished from the pe-
riodic dynamics and we are able to identify the regime
changes associated with the periodic windows.

IV. APPLICATION TO PALAEO-CLIMATE
RECORD

So far we have been testing the performance of our
transformation cost time series method using prototypi-
cal models. While we have been trying to design these nu-
merical examples as realistic as possible – including mea-
surement noise and testing irregular gamma distributed
sampling – in real applications the data might have fur-
ther complications like multiplicative noise and time de-
pendent control parameters. Since we are particular
interested in palaeo-climate applications, we choose a
speleothem isotope δ18O record from the Secret Cave at
Gunung Mulu in Borneo / Indonesia [20]. This particular
record is a proxy for the Indonesian-Australian monsoon,

Reference

Skewness = 0.3

Skewness = 2.0

(a)

(b)

(c)

(d)

(e)

FIG. 4. (color online) The time series of Rössler: Panel (a)
shows the y-component with maxima highlighted as bullets;
(b) shows the result of the maximum map Ỹ acting on y;
(c) shows the time series for a skewness of 0.3 and (d) for a
skewness of 2.0. In panel (b) to (d) we show the interpolated
time series that we draw from as a black dashed line. Panel
(e) offers a comparison between the different time series and
highlights their irregularity.

since δ18O is an indicator for precipitation. We analyzed
the last 62,000 years of this proxy record. Note that
the full record is around 100,000 years long, but beyond
62,000 years the data is too sparse and contains too many
gaps to give any useful information.

In the part of the record analyzed there are ∼1200
data points. The time between two measurements follow
a Gamma distribution and the skewness is 4.9. We use a
segment size of ≈ 210 years to calculate our transforma-
tion cost time series. The parameters λ0,k are determined
by eqs.(2) and we optimize λS = 1.07. To detect dynami-
cal transitions in TACTS, we need to apply a slightly dif-
ferent form of the RQA [21], since in the palaeo-climate
data we expect a temporal variation of the control pa-
rameter. We therefore adopt a sliding window method
and consider thirty data points of TACTS as our win-
dow size. Note that 30 data points in TACTS correspond
to approximately 100 to 140 points in the original proxy
record and cover about 6200 years in real time. The
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(b)

(a)

FIG. 5. (color online) RQA analyses for Rössler Map distance
time series: In panel (a) the Lyapunov exponent λ is given as
a reference over the whole b control parameter range. In panel
(b) the determinism DET determined from TACTS is shown
for the maximum time series Ŷ (black line) as a reference. The
other shown data results from the Gamma distributed time
series with skewness 0.3 (red dashed line), skewness 0.5 (green
dash-dot line), skewness 1.0 (blue dotted line) and skewness
2.0 (pink line).

length of a window (∼ 6200 years) is a suitable interval
to detect the regime transitions in palaeo-climatology.
DET is determined for each window of the time series
one by one as the window slides over the time series with
90% overlap. We used ε = 20% of the standard deriva-
tion of the data in the particular window. Not only does
this method allow us to deal with data that shows regime
changes due to control parameter variations, it also gives
us a way to determine the statistical significance of DET
via the method of bootstrapping as outlined in [21]. The
basic idea is that the dynamics of the system does not
change over time. The bootstrapping test will allow us
to judge whether the found variability of the measure
DET is significantly different from an unchanged dynam-
ics, i.e., whether a regime transition occurs.

In Fig. 6 we present the results of our analysis together
with the original proxy record. Outside the light red
band DET can be considered to indicate a dynamics dif-
ferent from the “normal behaviour” with 90% confidence.
As we can see, the RQA-determinism indicates several
distinct regime changes in the time series. Quite pro-
nounced are the regime changes that coincides with the
known Heinrich events (H1 to H6). During these Hein-
rich events large quantities of fresh water was introduced
into the Atlantic via melting ice-bergs [22] and it is ap-
parent, that these events impacted also on the Monsoon
dynamics over the Maritime Continent [23], leading to
very low DET . Similarly the Younger Dryas, a period of
cool climate in the Northern Hemisphere that might have

(b)

(a)

FIG. 6. (color online) Upper graph: δ18O record of the Secret
Cave, Borneo; lower graph DET determined from the corre-
sponding transformation costs time series. Horizontal lines
H1 to H6 indicate the six Heinrich events while the most re-
cent line determines the Younger Dryas, a cold period in the
Northern Hemisphere most likely caused by a collapse of the
North American ice sheet. The light red band of the DET
indicates the 90% confidence interval.

been caused by the collapse of the North American ice
sheet [24], is detected by our method. It is noteworthy
that in the original work by Carolin et al. [20] H1 to H6
was detected too, but the Younger Dryas coinciding with
the Heinrich 0 event (H0), was not detected. Moreover
our method allows an objective, quantitative analysis,
while Carolin et al. rely on the subjective method of
matching extreme data occurrences with specific dates.

In our analysis we detect some other significant regime
changes (see for example the high DET between H2
and H3 in Fig. 6) that have previously not been recog-
nized. Similarly we observe that while all Heinrich events
were impacting on the climate significantly, the duration
and strength with which they impacted on the monsoon
over Indonesia varied according to our analysis. From a
palaeo-climatic point of view the monsoon dynamics over
the Maritime Continent is quite complex with cold surges
from the north impacting on the local precipitation. In
addition changes in the landmasses due to rising sea levels
generated the Borneo vortex, that is dominating in more
recent times the monsoon [25]. We do not claim that our
analysis of the speleothem record answers all questions
and the aim of this paper is out of palaeo-climatological
scope. We are going to address these additional regime
changes and the durations of the Heinrich events’ impact
in a more specific journal [26].



8

V. CONCLUSION

In this paper we have presented a novel method for
analyzing irregularly sampled time series. This transfor-
mation cost time series (TACTS) method is based on
determining similarities in time series segments. The
fundamental transformation of the segments follows sev-
eral elementary steps like moving a data point in time or
changing its amplitude. By analyzing the average sam-
pling rate and the average amplitude one can determine
the associated cost factors for these transformation steps.
Moreover as we have demonstrated the deletion and cre-
ation cost can be optimized relative to the first two costs.
The advantage of our method is that the resulting trans-
formation cost time series is regularly sampled. Therefore
one is free to use a suitable time series method for further
analysis without the risk of data corruption arising from
unsuitable interpolation methods.

Our extensive tests of the method have demonstrated,
that TACTS is useful even for extreme irregular sampling
and in addition can deal with rather high measurement
noise. It can be used in discrete and continuous sys-
tems and shows promising results when applied to real

world applications. In combination with recurrence plot
analysis measures like the determinism DET our method
can detect dynamical regime changes accurately. Espe-
cially in areas like palaeo-climate, where often irregu-
lar sampling and parameter changes are common, our
method provides a quantitative and objective way to an-
alyze data and can guide scientists to previous hidden
regime changes.

The systematic comparison of the effects of interpola-
tion and TACTS on different time series analysis results
is subject of an ongoing study that will published in the
future.
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