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Abstract – The study of phase transitions with critical exponents has helped to understand funda-
mental physical mechanisms. Dynamical systems which go to chaos via period doublings show an
equivalent behavior during transitions between different dynamical regimes that can be expressed
by critical exponents, known as the Huberman-Rudnick scaling law. This universal law is well
studied, e.g., with respect to the Lyapunov exponents. Recurrence plots and related recurrence
quantification analysis are popular tools to investigate the regime transitions in dynamical systems.
However, the measures are mostly heuristically defined and lack clear theoretical justification. In
this Letter we link a selection of these heuristical measures with theory by numerically studying
their scaling behavior when approaching a phase transition point. We find a promising similarity
between the critical exponents to those of the Huberman-Rudnick scaling law, suggesting that the
considered measures are able to indicate dynamical phase transition even from the theoretical point
of view.

Introduction. – Many dissipative dynamical systems, f(x, a) where x is the state
vector and a is a control parameter, possess complex structures in some specific regions
of their own phase spaces, such as the logistic map [1], the cubic map [2], the Chirikov
map [3], forced pendulum [4], and the Rayleigh-Benard system in a box [5]. As a common
property, these kinds of systems exhibit transitions from a periodic regime to a chaotic one
via period doubling. The period doubling bifurcations are not only a fundamental feature in
prototypical models, it has been found in nature and experimental setups as well. Examples
include collection of cardiac cells [6, 7], semiconductors [8] and RLC circuits [9]. Generally
the behaviour of a dynamical system is characterized by the maximum Lyapunov exponent
λmax which is an index that characterizes the rate of divergence of infinitesimally close
trajectories while the system evolves in time. During the transition, the scaling behaviour
of the Lyapunov exponent is a crucial property to identify the onset of chaos. Huberman
and Rudnick theoretically studied the scaling of the Lyapunov exponent of one dimensional
systems at the vicinity of the critical phase transition point for a set of the control parameter
a. Note that, there is only one Lyapunov exponent for one dimensional systems, therefore
λ = λmax. They found that the Lyapunov exponent scales with an exponent ν: λ ∝ (a−ac)

ν ,
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where ac is the critical control parameter where the regime transition occurs [10].
The Huberman-Rudnick scaling formulation is very similar to the magnetization’s one:

M ∝ |T −Tc|
γ near the second order critical phase transition point (Tc) of magnetic systems

[11]. Therefore, as similar as in the scaling of the magnetization M , the scaling relation
between different dynamical regimes implies that the Lyapunov exponent λ is such an order
parameter describing the order (disorder) of the systems and exhibiting their criticality
[12]. In the theory of critical phenomena, many similar formulations of scaling laws can be
observed such as the liquid-gas density difference, correlation functions etc. [13].

Recurrence is one of the fundamental features of dynamical systems. Introduced by
Poincaré 1890, the Poincaré recurrence theorem states that almost all trajectories of dy-
namical systems will return very close to their previous positions after a sufficiently long
but finite time [14]. A flow map is a dynamical system defined by a set of ordinary differen-
tial equations. If the phase space of a flow map has a bounded volume, then the Poincaré
recurrence theorem is always valid [15].

Among the different approaches of investigating dynamical properties by recurrences,
the recurrence plot (RP) [16] and derived quantification techniques are powerful nonlinear
tools to analyze different aspects of dynamical systems [17]. In order to understand the
underlaying dynamics of complex systems, this method has been applied to various real-
world systems in neuroscience [18], financial science [19], geophysical [20] and climate systems
[21] as well as on low and high-dimensional model systems [16, 22–24].

The complexity measures in the RP framework, known as ‘recurrence quantification
analysis’ (RQA), are based on point density and line structures visible in the RP, and
provide an alternative for quantifying order and disorder of physical systems. In order to
show robustness, stability, and effectiveness of RPs, it is very important to verify that the
RQA measures have a unique scaling behaviour and are related to present universal scaling
laws.

In this Letter, we will uncover unique scaling exponents of the RQA measures for systems
with transitions between different dynamical regimes via period doubling. In particular, we
will analyze the discrete Logistic map and the continuous Rössler oscillator by using band
regions at the edge of chaos. We will investigate the invariance of the scaling exponents for
selected RQA measures and their relationship to the Huberman-Rudnick scaling exponent
and, thus, the Lyapunov exponent.

Huberman-Rudnick scaling law. – Due to the self-similarity of any dynamical
systems which possess transitions via period doublings to chaos, the scaling relation for
period doubling in a range of the control parameter a is given by,

|a− ac| ∼ δ−n , (1)

where δ = 4.669 . . . is the Feigenbaum constant [25, 26]. Eq. (1) enables us to localize the
control parameter value at the bifurcation from 2n period to 2n+1. On the other hand,
it is possible to obtain Eq. (1) from the Huberman-Rudnick scaling law analytically. This
theoretical transformation shows that the envelope of the Lyapunov exponent exhibits an
universal scaling behaviour, like an order parameter close to the critical point of an abrupt
phase transition [11]. The Huberman-Rudnick relation is given by,

λ = λ0 (a− ac)
ν , (2)

where a > ac, ν = ln 2/ ln δ ≈ 0.45, λ is the Lyapunov exponent, and λ0 is a constant.
It is well-known that for a slightly larger than the critical ac (chaos edge), there exist 2n

(n = 1, 2, ....,∞) chaotic bands [10]. In that region (a > ac), assume we initialize the system
from two different initial conditions in the same band and separated by a distance d0. After
N∗ = 2n iterations, the trajectories will be back in the initial band, since they started from
the same one, where N∗ is the minimum time step that is necessary to determine the unique
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band structure. At the same time, regarding to the chaotic regime behaviour, the trajectories
diverge from each other exponentially fast. Thus, we can estimate the new distance after
2n iterations by d2n = d0e

λ2n = d0e
λ0 , where λ0 = λ2n is the effective Lyapunov exponent

(a constant value) [10]. Substituting the effective Lyapunov exponent into Eq. (2) gives,

2−n = (a− ac)
ln 2/ ln δ. (3)

It is clearly shown that the distance between a to ac depends on the number of chaotic
bands (2n).

Recurrence plot. – In a given m-dimensional phase space, if the states of two points
are sufficiently close to each other, they are considered as recurrent states. Formally, for a
given trajectory xi (i = 1, 2, ..., N,x ∈ R

m) where N is the trajectory length, the recurrence
matrix is defined by Ri,j(ǫ) = Θ (ǫ− ‖xi − xj‖), where ǫ is the neighbourhood threshold, ‖·‖
is the Euclidean norm, and Θ(x) is the Heaviside step function [17]. If only one dimensional
time series is given, time-delay embedding can be used to reconstruct the trajectory phase
space for a time series {ui}

N
i=1 [27], xi = (ui, ui+τ , ..., ui+(m−1)τ ), where m is the embedding

dimension and τ is the embedding delay. For the consistency of both applications in this
Letter, although an embedding is not necessary for one-dimensional maps (i.e. m = 1), it
has been used both an embedding of m = 3, τ = 1 and threshold distance ǫ = 0.1d, where d
is the maximal phase space diameter of the trajectory in accordance with results in [17,23].

In this work, we use the point density based RQA measure, recurrence rate (RR), and
two diagonal structure based RQA measures, the average diagonal line length 〈L〉 and the
divergence DIV [17]. RR is defined by the mean of all elements in the RP,

RR =
1

N2

N
∑

i,j=1

Ri,j (4)

and the average diagonal line length 〈L〉 by

〈L〉 =

∑N
l=lmin

lP (l)
∑N

l=lmin
P (l)

, (5)

where P (l) is the histogram of the diagonal structures in the RP. The longest diagonal
structure in RP, Lmax, is defined as Lmax = max ({li|P (li) > 0; i = 1, 2, . . .}), and its inverse

DIV = 1/Lmax, (6)

is related to the divergence behavior of the phase space trajectories [17].
As mentioned before, recurrence is a fundamental characteristics of dynamical systems

and recurrence based measures are, therefore, promising candidates for studying the relation
between the Lyapunov exponent and the control parameters. Therefore, it is expected that
scaling behaviour exists for recurrence based measures similar to the Huberman-Rudnick
universal scaling law.

The logistic map. – In order to demonstrate the scaling behaviour of RQA measures,
we consider a well-known one-dimensional discrete map, is called the logistic map, defined
as

xt+1 = 1− a x2
t , (7)

where xt is a real number between [−1, 1] and a is the control parameter between (0, 2].
Moreover, changing a causes a transition from periodic to chaotic regime at the critical
control parameter ac = 1.401155189 . . . Approaching ac from the left hand side (from the
periodic region), period doublings occur until 2∞ periods at a = ac. In the other direction,
approaching ac from the right hand side (from the chaotic region), changing a causes band
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Fig. 1: While the threshold value of recurrence plot ε approaches to the transition point of the
logistic map ac with (n + ε, a) tuples, the scaling of the 2(n+ε) with (a − ac)

ln 2/ ln δ gives a line
which has a constant slope, Slope = 1. Also, it is shown that the scaling relation in Eq.(2) is robust
for different values of ε with this transformation. Numerical observations are expected in the figure,
all (n+ ε, a) tuples with different ε are on the same line with the slope equals 1 since the effective
Lyapunov exponent λ0 equals to λ2(n+ε).

splitting until infinite number of bands split up at ac [28]. It is worth noting that there are
reverse bifurcations of 2n+1 bands merging into 2n bands in the chaotic region (a > ac).

The time series created from the logistic map possess long range correlations leading to
q-Gaussian distributions of sums of iterates and a fractal structure at the vicinity of the
chaos threshold [29]; it was recently shown that the correlation length, the box-counting
fractal dimension and the Lyapunov exponent have a special criticality corresponding to a
power law scaling with the same exponent (|ν| ≈ 0.45) as approaching to the chaos threshold
within the Huberman-Rudnick universal scaling law [30, 31].

In order to numerically obtain the scaling relation among the RQA measures and the
distance between the control parameter and its critical value ((a−ac)), we need to know the
critical values of the RQA measures at ac. However, to localize ac with infinite precision is
not the only ingredient to attain the critical value of these measures. It is also necessary to
take N → ∞. On the other hand, in numerical experiments, neither the precision of ac nor
N can approach infinity. But we can detect the critical value with asymptotically saturation
behavior of the RQA measures with increasing trajectory length N for a given ac with very
high precision and after discarding long transients N = 212.

To avoid numerical errors in our simulations, we will take n values as n → n+ ε trans-
formation, where ε is a very small arbitrary number [29, 30, 32]. Although the scaling is
robust for various ε values (Fig. 1), it is important that arbitrarily selected ε should be
fixed for all different control parameters a. Since different values of ε can cause the system
to take a different path to chaos. The slope of the straight line is one and arises from the
constant effective Lyapunov exponent λ0 = λ2n+ε according to Eq. (3). From now on, we
select ε = 0.02 for all our numerical simulations in this paper.

Now we estimate the critical values RRc, 〈L〉c and DIVc. Note that the Lyapunov
exponent λ and divergence DIV can vanish at ac for only N → ∞ (λ,DIV → 0). For in-
creasing time series length N , at ac the RQA measures approach a critical value, estimated
as RRc = 0.2188, 〈L〉c = 27.0702 and DIVc = 0.0001 (Figs. 2(a,b,c)). The corresponding
scaling exponents are similar to the Huberman-Rudnick’s exponent ν ≈ 0.45 while approach-
ing to the critical threshold with (n+ε, a) tuples of N∗ iterations (Fig. 2). For the recurrence
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Fig. 2: The saturation and the scaling behaviours of RQA measures (a) recurrence rate RR, (b)
average diagonal length 〈L〉 and (c) just scaling of divergence DIV , for the logistic map.

rate, |RR − RRc| scales with (a − ac)
α where α = 0.45 ± 0.0003. The scaling for 〈L〉, i.e.,

|〈L〉 − 〈L〉c| ∝ (a − ac)
β , has the critical exponent β = 0.38 ± 0.02 and the scaling for the

divergence, i.e., |DIV −DIVc| ∝ (a− ac)
κ, we find the critical exponent κ = 0.49± 0.003.

The Rössler attractor. – In order to show the generality of our work, we consider
now a continuous system, the Rössler oscillator,

(

dx

dt
,
dy

dt
,
dz

dt

)

= (−y − z, x+ ay, b+ zc), (8)

where c is the control parameter, while fixing the parameters a = b = 0.2 [33]. Since the
unique scaling is just shown in systems exhibiting period doubling behaviour, we need to
reduce the dimension of the Rössler system, e.g., by applying the Poincaré section method
to its x-component. By applying this approach to the Rössler system, it has been shown
that the period doubling leads to chaos [34]. Using the Poincaré section method, the unique
scaling could be studied even in higher dimensional systems. This property satisfies our
requirement for the unique scaling. The critical value of the control parameter is cc =
4.20423 . . . for the Rössler system.

Now we estimate the scaling exponents for the Rössler oscillations analogously to the
logistic map, but after discarding 106 transients and taking N∗ = 2n Poincaré points on
xmax. The critical RQA measures are found as RRc = 0.2056, 〈L〉c = 24.7783 and DIVc =
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Fig. 3: The saturation and the scaling behaviours of RQA measures (a) recurrence rate RR, (b)
average diagonal length 〈L〉 and (c) just scaling of divergence DIV , for the Rössler oscillator.

0.0001 for increasing N values at cc, (Figs. 3(a,b,c)). The power-law scaling exponents are
also similar to the theoretical value ν ≈ 0.45 and were estimated as |RR−RRc| ∝ (c− cc)

α

with α = 0.45± 0.002, |〈L〉 − 〈L〉c| ∝ (c− cc)
β with β = 0.40± 0.02, and |DIV −DIVc| ∝

(c− cc)
κ with κ = 0.49± 0.001, (Fig. 3).

It is expected that the RQA scaling exponents (α, β and κ) for the logistic map and
Poincaré section of the Rössler system should be equal in the range of their tolerance since
these systems belong to the same universality class.

The value of neighbourhood threshold ε in recurrence matrix Ri,j(ε) affects the numer-
ically obtained precision of the exponents. Therefore, showing these scaling relations and
equality of RQA scaling exponents with the Huberman-Rudnick exponent ν is also important
to define the most appropriate threshold value in RP.

The error described by the standard deviation of the slope (±σ) is decreasing, while the
length of the time series is increasing (exemplarily shown for RR in Fig. (4)). This is related
to determine the critical value of the measure, and so to determine the complete shape of
the system at the chaos threshold, and the accuracy increases with increasing N .

Conclusions. – In summary, we have obtained scaling relations for the selected RQA
measures that are similar to the universal Huberman-Rudnick scaling law ν ≈ 0.45 [30, 32].
Although RQA measures have been frequently applied to study phase transitions (regime
transitions), there is still a lack of a theoretical justification. Our analysis for the first
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Fig. 4: The convergence behaviour of the error described by the standard deviation of the slope
(±σ) for RR exponent α while N increases.

time has filled this gap by considering their scaling behavior and critical exponents when
approaching a critical transition point.
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