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Abstract

Given a trajectory of length N, recurrence quantification analysis (RQA) tra-
ditionally operates on the recurrence plot, whose calculation requires quadratic
time and space (O(N?)), leading to expensive computations and high memory
usage for large N. However, if the similarity threshold ¢ is zero, we show that
the recurrence rate (RR) and many diagonal line based RQA-measures, e.g., the
determinism (DET), can be obtained algorithmically taking O(N log(NV)) time
and O(N) space. Furthermore, for the case of € > 0 we propose approximations
to the RQA-measures that are computable with same complexity. Experiments
with autoregressive systems show that the approximation error is small if the
dimension of the trajectory and the minimum diagonal line length are small.
When applying the approximate determinism to the problem of detecting dy-
namical transitions we observe that it performs as well as the exact determinism
measure.

Keywords: Recurrence quantification analysis, Recurrence plot, Determinism,
Approximation, Phase space discretization

1. Introduction

Recurrence quantification analysis (RQA), i.e., the quantification of struc-
tures in recurrence plots [I], has established in several fields of research as a
powerful tool to investigate recurrence related properties of complex dynamical
systems [2]. The popularity of RQA is founded in its simplicity and flexibility
to be applied to almost any type of data, including non-stationary processes
[3]. In particular the outstanding role of the RQA-measure determinism (DET)
has been demonstrated in several applications, including discriminating signals
from noise [], detecting dynamical transitions [5l [6], and the recently proposed
use for pattern mining and classification [7]. A comprehensive overview of re-
currence plots and its applications is given in [I].
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The computation and quantification of recurrence plots generally involves
operations with quadratic time and space complexity (O(N?)). This computa-
tional complexity leads to strongly increasing computation times and memory
consumption for long time series (longer than 100,000 data points). Recurrence
analysis of long time series, such as audio data [§], epileptic seizures [9], material
damage detection [10], or hourly weather variability [IT], is, therefore, limited.
Another application that can be limited by the high computational complexity
is online monitoring of data streams, e.g., for video surveillance [I2], monitoring
social interactions [I3], or assessing driving behavior [7]. Parallel computing
approaches (e.g., using GPU calculations [IT], [I4]) can accelerate computation
but do not reduce the computational complexity.

In this letter we show the following. If the similarity threshold ¢ is zero,
then the recurrence rate and many diagonal line based RQA-measures, e.g., the
determinism, are in the computational complexity class O(N log(N)), whereas
space complexity is O(N). We use this observation in order to propose approxi-
mations to these measures for the case of ¢ > 0. The (approximative) measures
are obtained algorithmically, without having to calculate the recurrence plot.

2. Motivation

Recent work has introduced recurrence plot-based distance measures, which
can be utilized for mining (multi-dimensional) time series with nonlinear dynam-
ics [I5), [16]. However, the quadratic time and space complexity of computation
and quantification of recurrence plots makes distance calculations for relatively
long time series and online processing of fast time series streams intractable.
For these purposes we aim to approximate the proposed recurrence plot-based
distance measures in such a way as to reduce the computational complexity
while maintaining the classification accuracy.

3. Recurrence quantification analysis

For a given d-dimensional phase space trajectory & (reconstructed from a
time series z, e.g., by time-delay embedding [I7]) of length N and similarity
threshold € > 0 the recurrence plot of Z is an illustration of the binary recurrence
matrix R, given by

Ri,j:@(E_Hf’i_fj||>7 i,j:1,...,N,

where ||| is a norm in the phase space of Z and O is the Heaviside step function,
defined by O(y) =1 if y > 0 and O(y) = 0 if y < 0. Thus O indicates whether
#; and &; are in e-proximity (also denoted as similar) or not, ie., R;; = 1
if ||#; — Z;|| < e and R;; = 0 if ||& — &;|| > e. This relation is essential for
the study of recurrence plots and will be used extensively in this letter. The
recurrence plot contains the line of identity (LOI), which means that each entry
on the main diagonal of R is 1. Structures parallel to the main diagonal, referred
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to as diagonal lines, are caused by similarly evolving epochs of the phase space
trajectory &.

Recurrence quantification analysis was developed in order to quantitatively
describe recurrence plots. For this purpose, small scale structures, such as
recurrence points or diagonal lines in the recurrence plot are used [I8]. The
fraction of recurrence points in the recurrence plot is measured by the recurrence
rate,

| X
RR = ﬁ Z Ri,j7 (1)
i,j=1
which is interpreted as the probability to find a recurrence of trajectory #. A
more sophisticated RQA-measure is the determinism, which is defined for a
given minimum diagonal line length p as

YLl P

i,j=1 Ri,j

where P(I) is the number of diagonal lines of length ! in R. DET can be
interpreted as the probability that a recurrence point belongs to a diagonal
line. The parameter p is usually set to 2. This choice is sufficient for most
applications. However, in particular cases, larger values of u can be necessary,
e.g., reducing effects of tangential motion (oversampling), noise, or embedding
effects [I].

As already mentioned, a phase space trajectory of a univariate time series
can be reconstructed by time delay embedding [I7]. We call this procedure time
series embedding, since it is applied to the time series. In the sequel we will
apply the method of time delay embedding to the trajectory & (that possibly
was created by time series embedding for reconstruction purposes), but with
the intention of quantifying diagonal structures in R. In order to distinguish
that from the time series embedding, we will denote this as trajectory embedding.
More precisely, for a fixed time delay 1 and embedding dimension v, we consider
the trajectory embedding vectors

DET™ = , (2)

fgz(fj7fj+la"'afj+l/—l)7 (3)
which are of dimension d-v, provided that the trajectory & is d-dimensional. The
trajectory embedding of Z is then defined to be the sequence ¥ = (f]’f)jzlw,N,,,H,
which can be imagined as a trajectory in a (d - v)-dimensional phase space. In
Sec. we show that information about P(l) can be extracted by these repre-
sentations leading to a surprising identity for the determinism.

4. RR and DET identities

We deduce identities for RR and DET®) | which allow fast calculation (with-
out computing the recurrence plot) if the similarity threshold e is zero. The
identity for RR does hold for ¢ = 0 only. The identity for DET) is first shown
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for arbitrary e > 0 and the assumption that the phase space norm is the maxi-
mum norm || - ||o. However, in the special case of € = 0, we will argue that the
restriction to the || - ||oo-norm becomes redundant. Consequently it follows the
important fact that the recurrence rate and the determinism are in O(N log(N))
if € = 0, whereas the computational complexity of the classical methods that
quantify the recurrence plot is O(N?).

4.1. Recurrence rate identity
Given the trajectory embedding Z", Eq. , in analogy to Eq. we define

N—-v+1
PPV = 3 O - 7 — ), (4)

ij=1

the number of pairwise proximities of the elements in #¥. Note that RR =
PPW /N2 is the recurrence rate of & and more general PP /(N — v + 1) is
the recurrence rate of .

If nominal recurrences [19] are in demand, that is € = 0, then PP®) (and
thus the recurrence rate RR) can be determined efficiently, i.e., with algorithmic
complexity of O(N log(N)). In order to achieve this complexity, we employ the
histogram hx of the trajectory embedding vectors X := Z”, which is given by

hx Y =N, g ) 0|7 —g|),
Fex

where Y is the set of unique members of X.

Theorem 1. Let X = ¥ be the sequence of trajectory embedding vectors as
defined in Eq. and denote by hx the histogram of the elements in X. If
e =0, then

PPY =3 (hx (). (5)

yeY

PROOF. First note that a similarity (or proximity) corresponds to an equality
if e =0, that is

O(-lz7 =77l =1 & T =77

The claim follows by simple combinatorial arguments. Assume that for 7 € Y
there are exactly n elements in X that are equal to . Then there are n? pairwise
equalities of these n elements, and hence n? pairwise proximities that increase
ppw by n?. But n is exactly determined by hx (%) = n. Taking the sum over
all ¥ € Y yields the claim. O

Based on this observation we can calculate the right hand side of Eq.
efficiently. The algorithmic details are discussed in Sec. [5.2.2}
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4.2. Determinism identity

For the rest of this letter we choose the phase space norm ||+ ||, in particular
we assume that R and all PP™) are obtained for || - || = || - |- Then there is a
relation between diagonal lines in the recurrence plot and recurrence points of
trajectory embeddings. Before we formulate the determinism identity, we will
give an intuition for the just mentioned relation: For a trajectory Z let R be
the recurrence plot. Consider the trajectory embedding 22 of & of dimension
v = 2 and the corresponding recurrence plot R®). Now, in the maximum norm,
we have that Rl(? = 1 is equivalent to R; ; = R;j;1,41 = 1. In other words, a
diagonal line of length 2 in R corresponds to a recurrence point in R, which
is quantified by PP,

Theorem 2. Let u be a choice of the minimum diagonal line length. For a
trajectory X, let the recurrence plot R and the pairwise proximity measures
PPW pPW  pPHHY pe obtained for || - || = || - |loo. Then for arbitrary e >0
it holds

p-PPW — (p—1).pprtD

(n) —
DET\W = Pty

(6)
PRrOOF. See Appendix A, Sec.
In some cases the LOI of the recurrence plot should not be included in the

histogram P(l), i.e., P(N) is set to zero. Then Theorem [2| holds true with a
slight modification:

[- pp) _ (n—1)- pputl) _ N
ppW '
For further considerations we assume that the LOI is included.

It is important to discuss the condition on the underlying phase space norm
that compares the elements in Z. First of all, the statement from Theorem
only holds for the || - ||oo-norm. Depending on the application, a specific norm
may be selected. Usually, the Euclidean norm || - ||z is considered, but also the
maximum norm || - ||« is often used because it is computationally faster and
allows to study recurrence plots analytically [I]. If ¢ = 0, then the statement
holds for all norms since each norm || - || only indicates if Z; and &; are equal,
i.e., by definition of a norm we have that ©(—||Z; — Z;||) = 1 is equivalent to
T = Tj.

Two observations from the proof of Theorem [2] describing the relation be-
tween P(l) and PP® are worth mentioning here. Firstly,

DET™ =

> P(l) =PpW — ppUth), (7)

>

which is the number of diagonal lines in R of minimal length p, and secondly
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PP =Y "(1—v+1)P().

I>v

By now, the identity in Theorem [2| does not provide a method to compute
the determinism efficiently for general €. However, if € = 0, then PPWL, PP
and PPHFD can be calculated fast, as argued in Sec. and then DET®) is
a simple algebraic computation in terms of these quantities.

It is worth to mention that the relationship between the length of diagonal
lines in the recurrence plot and the embedding dimension is of more fundamen-
tal nature. For example, the K5 entropy can be directly estimated from the
recurrence plot using the diagonal line lengths [I] instead of the dimension of
the embedding dimension [20].

5. Approximation of RQA

Approximations for RR and DET are presented that are computable in
O(Nlog(N)). These approximative measures are obtained algorithmically, that
means we do not calculate the recurrence plot. In Sec. [l] we have discussed
the simplified case of ¢ = 0, where these measures are in the just mentioned
complexity class. In this section we study the case of ¢ > 0, for which we
propose a phase space discretization approach in order to approximate PPW),
The discretization will generate the situation of a zero threshold, which allows
us to apply the results from Sec. [4

5.1. Approximation method
We propose to discretize the phase space for a grid size parameter § > 0 via

Bs R™ 5 7", s if = {gJ 8)
where n is an arbitrary natural number and |-| is the component-wise round off
operation. Applying @5 to the trajectory I leads to a partition of the phase space
in hypercubes of size 6. Then we replace the similarity condition ||Z} —77[[c < ¢
by affiliation to the same cube, i.e., by the condition :1:0’;’ = fj” For convenience,
we formulate this as a classification problem following the rules,

Y and :E’;’ are classified as ...
(1) similar if ©(— |7} — 7¥|o) = L.
(2) dissimilar if O(—[| &% — 7%||c) = 0.

This point of view leads to the idea of proposing an approximation of ppw
for € > 0 by replacing ©(e — [|Z} — #%||o) by O(—||Z} — ||s) in Eq. [{@):
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Definition 1. Let € > 0. The approximations PPW and DET® of PPW)
and DET respectively are defined as

B N—-v+1 - -
PP = " O(—[|7 — 7Y ),
ij=1
_ pPPW — (p—1) - PPUD

DET® . L
PP

The crucial difference between ’PP(”)N and PP is that for the latter the
similarity threshold is zero. In this case PP (*) can be calculated algorithmically
by applying Theoremfor X = #¥ (rather than X = #*). Then DET ") simply
utilizes PP ™) for v = 1, i, 4+ 1 in Theorem

At this point, we emphasize that the approximation method and resulting
approximation errors are based on the discretization only. Once we have dis-
cretized the data and use a threshold that is zero, we apply the results from
Sec. [4] in order to calculate the RQA measures efficiently. Quantifying the dis-
cretized data with the use of a recurrence plot will lead to the exact same result.

An example of a discretization is illustrated in Fig.

Figure 1: The Lorenz attractor (left) from Eq. (12 and its discretization (right) for grid size
parameter § = 2.

5.2. Investigation of the approximation method

We explore the phase space discretization from Sec. [5.I] and its impact on
the approximation of PP™). Recall that we formulated the approximation
procedure as a classification problem.

Denote by (x,y) ~ C(S,T) the situation that z and y are classified as
belonging to class S where they are in fact in class T'. Then, if S means ‘similar’,
there are four classification situations (compare with Fig. [2), namely
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C(=5,~5) C(5.~S) C(s.5) C(=5S)  C(=5,~5)
l__| l__|

" 2 " ZL
t t y

5 x-¢ X » x+e R

Cube no. 0 Cube no. 1 Cube no. 2

Figure 2: Classification situations for « € [1.56,26) and § = 2¢. In this one-dimensional case,
the hypercubes are simply intervals in R. Here, £ = 1 and thus « belongs to the cube no. 1.
For y € R, in fact z and y are similar if y € [z — &, + €], hence « and y are not classified
correctly if y € [§,2 —€) or y € [26,z + €].

(z,y) ~C(8,8) & F=7 and |z -yl <e
(,y) ~C(—=S,mS) & Z#7 and ||z —ylew >e.
(z,y) ~C(S,-S) & T=gy and |z—yl|e >e¢.
(z,y) ~C(=S,S) < ZT#7 and [z -yl <e.

For ¥ we conclude the following observations.

L. If for each pair (z7,2}) ~ C(S,S) or (&/,7%) ~ C(=S,=S), then clearly
PP = PP However,

2. if (27, 7Y) ~ C(=5, S), the similarity of (27, 7?) increases PP™ . but not
PP®); and

3. if (&7, 2%) ~ C(S,~9), the dissimilarity of (77,7%) increases PP®), but
not PP,

Therefore these two types of errors satisfy a mutual cancelling property, and if
the number of C'(=S, S)-errors equals the number of C(S, —5)-errors, then even
PP = PP follows.

From these considerations we establish the choice of § = 2¢.

5.2.1. The discretization parameter 0

The grid size J of the discretization determines which elements are classified
as similar and thus has to be chosen carefully. If we make no further assumptions
to the data, by intuition 6 = 2¢ is a reasonable choice since the similarity
diameter in phase space is 2¢, and moreover the different error zones have exactly
the same measure (see Fig. [2). This also means that § = 2¢ is optimal and
leads to nearly zero approximation error if the values of the time series x are
independent uniformly distributed (on an appropriate interval). Note that e > 0
was supposed implicitly since § > 0 is required in Eq. . If e = 0, then no
discretization is applied, and in fact not necessary since from Theorem [I] follows
that the exact quantity PP can be calculated efficiently. Let us now discuss
the algorithmic details.
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5.2.2. Algorithms

The previous findings are used to provide algorithms for the calculation of
the approximations from Definition I} and in case of € = 0 for fast calculation of
the exact measures PP*) and DET™ . Since the methods for fast processing of
the approximations and the exact terms are identical, for € = 0 we now denote
2V := 7 and state algorithms for PP *) and DET (), given an arbitrary € > 0.

As already observed in Sec. it is enough to find the histogram hx of
the (discretized) sequence of trajectory embedding vectors X := Z¥, since then
PP is given by

PPW = (hx () (9)
yeY
where Y is again the set of unique members of X. Technically, this may be
achieved by assigning unique identifiers to the elements in X, i.e., we are inter-
ested in integers Ji,..., Jy_,+1, such that
S

=3 & Ji=J; foralli,j,

K2

and charge the histogram of these identifiers (compare with Algorithm . The
calculation of DET® is presented in Algorithm Finally, the efficiency of
these procedures is argued in section [5.2.3

Recall the designations. For more clarity, we eliminate the vector arrows in
the algorithms, i.e., x := & is the trajectory of length N, € > 0 is the similarity
threshold, p the minimum diagonal line length, v is the trajectory embedding
dimension and z” := 7" is the matrix that consists of the rows z} := &7,
7 =1,...,N —v+ 1. We emphasize that the algorithm is not restricted to
one-dimensional trajectories x, provided appropriate implementation. In Sec. [f]
we provide MATLAB® code that handles multi-dimensional data.

Algorithm 1 Fast calculation of P~P(U) (or PP™) if ¢ = 0)

1: procedure PParpPrOX(z, ¢, V)
2 if e =0 then > No discretization, method is exact.
3 T+
4: else > Discretization of phase space, Eq. .
5: 8+ 2
6: T ‘I’g(l‘)
7 end if
8: Z"” < apply trajectory embedding(z, )
9: J=(J1,...,JN—vy41) ¢ find_unique_row_IDs(z")
10: h < histogram(J)
11: PP « 3, h?

12: end procedure

5.2.8. Complezity analysis
Denote by O, and Oy the computational and space complexity respectively.

Theorem 3. Let v and u € N be fized choices of the trajectory embedding
dimension and the minimum diagonal line length, respectively.



Algorithm 2 Fast calc. of pET™ (or DETW) if ¢ = 0)

1: procedure DETAPPROX(z, €, 1)

2 PP « PPapprox(z,e,1)

3 PP « PPapprox(z, ¢, i)

4: PP*ED  PPapprox(z,e, p+ 1)

5 DET™ « (u-PPW + (u—1). pptD)/ppt)
6: end procedure

2a (i) The compleity classes of the approzimations PP™) and DET ™) are O,(N log(N))
245 and OS (N)

s (i) If e = 0, then the exact terms PPY) and thus the ezact RQA-measures
247 RR and DET™ are in the complexity classes O.(N log(N)) and O4(N),
248 given an arbitrary phase space norm || - ||.

20 PROOF. We investigate the complexity of Algorithm[I} The complexity class of
a0 Algorithm [2]is clearly identical.

251 (i) It is easy to verify that the operations in lines 2-8 are in O.(N) and
a2 O5(N). The main cost is taken by line 9. One way to find unique identifiers for
2sa the rows of Z¥ is based on sorting the rows lexicographically. Provided a one
asa  dimensional sorting algorithm that operates in O.(Nlog(N)) and O4(N), e.g.,
255 QuickSort, the computational complexity of sorting the rows lexicographically
26 15 in O (Nvlog(N)) [21]. Then incrementally each row Z¥ is assigned to an ID
257 J; in O.(1), leading to a complexity of O.(N) for the assignment step. Since
2ss U Is constant, the overall complexity in line 9 is O.(Nlog(N)). In line 10 it
25 1is enough to incrementally count equal entries in J, giving O.(N). Finally the
260 complexity in line 11 is O.(N) since n < N, where n is the length of the vector
201 h. Altogether the dominating complexity classes are O.(N log(N)) and O(N).
262 (i) Let & = 0. Determine PP using Algorithm [1|and set RR = PPY) /N2,
263 Compute DET using Algorithm [2| By Theorem [1] and [2] these expressions
2a  coincide with the exact RQA-measures. As already mentioned in Sec. 2] if
26s ¢ = 0, then the identities hold for an arbitrary phase space norm since each
266 norm only indicates whether two elements in phase space are equal. The claim
267 on the complexity classes is proven in the first part. U

268 We remark that sorting the rows lexicographically is not the only possibility.
260 One could, for instance, use a hash function that maps the embedding vectors
270 to R in order to get the identifiers for the embedding vectors and then apply a
271 simple one-dimensional sorting algorithm to find the histogram incrementally.
272 However, such hash functions do not guarantee unique identifiers since they are
273 not injective in general.

27a 5.2.4. Worst case error

275 As shown in Theorem [3] if € = 0, then PP can be calculated exactly and
276 efficiently. If € > 0, the approximation PPW) of PPY satisfies the following
277 estimates.

10
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Theorem 4. Let £ > 0 and § = 2¢. In d-dimensional phase space it holds

Z%PP(") <PPW < 2Wpp®),

PROOF. Denote m = dv. The lower bound is reached if the number of C'(—S, S)-
errors is maximal. Let 7 be a vertex of the discretization lattice. In m-
dimensional space there are 2™ adjoint hypercubes surrounding 3. Hence it is
possible to place 2™ points Z;, each in another cube, such that || — Z||e < €/2
for all 7. It follows that ||#; — |l < € for all 4,j. Hence each pair (Z;,Z;)
is similar, but by construction classified as dissimilar if i # j. In this case we
have PP = (27)2 and PP = 2™ The argument is finished since placing
additional points only leads to a reduction of the number of C(=S, S)-errors.
The upper bound follows in a similar manner by producing errors of type
C(S,~9). O

By now the bounds are shown to be existent (hence the theorem is true)
but not that they are sharp. One would have to show that there is a trajectory
whose embedding vectors are constructed as above. For v = 2 and d = 1 an
appropriate trajectory is given by Z = (1,1, —1, —1, 1), where n < £/2. The four
resulting trajectory embedding vectors of & satisfy the above construction. For
general v and d this becomes more technical, but we think that this investigation
is unnecessary at this point. It is more interesting how the approximation error
behaves empirically.

5.2.5. Empirical approximation error

As seen in Sec. the bounds of the approximation error of PP ™) are
rather large and monotonic in v. However, the constructions given in the proof
of Theorem [4] to reach these bounds are very specific. B B

In this section we study the approximation errors of PP*) and DET (#)
empirically. For this sake the relative mean errors of 100 realizations, designed
as follows, are determined. For each experiment the autoregressive process
Z=(z1,...,2N), with

Ti=ar;1+by, i=2,...,N (10)

is generated for N = 1000 time steps, where 1 = 0, a,b are fixed values
that are chosen randomly independent uniformly distributed on [0,1] and 7 is
a vector of Gaussian white noise. Then the approximations are determined by
the algorithms from section and the exact quantities PP and DET ™)
are calculated by the classical method in order to specify the accuracy of the
approximations. The results are illustrated in Fig. [3| for several combinations
of v (resp. p) and e, where the height of the bars corresponds to the mean
error and the color of the bars corresponds to the value PPY) and DET®),
respectively. It is customary to select € as a few percent of the phase space
diameter [I} [22], which in this case is given by range(Z) = max (%) — min(Z).

11
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We observe that the approximation errors are basically increasing in v (resp.
p) and e. However, most of the combinations of v (resp. ) and e have little
relevance. First, if € is small and v (resp. p) is large, the probability to find
recurrences is low. Consequently the bars in Fig. 3| (a) are of deep blue color.
Therefore the low error in this area is an artefact. Conversely, if v (resp. p)
is small and ¢ is large, too many recurrences are found, resulting in red colors.
Reasonable choices of v (resp. p) and e are indicated by colors in the range
from blue-green to orange-red in Fig. 3] (a).

As an example, assume that we want to determine the recurrence rate and
the determinism of the trajectory . For the calculation of the determinism, a
minimal line length of p = 2 is sufficient, because for the autoregressive process
we do not expect much effect of tangential motion or sampling [I]. Then for
all sensible values of €, i.e., from 0 to 8 percent of the range, we obtain mean
approximation errors below 1.4% for the recurrence rate and below 2.7% for the
determinism.

It should be noticed that we have investigated one-dimensional trajectories
Z that are not reconstructed by time series embedding. However, the trajectory
embedding of dimension v can also be imagined as time series embedding if we
postulate that & is the time series and ¥ is the trajectory, which is obtained
from Z by time series embedding with time delay 1 and embedding dimension
v. Then Fig. |3| (a) reflects the approximation errors of the recurrence rate
of &, which is given by PP /(N — v + 1)2. The essence of this technical
point of view is that the approximation errors increase if the dimension of the
trajectory increases. We also observe this in the experiment from Sec. [6] for the
3-dimensional Lorenz attractor, see Tab.

6. Execution Time of Algorithm

We compare the execution times of PP and its approximation PP on a
consumer computer (2.3 GHz Intel Core i7 quad core processor, 16 GB 1600 MHz
DDR3 RAM). Since execution times do not only depend on the algorithm, but
also on the implementation, we provide MATLAB® code. Note that, however,
this code uses standard MATLAB® routines and may be strongly optimized by
the MATLAB® compiler.

We evaluate two systems, the autoregressive process

r1 =0, x;=0.57z;,_1+0.24n;, ¢=2,...,100.000.000 (11)
and the well known 3-dimensional Lorenz system (see Fig.
t=aly—z), y=azlb-2)-y, ,i=wy—cz (12)

for the parameters a = 10,b = 28,¢ = 8/3. Then these systems are truncated
according to the values of N as listed in the tables of results, Tab. [[]and [2} and
processed by the routines. The threshold ¢ was choosen for each N separately
as 7% of the phase space diameter and no embedding is applied, i.e. m =1 in
the following MATLAB® function.

12
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of the embedded trajectory . The bar color in Figure (b) reflects the exact determinism
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Figure 4: Example from the transition experiment. The system of the upper plot is generated
as described in Sec. @ The lower graphic shows the window-wise determinism sequence D
(red) and its approximation D (blue). The dashed lines are the confidence levels.

MATLAB® code for PP.

function pp = PPapprox( x, eps, m)
[N,d] = size(x);

if eps > 0 % discretize if eps > 0
x = floor(x/(2*xeps));
end
X = zeros(N-m+1,d*m) ; % apply trajectory embedding

for i = 1:m
X(:,d*x(i-1)+1:d*1i) = x(i:N-(m-1),:);

end
[u,”,iu] = unique(X,’rows’); % find row ID’s iu
h = hist(iu,size(u,1)); % find histogram of row ID’s

pp = sum(h."2);
% end of function PPapprox

MATLAB® code for PP.

function pp = PP( x, eps)

R = pdist2(x,x,’chebychev’) <= eps; % calculate recurrence plot
pp = nnz(R); % count non zeros

% end of function PP

Since the available memory on the computer was 12 GB, we limited the data
size for the exact measure PP. Indeed a single recurrence plot for N = 40.000
consumes about 12 GB of RAM, provided double precision and no storage op-
timization. For N = 100.000 even about 75 GB of memory would be required.

14
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N Execution Time PP (sec.) | Execution Time PP (sec.) | Approximation Error
100 0.0552 0.0005 0.0275
1.000 0.0078 0.0005 0.0104
10.000 0.9058 0.0018 0.0098
20.000 3.7314 0.0158 0.0098
30.000 8.3865 0.0233 0.0096
35.000 13.7078 0.0131 0.0092
100.000 - 0.0169 -
1.000.000 - 0.1912 -
10.000.000 - 2.2587 -
100.000.000 || - 28.5899 -

Table 1: Mean execution times obtained from 10 realizations of the Autoregressive processs
(11). The approximation error is again the mean over the relative errors |[PP — PP|/PP.

N Execution Time PP (sec.) | Execution Time PP (sec.) | Approximation Error
100 0.0513 0.0009 0.0471

1.000 0.0077 0.0006 0.3655

10.000 0.9071 0.0052 0.2885

20.000 3.7200 0.0074 0.2646

30.000 8.2962 0.0117 0.2746

100.000 - 0.0396 -

1.000.000 || - 0.3645 -

Table 2: Mean execution times obtained from 10 realizations of the Lorenz system (12). The
approximation error is again the mean over the relative errors |[PP — PP|/PP.

The results give numerical evidence for the complexity we have proved in The-
orem (3| and reflect the large difference between O(N?) and O(N log(N)) for
increasing N. For example the ratio of execution times for the autoregressive
process with N = 35.000 is about 1.046. Moreover, the algorithm is very fast for
extreme large data and the approximation error decreases slightly with growing
N. In Tab. 2] the small approximation error for N = 100 is due to the short
and hence almost linear attractor. As expected, the other errors of the Lorenz
experiment are higher since the attractor is 3-dimensional.

7. Application to transition detection

7.1. Introduction to the problem

Assume that we are given a time series or a stream z = (21, 2, 3, ... ) which
changes its dynamics at unknown time segments. It has been shown that the
determinism DET® is able to find these periods [, [6, 23]. For this, the time
series is analyzed window-wise for a window size w and step size s, leading to a

15
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sequence D of determinism-values. More precisely, D(j) contains the determin-
ism of the sub-sequence (zs.j, ..., Zs.jtw—1), J = 1,2,3,... . A transition in the
dynamics is indicated when the system leaves its typical dynamical behaviour,
in this case its typical range of the window-wise determinism values [6]. The
bounds of this range are referred to as confidence levels. An example of a graph
of D is illustrated as red line in Fig. In the gray marked area the system
from the upper plot changes its dynamics (details in Sec. and consequently
D exceeds its upper confidence bound, which is represented by the dashed red
line. _

In this section we compare our proposed approximation DET (*) to the exact
measure DET(#) for the problem of identifying transition times. Again, we
consider a minimal line length of u = 2. It remains to select €. For each window
€ is determined separately such that the recurrence rate is a small fraction,
e.g., 0.1 [6]. This leads to a constant (in time index ) denominator in Eq.
accentuating the behaviour of the changes in P(1).

7.2. Design of the experiment with autoregressive data

The experiment is inspired by [6]. We evaluate 100 realizations employing
autoregressive processes of order 2,

T = ari—1 — bxi_o + cn;.

The test time series is initially generated for x1 = 22 = 0 and a = 1.8,b =
0.972, ¢ = 0.64 for 1300 time steps. Then the parameters change for a period of
500 time steps to a = 1.85,b = 0.917,¢ = 0.76. Finally the system returns to
the initial parameters and stops at time step 3500. The resulting time series x
is then analysed for a window size w = 400 and step size s = 25.

In the exact case D contains the values of DET(?), where ¢ is chosen such
that the recurrence rate PP Jw? is 0.1. In the approximative case D contains
the values of DET(Q), where ¢ is chosen such that the approximate recurrence
rate PP 1) /w? is 0.1.

In order to find the upper confidence level, we assume that the system with
initial parameters is observed for N = 100000 time steps and the distribution
of the (approximate) determinism values for the windows is charged. We choose
as transition level the 99.95%-quantile of those distributions, leading to a con-
fidence level of 0.4425 for DET(®) and 0.4523 for DET(®). For the evaluation
the time points of exceeding and falling below these levels are compared to
the actual transition time at 1300 and 1800. The results reveal that our fast
approximation performs as well as the slow exact method (Tab. .

7.3. Transitions in the logistic map

We briefly illustrate that the approximate determinism DET is also able to
find transitions in the logistic map

1 =07, =z =azi(l— ),

16
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Measure | Left transition error Right transition error
DET® | 61.25 64.75
DET® | 85.00 45.50

Table 3: Mean transition errors obtained from 100 realizations as described in Sec. The
left /right transition error is defined as the absolute deviation from time index 1300/1800.

L L L L L L L L L
3.6 3.62 3.64 3.66 3.68 3.7 3.72 3.74 3.76 3.78 3.8
Control parameter a

u

0.6

|
el \ km- y
Wl N i) WS

1 1 1 1 1 1 1 1 1
.6 3.62 3.64 3.66 3.68 3.7 3.72 3.74 3.76 3.78 3.8

Control parameter a

Figure 5: Bifurcation diagram of the logistic map and its dynamics. We observe multiple
chaos-period transitions that are found by both measures, DET (red) and DET (blue).

with control parameter a in the range [3.6,3.8]. In the experiment we observed
that the quality of the approximation is sensitive to €. We found that a rather
small threshold is beneficial. More precisely, we selected € for each a separately
such_that the recurrence rate resp. the approximate recurrence rate is 0.01.
Fig. 5| confirms that DET has the capability to find dynamical transitions.

8. Other RQA measures

Using PPW it is possible to specify identities for other diagonal line based
RQA-measures. Detailed analysis of those is out of the scope of this work, but
we briefly state the formulas in this section. In the following equations the left
hand side is the classical definition and the right hand side is the identity in
terms of PP™). As before, w1 denotes the minimum diagonal line length, the
phase space norm is | - || and the LOI is included unless otherwise stated.

For the ratio RATIO™ between DET and RR, we get

17



N? 2oz PW) =N pPP™ — (u— 1)27373(““).
(le1lp(l)) (PP(”)
Due to Eq. , the averaged diagonal line length L) i given by
S P yPPW — (u— )PPt

ZlZu P(l) ppw) _ pplutl)

and the length of the longest diagonal line L.« (excluding the LOI i.e., P(N) :=
0), determined by

)

max{l | P(I) # 0} = min{v | PP = N —v 41} — 1,

can be found by binary search in O(log(N)) iterations since v — PP is
monotonically decreasing.

Finally we should remember that these expressions can be calculated ex-
actly and efficiently if ¢ = 0; and in case of € > 0 the measures can be ap-
proximated efficiently by replacing PP by PP. In both cases Algorithm
determines the pairwise proximity measures efficiently. For L. the resulting
computational complexity is O(N log?(N)). All other approximative measures
are in O(N log(NN)), whereas the complexity of the classical measures is O(NN?)
[11].

9. Conclusions

We have shown that the recurrence rate and many diagonal line based RQA-
measures can be calculated efficiently, i.e., in O(Nlog(N)) if the similarity
threshold ¢ is zero. For the case ¢ > 0 we have introduced approximations
to these measures that are based on phase space discretization and a relation
between the histogram of the diagonal line lengths P(l) and the introduced
pairwise proximity measures of trajectory embeddings. For small embedding
dimension v or minimum diagonal line length p the proposed approximations
are very close to the exact quantities in our experiments with one-dimensional
data, while execution times and memory consumption are significantly lower.
However, we recommend to compare the approximations to the exact measures
on the data of interest before doing serious RQA with it. In particular, if the
trajectory is multi-dimensional the approximation error may increase. We also
recommend to keep € as small as possible since it determines the grid size of the
discretization. Of course a small grid size leads to a gentle discretization and
hence to low approximation errors.

In future work it should be investigated whether data-adopted discretization
lattices are able to improve the approximation accuracy. It is also interesting
if there are conditions under which the ratio DET (Z)/DET(Z) stays stable
(nearly constant) in changing #. Of course, if the approximation error is small
this stability is present, but if the error is large, this stability would still allow
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us to compare dynamics rather than determine dynamics, which is sufficient for
many applications, e.g. transition detection.
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10. Appendix A - Proof of the Determinism Identity

PROOF OF THEOREM [2l Let & = (#1,...,Zn) be a d-dimensional phase space
trajectory (d € N) of length N and the similarity threshold ¢ > 0 as well as
the minimum diagonal line length p € N be given. Assume that || - || is the
underlying phase space norm, i.e., the recurrence plot of Z is given by

Ri,j:@(s_”fi_fj”oo); i,j:].,...,N,
and for all ¥ € N the pairwise proximity measures PP are defined as

N—v+1
PPY =% O~ 17 - llo)-
i,j=1

By definition it holds Zf\fj:l R;; = PPW | thus we have to show that the

numerators in Eq. @ are equal. We show

N
S0Pl =PPW 4 (- 1) - (PPW — ppUtD),
l=p

which gives additional insights into the relation between P(l) and PP (7). For
this, we define the following index sets.

1" ={(i,5) | ©(e = |7 = ¥loc) = 1}

-1 l

L={(0,4) 1 Y0 = |witk — zjpklloc) = Y O = [lzish — zj4kllo0) =1}
k=0 k=-—1

J={G+kji+k)| (5 el, k=0,...,1—1}

I;L:I“ﬁjl

I* contains exactly the index pairs (i, j) such that @' and 56’5 are similar,
thus PP is already determined by PP = Ppem O =17 — 7).

I; is the set of index pairs (4, j) such that there is a diagonal line of exactly
length [ in R starting at (4, j), thus P(l) = |I;|.

Jy is the set of index pairs (i, 7) that exactly cover all diagonal lines of length
lin R,ie., - P(l)=|J.

Denote 0, = O(e — ||&i+k — Zj1+k|/00), then the relation between I}* and I; is
described by
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573

574

(i,j)el, & 6.1=0,=0 and O(c— [Tk —Tjrrllec) =1 forallk=0,...
& 0a=0,=0 and O(c— &}, -7, /) =1 forallk=0,...
l—p
= 0—1 = 9[ =0 and @( sz-{-k ;‘J,-kHOO) =] — w+ 1
k=0
(13)
& (i+kj+k) el forallk=0,...,1—p. (14)

Moreover, note that by construction I;'NIj) =@ for I #ly and Uis, II' =
I*: B

Iﬁﬁ[{; = (I*NnJ)NnI*NJy,) C (Jy,NJy,) = 0 for ly # g, (15)
UI;‘:UJHmJl:ﬂmUJl:I“. (16)

Z>p Z>p >

Now we have collected all relations to begin the actual proof. Since

l,u

3 @ 3 — 17 = #yill)
|Il| 1 l )
7u+1

(4,9)€n (1,9)€n

we get

l—p
(—p+1)PO) = > > O -7y — 7 o)

(i,5)€l, k=0
and therefore
l—p

SU-pn+DPH =3 3 S 06— |, — )
1> I>p (i,j) €D k=0

(14) . o

= O(e — |7} — 7 l)

I>p (i,5)ell
(15)

= O(c — 17 — lloo)
(19)€Uyz,, If
pRCICE A
(i,5)el#
=ppW.
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s7¢ Rearranging this equation leads to

S 1P =PPW + (n—1))_ P(),

>p I>p

s7z and it remains to show that

PPW — PPt =3 " P().

>p

sz But this already follows by applying for p and p+ 1:

(17)

PPE —PPE) = S IP() — (u—1) S P) - ( S Pl —p > PO)

I>p Z>p I>p+1

I>p >p

=> P().

>p

Z>p

=Y 1P~ (u—1)>_ P() - (Z IP(l) — pP(p) — p Y P(1) + pP()
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11. Appendix B - Example

Assume that we want to compute the determinism of the sample trajectory
Z = (0.5, 0.8, 0.4, 0.6, 0.8, 0.4, 0.9), given a similarity threshold ¢ = 0.1. First
we consider the recurrence plots

) ._ v U o) >y >y
Ry =0 —|l77 — ), R;j =07 —7l) (18)

of the embedded |) trajectory 2 and its discretization ¥ = Os5(2), where § =
0.2 (see and Sec. . The embedded trajectories and the corresponding
recurrence plots are illustrated in Fig. [6] for several embedding dimensions v =
1,2, 3 in black, blue, and orange color, respectively. For example the recurrence
plots for v = 2 comprise the recurrences marked by blue color, the black only
highlighted entries are no recurrences for v = 2. _

For v =1 (write R = R(l)) we observe that Ry 4 = 1, but R1 4 = 0. That
means the pair (0.5,0.6) is similar, i.e.,

0.5—0.6) =0.1<e,

but classified as dissimilar:

0.5 0.6
®5(0.5) = {O.QJ =2#3= {O.QJ = ®;5(0.6).
Due to symmetry the pairs (0.5,0.6) and (0.6,0.5) lead to C(S, ~.S)-errors (see
section . For all other pairs the classified and actual similarity statements
coincide.

Recall that the determinism is the ratio between the number of points on
diagonal lines and all points in the recurrence plot. For the non-embedded
trajectories © = ¥' and & = ¥' we obtain by counting the structures in the
recurrence plots:

17 ~ 15
DET® = 57 ~ 081, DET® = 5 ~ 079, (19)

Of course we have calculated the approximation inefficiently by employing
the recurrence plot R. Using Theorem [2| and Algorithm [1| we may compute
DET® algorithmically: .

Following Algorithm |1f we assign unique identifyers to the rows of ”. Note
that in Fig. |7] the 2¥ are transposed, hence in this case we are interested in
unique columns. The histograms of the identifyers (col ID) are charged and
due to Theorem [l we calculate (compare with Fig. [7))

o PP =32 432 +12=19
¢ PP =22422 412412 =10

e PP =12 412412412412 =5
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s0o Finally, using Deﬁnition (which is based on Theorem we get the same result
s10 as before in Eq. :

2.PP@ —(2-1)-PP® 15

DET® = - = — ~0.79.
PP 19
05|08|04|06]|08 2 a4 2 3 4
_xz 08|04|06|08|04 23 4 2 3 4 2
04|06|08|04]|09 2 3 4 2 4
B 05|08|04|06(08|04 ~7 2 a4 2 3 4 2
X~ X
08|04|06|08|04]09 4 2 3 4 2 4
3 2 1 Io,s|oa|04105|os|o.4|0.9| “'3 2 !

X X X X X X 24|23 |al2]a
05|08 |04 05|08 H 1 1 1 1 2 a4 2 2 4 n 1 1 1
08 (04|06 08 |04 m 1 1 1 a4 2 3 4 2 1 1 1
04 (06|08 04|06 1 1 1 2 3 a4 2 3 n 1 1 1
06 (08|04 06|08 m 1 1 3 a4 2 3 4 n 1
080409 08 |04 m 1 1 1 a4 2 a4 4 2 1 1 1

04 |09 m 1 1 1 2 a4 n 1 1 1
m 1 1 1 1 1 1
(a) R™) : RPs of trajectories . (b) R : RPs of discretized trajectories
Zv
x

Figure 6: Recurrence Plots (RPs) of the recurrence matrices from Eq. for v = 1,2,3,
illustrated in black, blue, orange, respectively.
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Figure 7: Histograms of trajectory embedding vectors.
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