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Abstract

Given a trajectory of length N , recurrence quantification analysis (RQA) tra-
ditionally operates on the recurrence plot, whose calculation requires quadratic
time and space (O(N2)), leading to expensive computations and high memory
usage for large N . However, if the similarity threshold ε is zero, we show that
the recurrence rate (RR) and many diagonal line based RQA-measures, e.g., the
determinism (DET ), can be obtained algorithmically taking O(N log(N)) time
and O(N) space. Furthermore, for the case of ε > 0 we propose approximations
to the RQA-measures that are computable with same complexity. Experiments
with autoregressive systems show that the approximation error is small if the
dimension of the trajectory and the minimum diagonal line length are small.
When applying the approximate determinism to the problem of detecting dy-
namical transitions we observe that it performs as well as the exact determinism
measure.

Keywords: Recurrence quantification analysis, Recurrence plot, Determinism,
Approximation, Phase space discretization

1. Introduction1

Recurrence quantification analysis (RQA), i.e., the quantification of struc-2

tures in recurrence plots [1], has established in several fields of research as a3

powerful tool to investigate recurrence related properties of complex dynamical4

systems [2]. The popularity of RQA is founded in its simplicity and flexibility5

to be applied to almost any type of data, including non-stationary processes6

[3]. In particular the outstanding role of the RQA-measure determinism (DET)7

has been demonstrated in several applications, including discriminating signals8

from noise [4], detecting dynamical transitions [5, 6], and the recently proposed9

use for pattern mining and classification [7]. A comprehensive overview of re-10

currence plots and its applications is given in [1].11
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The computation and quantification of recurrence plots generally involves12

operations with quadratic time and space complexity (O(N2)). This computa-13

tional complexity leads to strongly increasing computation times and memory14

consumption for long time series (longer than 100,000 data points). Recurrence15

analysis of long time series, such as audio data [8], epileptic seizures [9], material16

damage detection [10], or hourly weather variability [11], is, therefore, limited.17

Another application that can be limited by the high computational complexity18

is online monitoring of data streams, e.g., for video surveillance [12], monitoring19

social interactions [13], or assessing driving behavior [7]. Parallel computing20

approaches (e.g., using GPU calculations [11, 14]) can accelerate computation21

but do not reduce the computational complexity.22

In this letter we show the following. If the similarity threshold ε is zero,23

then the recurrence rate and many diagonal line based RQA-measures, e.g., the24

determinism, are in the computational complexity class O(N log(N)), whereas25

space complexity is O(N). We use this observation in order to propose approxi-26

mations to these measures for the case of ε > 0. The (approximative) measures27

are obtained algorithmically, without having to calculate the recurrence plot.28

2. Motivation29

Recent work has introduced recurrence plot-based distance measures, which30

can be utilized for mining (multi-dimensional) time series with nonlinear dynam-31

ics [15, 16]. However, the quadratic time and space complexity of computation32

and quantification of recurrence plots makes distance calculations for relatively33

long time series and online processing of fast time series streams intractable.34

For these purposes we aim to approximate the proposed recurrence plot-based35

distance measures in such a way as to reduce the computational complexity36

while maintaining the classification accuracy.37

3. Recurrence quantification analysis38

For a given d-dimensional phase space trajectory ~x (reconstructed from a39

time series x, e.g., by time-delay embedding [17]) of length N and similarity40

threshold ε ≥ 0 the recurrence plot of ~x is an illustration of the binary recurrence41

matrix R, given by42

Ri,j = Θ(ε− ‖~xi − ~xj‖), i, j = 1, . . . , N,43

where ‖·‖ is a norm in the phase space of ~x and Θ is the Heaviside step function,44

defined by Θ(y) = 1 if y ≥ 0 and Θ(y) = 0 if y < 0. Thus Θ indicates whether45

~xi and ~xj are in ε-proximity (also denoted as similar) or not, i.e., Ri,j = 146

if ‖~xi − ~xj‖ ≤ ε and Ri,j = 0 if ‖~xi − ~xj‖ > ε. This relation is essential for47

the study of recurrence plots and will be used extensively in this letter. The48

recurrence plot contains the line of identity (LOI), which means that each entry49

on the main diagonal ofR is 1. Structures parallel to the main diagonal, referred50
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to as diagonal lines, are caused by similarly evolving epochs of the phase space51

trajectory ~x.52

Recurrence quantification analysis was developed in order to quantitatively53

describe recurrence plots. For this purpose, small scale structures, such as54

recurrence points or diagonal lines in the recurrence plot are used [18]. The55

fraction of recurrence points in the recurrence plot is measured by the recurrence56

rate,57

RR =
1

N2

N∑
i,j=1

Ri,j , (1)58

which is interpreted as the probability to find a recurrence of trajectory ~x. A59

more sophisticated RQA-measure is the determinism, which is defined for a60

given minimum diagonal line length µ as61

DET (µ) =

∑N
l=µ l · P (l)∑N
i,j=1Ri,j

, (2)

where P (l) is the number of diagonal lines of length l in R. DET can be62

interpreted as the probability that a recurrence point belongs to a diagonal63

line. The parameter µ is usually set to 2. This choice is sufficient for most64

applications. However, in particular cases, larger values of µ can be necessary,65

e.g., reducing effects of tangential motion (oversampling), noise, or embedding66

effects [1].67

As already mentioned, a phase space trajectory of a univariate time series68

can be reconstructed by time delay embedding [17]. We call this procedure time69

series embedding, since it is applied to the time series. In the sequel we will70

apply the method of time delay embedding to the trajectory ~x (that possibly71

was created by time series embedding for reconstruction purposes), but with72

the intention of quantifying diagonal structures in R. In order to distinguish73

that from the time series embedding, we will denote this as trajectory embedding.74

More precisely, for a fixed time delay 1 and embedding dimension ν, we consider75

the trajectory embedding vectors76

~xνj = (~xj , ~xj+1, . . . , ~xj+ν−1), (3)

which are of dimension d·ν, provided that the trajectory ~x is d-dimensional. The77

trajectory embedding of ~x is then defined to be the sequence ~xν = (~xνj )j=1,...,N−ν+1,78

which can be imagined as a trajectory in a (d · ν)-dimensional phase space. In79

Sec. 4.2 we show that information about P (l) can be extracted by these repre-80

sentations leading to a surprising identity for the determinism.81

4. RR and DET identities82

We deduce identities for RR andDET (µ), which allow fast calculation (with-83

out computing the recurrence plot) if the similarity threshold ε is zero. The84

identity for RR does hold for ε = 0 only. The identity for DET (µ) is first shown85
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for arbitrary ε ≥ 0 and the assumption that the phase space norm is the maxi-86

mum norm ‖ · ‖∞. However, in the special case of ε = 0, we will argue that the87

restriction to the ‖ · ‖∞-norm becomes redundant. Consequently it follows the88

important fact that the recurrence rate and the determinism are in O(N log(N))89

if ε = 0, whereas the computational complexity of the classical methods that90

quantify the recurrence plot is O(N2).91

4.1. Recurrence rate identity92

Given the trajectory embedding ~xν , Eq. (3), in analogy to Eq. (1) we define93

PP(ν) :=

N−ν+1∑
i,j=1

Θ(ε− ‖~xνi − ~xνj ‖), (4)

the number of pairwise proximities of the elements in ~xν . Note that RR =94

PP(1)/N2 is the recurrence rate of ~x and more general PP(ν)/(N − ν + 1)2 is95

the recurrence rate of ~xν .96

If nominal recurrences [19] are in demand, that is ε = 0, then PP(ν) (and97

thus the recurrence rate RR) can be determined efficiently, i.e., with algorithmic98

complexity of O(N log(N)). In order to achieve this complexity, we employ the99

histogram hX of the trajectory embedding vectors X := ~xν , which is given by100

hX : Y → N, ~y 7→
∑
~x∈X

Θ(−‖~x− ~y‖),

where Y is the set of unique members of X.101

Theorem 1. Let X = ~xν be the sequence of trajectory embedding vectors as102

defined in Eq. (3) and denote by hX the histogram of the elements in X. If103

ε = 0, then104

PP(ν) =
∑
~y∈Y

(hX(~y))
2
. (5)

Proof. First note that a similarity (or proximity) corresponds to an equality105

if ε = 0, that is106

Θ(−‖~xνi − ~xνj ‖) = 1 ⇔ ~xνi = ~xνj .

The claim follows by simple combinatorial arguments. Assume that for ~y ∈ Y107

there are exactly n elements inX that are equal to ~y. Then there are n2 pairwise108

equalities of these n elements, and hence n2 pairwise proximities that increase109

PP(ν) by n2. But n is exactly determined by hX(~y) = n. Taking the sum over110

all ~y ∈ Y yields the claim. �111

Based on this observation we can calculate the right hand side of Eq. (5)112

efficiently. The algorithmic details are discussed in Sec. 5.2.2.113
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4.2. Determinism identity114

For the rest of this letter we choose the phase space norm ‖·‖∞, in particular115

we assume that R and all PP(ν) are obtained for ‖ · ‖ = ‖ · ‖∞. Then there is a116

relation between diagonal lines in the recurrence plot and recurrence points of117

trajectory embeddings. Before we formulate the determinism identity, we will118

give an intuition for the just mentioned relation: For a trajectory ~x let R be119

the recurrence plot. Consider the trajectory embedding ~x2 of ~x of dimension120

ν = 2 and the corresponding recurrence plot R(2). Now, in the maximum norm,121

we have that R(2)
i,j = 1 is equivalent to Ri,j = Ri+1,j+1 = 1. In other words, a122

diagonal line of length 2 in R corresponds to a recurrence point in R(2), which123

is quantified by PP(2).124

Theorem 2. Let µ be a choice of the minimum diagonal line length. For a125

trajectory ~x, let the recurrence plot R and the pairwise proximity measures126

PP(1),PP(µ), PP(µ+1) be obtained for ‖ · ‖ = ‖ · ‖∞. Then for arbitrary ε ≥ 0127

it holds128

DET (µ) =
µ · PP(µ) − (µ− 1) · PP(µ+1)

PP(1)
. (6)

Proof. See Appendix A, Sec. 10.129

In some cases the LOI of the recurrence plot should not be included in the130

histogram P (l), i.e., P (N) is set to zero. Then Theorem 2 holds true with a131

slight modification:132

DET (µ) =
µ · PP(µ) − (µ− 1) · PP(µ+1) −N

PP(1)
.

For further considerations we assume that the LOI is included.133

It is important to discuss the condition on the underlying phase space norm134

that compares the elements in ~x. First of all, the statement from Theorem 2135

only holds for the ‖ · ‖∞-norm. Depending on the application, a specific norm136

may be selected. Usually, the Euclidean norm ‖ · ‖2 is considered, but also the137

maximum norm ‖ · ‖∞ is often used because it is computationally faster and138

allows to study recurrence plots analytically [1]. If ε = 0, then the statement139

holds for all norms since each norm ‖ · ‖ only indicates if ~xi and ~xj are equal,140

i.e., by definition of a norm we have that Θ(−‖~xi − ~xj‖) = 1 is equivalent to141

~xi = ~xj .142

Two observations from the proof of Theorem 2 describing the relation be-143

tween P (l) and PP(µ) are worth mentioning here. Firstly,144 ∑
l≥µ

P (l) = PP(µ) − PP(µ+1), (7)

which is the number of diagonal lines in R of minimal length µ, and secondly145
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PP(ν) =
∑
l≥ν

(l − ν + 1)P (l).

By now, the identity in Theorem 2 does not provide a method to compute146

the determinism efficiently for general ε. However, if ε = 0, then PP(1),PP(µ)
147

and PP(µ+1) can be calculated fast, as argued in Sec. 4.1, and then DET (µ) is148

a simple algebraic computation in terms of these quantities.149

It is worth to mention that the relationship between the length of diagonal150

lines in the recurrence plot and the embedding dimension is of more fundamen-151

tal nature. For example, the K2 entropy can be directly estimated from the152

recurrence plot using the diagonal line lengths [1] instead of the dimension of153

the embedding dimension [20].154

5. Approximation of RQA155

Approximations for RR and DET (µ) are presented that are computable in156

O(N log(N)). These approximative measures are obtained algorithmically, that157

means we do not calculate the recurrence plot. In Sec. 4, we have discussed158

the simplified case of ε = 0, where these measures are in the just mentioned159

complexity class. In this section we study the case of ε > 0, for which we160

propose a phase space discretization approach in order to approximate PP(ν).161

The discretization will generate the situation of a zero threshold, which allows162

us to apply the results from Sec. 4.163

5.1. Approximation method164

We propose to discretize the phase space for a grid size parameter δ > 0 via165

Φδ : Rn → Zn, ~y 7→ ~̃y :=

⌊
~y

δ

⌋
, (8)

where n is an arbitrary natural number and b·c is the component-wise round off166

operation. Applying Φδ to the trajectory ~x leads to a partition of the phase space167

in hypercubes of size δ. Then we replace the similarity condition ‖~xνi −~xνj ‖∞ ≤ ε168

by affiliation to the same cube, i.e., by the condition ~̃xνi = ~̃xνj . For convenience,169

we formulate this as a classification problem following the rules,170

~xνi and ~xνj are classified as . . .171

(1) similar if Θ(−‖~̃xνi − ~̃xνj ‖∞) = 1.172

(2) dissimilar if Θ(−‖~̃xνi − ~̃xνj ‖∞) = 0.173

This point of view leads to the idea of proposing an approximation of PP(ν)
174

for ε > 0 by replacing Θ(ε− ‖~xνi − ~xνj ‖∞) by Θ(−‖~̃xνi − ~̃xνj ‖∞) in Eq. (4):175
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Definition 1. Let ε > 0. The approximations P̃P (ν) and ˜DET (µ) of PP(ν)
176

and DET (µ) respectively are defined as177

P̃P (ν) :=

N−ν+1∑
i,j=1

Θ(−‖~̃xνi − ~̃xνj ‖∞),

˜DET (µ) :=
µ · P̃P (µ) − (µ− 1) · P̃P (µ+1)

P̃P (1)
.

The crucial difference between PP(ν) and P̃P (ν) is that for the latter the178

similarity threshold is zero. In this case P̃P (ν) can be calculated algorithmically179

by applying Theorem 1 for X = ~̃xν (rather than X = ~xν). Then ˜DET (µ) simply180

utilizes P̃P (ν) for ν = 1, µ, µ+ 1 in Theorem 2.181

At this point, we emphasize that the approximation method and resulting182

approximation errors are based on the discretization only. Once we have dis-183

cretized the data and use a threshold that is zero, we apply the results from184

Sec. 4 in order to calculate the RQA measures efficiently. Quantifying the dis-185

cretized data with the use of a recurrence plot will lead to the exact same result.186

An example of a discretization is illustrated in Fig. 1.187
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Figure 1: The Lorenz attractor (left) from Eq. (12) and its discretization (right) for grid size
parameter δ = 2.

5.2. Investigation of the approximation method188

We explore the phase space discretization from Sec. 5.1 and its impact on189

the approximation of PP(ν). Recall that we formulated the approximation190

procedure as a classification problem.191

Denote by (x, y) ∼ C(S, T ) the situation that x and y are classified as192

belonging to class S where they are in fact in class T . Then, if S means ‘similar’,193

there are four classification situations (compare with Fig. 2), namely194
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Figure 2: Classification situations for x ∈ [1.5δ, 2δ) and δ = 2ε. In this one-dimensional case,
the hypercubes are simply intervals in R. Here, x̃ = 1 and thus x belongs to the cube no. 1.
For y ∈ R, in fact x and y are similar if y ∈ [x − ε, x + ε], hence x and y are not classified
correctly if y ∈ [δ, x− ε) or y ∈ [2δ, x+ ε].

(x, y) ∼ C(S, S) ⇔ x̃ = ỹ and ‖x− y‖∞ ≤ ε.
(x, y) ∼ C(¬S,¬S) ⇔ x̃ 6= ỹ and ‖x− y‖∞ > ε.

(x, y) ∼ C(S,¬S) ⇔ x̃ = ỹ and ‖x− y‖∞ > ε.

(x, y) ∼ C(¬S, S) ⇔ x̃ 6= ỹ and ‖x− y‖∞ ≤ ε.

For ~xν we conclude the following observations.195

1. If for each pair (~xνi , ~x
ν
j ) ∼ C(S, S) or (~xνi , ~x

ν
j ) ∼ C(¬S,¬S), then clearly196

P̃P (ν) = PP(ν). However,197

2. if (~xνi , ~x
ν
j ) ∼ C(¬S, S), the similarity of (~xνi , ~x

ν
j ) increases PP(ν), but not198

P̃P (ν); and199

3. if (~xνi , ~x
ν
j ) ∼ C(S,¬S), the dissimilarity of (~xνi , ~x

ν
j ) increases P̃P (ν), but200

not PP(ν).201

Therefore these two types of errors satisfy a mutual cancelling property, and if202

the number of C(¬S, S)-errors equals the number of C(S,¬S)-errors, then even203

P̃P (ν) = PP(ν) follows.204

From these considerations we establish the choice of δ = 2ε.205

5.2.1. The discretization parameter δ206

The grid size δ of the discretization determines which elements are classified207

as similar and thus has to be chosen carefully. If we make no further assumptions208

to the data, by intuition δ = 2ε is a reasonable choice since the similarity209

diameter in phase space is 2ε, and moreover the different error zones have exactly210

the same measure (see Fig. 2). This also means that δ = 2ε is optimal and211

leads to nearly zero approximation error if the values of the time series x are212

independent uniformly distributed (on an appropriate interval). Note that ε > 0213

was supposed implicitly since δ > 0 is required in Eq. (8). If ε = 0, then no214

discretization is applied, and in fact not necessary since from Theorem 1 follows215

that the exact quantity PP(ν) can be calculated efficiently. Let us now discuss216

the algorithmic details.217
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5.2.2. Algorithms218

The previous findings are used to provide algorithms for the calculation of219

the approximations from Definition 1; and in case of ε = 0 for fast calculation of220

the exact measures PP(ν) and DET (µ). Since the methods for fast processing of221

the approximations and the exact terms are identical, for ε = 0 we now denote222

~̃xν := ~xν and state algorithms for P̃P (ν) and ˜DET (µ), given an arbitrary ε ≥ 0.223

As already observed in Sec. 4.1 it is enough to find the histogram hX of224

the (discretized) sequence of trajectory embedding vectors X := ~̃xν , since then225

P̃P (ν) is given by226

P̃P (ν) =
∑
~y∈Y

(hX(~y))2, (9)

where Y is again the set of unique members of X. Technically, this may be227

achieved by assigning unique identifiers to the elements in X, i.e., we are inter-228

ested in integers J1, . . . , JN−ν+1, such that229

~̃xνi = ~̃xνj ⇔ Ji = Jj for all i, j,

and charge the histogram of these identifiers (compare with Algorithm 1). The230

calculation of ˜DET (µ) is presented in Algorithm 2. Finally, the efficiency of231

these procedures is argued in section 5.2.3.232

Recall the designations. For more clarity, we eliminate the vector arrows in233

the algorithms, i.e., x := ~x is the trajectory of length N , ε ≥ 0 is the similarity234

threshold, µ the minimum diagonal line length, ν is the trajectory embedding235

dimension and xν := ~xν is the matrix that consists of the rows xνj := ~xνj ,236

j = 1, . . . , N − ν + 1. We emphasize that the algorithm is not restricted to237

one-dimensional trajectories x, provided appropriate implementation. In Sec. 6238

we provide MATLAB R© code that handles multi-dimensional data.239

Algorithm 1 Fast calculation of P̃P(ν)
(or PP(ν) if ε = 0)

1: procedure PPapprox(x, ε, ν)
2: if ε = 0 then . No discretization, method is exact.
3: x̃← x
4: else . Discretization of phase space, Eq. (8).
5: δ ← 2ε
6: x̃← Φδ(x)
7: end if
8: x̃ν ← apply_trajectory_embedding(x̃, ν)
9: J = (J1, . . . , JN−ν+1)← find_unique_row_IDs(x̃ν)

10: h← histogram(J)

11: P̃P (ν) ←
∑
i h

2
i

12: end procedure

5.2.3. Complexity analysis240

Denote by Oc and Os the computational and space complexity respectively.241

Theorem 3. Let ν and µ ∈ N be fixed choices of the trajectory embedding242

dimension and the minimum diagonal line length, respectively.243
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Algorithm 2 Fast calc. of ˜DET
(µ)

(or DET (µ) if ε = 0)
1: procedure DETapprox(x, ε, µ)
2: PP(1) ← PPapprox(x, ε, 1)

3: PP(µ) ← PPapprox(x, ε, µ)

4: PP(µ+1) ← PPapprox(x, ε, µ+ 1)

5: ˜DET (µ) ← (µ · PP(µ) + (µ− 1) · PP(µ+1))/PP(1)

6: end procedure

(i) The complexity classes of the approximations P̃P (ν) and ˜DET (µ) are Oc(N log(N))244

and Os(N).245

(ii) If ε = 0, then the exact terms PP(ν) and thus the exact RQA-measures246

RR and DET (µ) are in the complexity classes Oc(N log(N)) and Os(N),247

given an arbitrary phase space norm || · ||.248

Proof. We investigate the complexity of Algorithm 1. The complexity class of249

Algorithm 2 is clearly identical.250

(i) It is easy to verify that the operations in lines 2-8 are in Oc(N) and251

Os(N). The main cost is taken by line 9. One way to find unique identifiers for252

the rows of ~̃xν is based on sorting the rows lexicographically. Provided a one253

dimensional sorting algorithm that operates in Oc(N log(N)) and Os(N), e.g.,254

QuickSort, the computational complexity of sorting the rows lexicographically255

is in Oc(Nν log(N)) [21]. Then incrementally each row ~̃xνi is assigned to an ID256

Ji in Oc(1), leading to a complexity of Oc(N) for the assignment step. Since257

ν is constant, the overall complexity in line 9 is Oc(N log(N)). In line 10 it258

is enough to incrementally count equal entries in J , giving Oc(N). Finally the259

complexity in line 11 is Oc(N) since n ≤ N , where n is the length of the vector260

h. Altogether the dominating complexity classes are Oc(N log(N)) and Os(N).261

(ii) Let ε = 0. Determine PP(1) using Algorithm 1 and set RR = PP(1)/N2.262

Compute DET (µ) using Algorithm 2. By Theorem 1 and 2 these expressions263

coincide with the exact RQA-measures. As already mentioned in Sec. 4.2, if264

ε = 0, then the identities hold for an arbitrary phase space norm since each265

norm only indicates whether two elements in phase space are equal. The claim266

on the complexity classes is proven in the first part. �267

We remark that sorting the rows lexicographically is not the only possibility.268

One could, for instance, use a hash function that maps the embedding vectors269

to R in order to get the identifiers for the embedding vectors and then apply a270

simple one-dimensional sorting algorithm to find the histogram incrementally.271

However, such hash functions do not guarantee unique identifiers since they are272

not injective in general.273

5.2.4. Worst case error274

As shown in Theorem 3, if ε = 0, then PP(ν) can be calculated exactly and275

efficiently. If ε > 0, the approximation P̃P (ν) of PP(ν) satisfies the following276

estimates.277
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Theorem 4. Let ε > 0 and δ = 2ε. In d-dimensional phase space it holds278

1

2dν
PP(ν) ≤ P̃P (ν) ≤ 2dνPP(ν).

Proof. Denotem = dν. The lower bound is reached if the number of C(¬S, S)-279

errors is maximal. Let ~y be a vertex of the discretization lattice. In m-280

dimensional space there are 2m adjoint hypercubes surrounding ~y. Hence it is281

possible to place 2m points ~xi, each in another cube, such that ‖~y−~xi‖∞ ≤ ε/2282

for all i. It follows that ‖~xi − ~xj‖∞ ≤ ε for all i, j. Hence each pair (~xi, ~xj)283

is similar, but by construction classified as dissimilar if i 6= j. In this case we284

have PP(ν) = (2m)2 and P̃P (ν) = 2m. The argument is finished since placing285

additional points only leads to a reduction of the number of C(¬S, S)-errors.286

The upper bound follows in a similar manner by producing errors of type287

C(S,¬S). �288

By now the bounds are shown to be existent (hence the theorem is true)289

but not that they are sharp. One would have to show that there is a trajectory290

whose embedding vectors are constructed as above. For ν = 2 and d = 1 an291

appropriate trajectory is given by ~x = (η, η,−η,−η, η), where η < ε/2. The four292

resulting trajectory embedding vectors of ~x satisfy the above construction. For293

general ν and d this becomes more technical, but we think that this investigation294

is unnecessary at this point. It is more interesting how the approximation error295

behaves empirically.296

5.2.5. Empirical approximation error297

As seen in Sec. 5.2.4 the bounds of the approximation error of P̃P (ν) are298

rather large and monotonic in ν. However, the constructions given in the proof299

of Theorem 4 to reach these bounds are very specific.300

In this section we study the approximation errors of P̃P (ν) and ˜DET (µ)
301

empirically. For this sake the relative mean errors of 100 realizations, designed302

as follows, are determined. For each experiment the autoregressive process303

~x = (x1, . . . , xN ), with304

xi = axi−1 + bηi, i = 2, . . . , N (10)

is generated for N = 1000 time steps, where x1 = 0, a, b are fixed values305

that are chosen randomly independent uniformly distributed on [0, 1] and η is306

a vector of Gaussian white noise. Then the approximations are determined by307

the algorithms from section 5.2.2 and the exact quantities PP(ν) and DET (µ)
308

are calculated by the classical method in order to specify the accuracy of the309

approximations. The results are illustrated in Fig. 3 for several combinations310

of ν (resp. µ) and ε, where the height of the bars corresponds to the mean311

error and the color of the bars corresponds to the value PP(ν) and DET (µ),312

respectively. It is customary to select ε as a few percent of the phase space313

diameter [1, 22], which in this case is given by range(~x) = max(~x)−min(~x).314
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We observe that the approximation errors are basically increasing in ν (resp.315

µ) and ε. However, most of the combinations of ν (resp. µ) and ε have little316

relevance. First, if ε is small and ν (resp. µ) is large, the probability to find317

recurrences is low. Consequently the bars in Fig. 3 (a) are of deep blue color.318

Therefore the low error in this area is an artefact. Conversely, if ν (resp. µ)319

is small and ε is large, too many recurrences are found, resulting in red colors.320

Reasonable choices of ν (resp. µ) and ε are indicated by colors in the range321

from blue-green to orange-red in Fig. 3 (a).322

As an example, assume that we want to determine the recurrence rate and323

the determinism of the trajectory ~x. For the calculation of the determinism, a324

minimal line length of µ = 2 is sufficient, because for the autoregressive process325

we do not expect much effect of tangential motion or sampling [1]. Then for326

all sensible values of ε, i.e., from 0 to 8 percent of the range, we obtain mean327

approximation errors below 1.4% for the recurrence rate and below 2.7% for the328

determinism.329

It should be noticed that we have investigated one-dimensional trajectories330

~x that are not reconstructed by time series embedding. However, the trajectory331

embedding of dimension ν can also be imagined as time series embedding if we332

postulate that ~x is the time series and ~xν is the trajectory, which is obtained333

from ~x by time series embedding with time delay 1 and embedding dimension334

ν. Then Fig. 3 (a) reflects the approximation errors of the recurrence rate335

of ~xν , which is given by PP(ν)/(N − ν + 1)2. The essence of this technical336

point of view is that the approximation errors increase if the dimension of the337

trajectory increases. We also observe this in the experiment from Sec. 6 for the338

3-dimensional Lorenz attractor, see Tab. 2.339

6. Execution Time of Algorithm 1340

We compare the execution times of PP and its approximation P̃P on a341

consumer computer (2.3 GHz Intel Core i7 quad core processor, 16 GB 1600 MHz342

DDR3 RAM). Since execution times do not only depend on the algorithm, but343

also on the implementation, we provide MATLAB R© code. Note that, however,344

this code uses standard MATLAB R© routines and may be strongly optimized by345

the MATLAB R© compiler.346

We evaluate two systems, the autoregressive process

x1 = 0, xi = 0.57xi−1 + 0.24ηi, i = 2, . . . , 100.000.000 (11)

and the well known 3-dimensional Lorenz system (see Fig. 1)

ẋ = a(y − x), ẏ = x(b− z)− y, , ż = xy − cz (12)

for the parameters a = 10, b = 28, c = 8/3. Then these systems are truncated347

according to the values of N as listed in the tables of results, Tab. 1 and 2, and348

processed by the routines. The threshold ε was choosen for each N separately349

as 7% of the phase space diameter and no embedding is applied, i.e. m = 1 in350

the following MATLAB R© function.351
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Figure 3: Relative mean errors obtained from 100 autoregressive process realizations. The bar
color in Figure (a) indicates the value of the exact recurrence rate RR(ν) = PP(ν)/(N−ν+1)2

of the embedded trajectory ~xν . The bar color in Figure (b) reflects the exact determinism
DET (µ) of the trajectory ~x, given a minimum diagonal line length µ.
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Figure 4: Example from the transition experiment. The system of the upper plot is generated
as described in Sec. 7.2. The lower graphic shows the window-wise determinism sequence D
(red) and its approximation D̃ (blue). The dashed lines are the confidence levels.

MATLAB R© code for P̃P.352

function pp = PPapprox( x, eps, m)353

[N,d] = size(x);354

if eps > 0 % discretize if eps > 0355

x = floor(x/(2*eps));356

end357

X = zeros(N-m+1,d*m); % apply trajectory embedding358

for i = 1:m359

X(:,d*(i-1)+1:d*i) = x(i:N-(m-i),:);360

end361

[u,~,iu] = unique(X,’rows’); % find row ID’s iu362

h = hist(iu,size(u,1)); % find histogram of row ID’s363

pp = sum(h.^2);364

% end of function PPapprox365

MATLAB R© code for PP.366

function pp = PP( x, eps)367

R = pdist2(x,x,’chebychev’) <= eps; % calculate recurrence plot368

pp = nnz(R); % count non zeros369

% end of function PP370

Since the available memory on the computer was 12 GB, we limited the data371

size for the exact measure PP. Indeed a single recurrence plot for N = 40.000372

consumes about 12 GB of RAM, provided double precision and no storage op-373

timization. For N = 100.000 even about 75 GB of memory would be required.374
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N Execution Time PP (sec.) Execution Time P̃P (sec.) Approximation Error
100 0.0552 0.0005 0.0275
1.000 0.0078 0.0005 0.0104
10.000 0.9058 0.0018 0.0098
20.000 3.7314 0.0158 0.0098
30.000 8.3865 0.0233 0.0096
35.000 13.7078 0.0131 0.0092
100.000 - 0.0169 -
1.000.000 - 0.1912 -
10.000.000 - 2.2587 -
100.000.000 - 28.5899 -

Table 1: Mean execution times obtained from 10 realizations of the Autoregressive processs
(11). The approximation error is again the mean over the relative errors |PP − P̃P|/PP.

N Execution Time PP (sec.) Execution Time P̃P (sec.) Approximation Error
100 0.0513 0.0009 0.0471
1.000 0.0077 0.0006 0.3655
10.000 0.9071 0.0052 0.2885
20.000 3.7200 0.0074 0.2646
30.000 8.2962 0.0117 0.2746
100.000 - 0.0396 -
1.000.000 - 0.3645 -

Table 2: Mean execution times obtained from 10 realizations of the Lorenz system (12). The
approximation error is again the mean over the relative errors |PP − P̃P|/PP.

The results give numerical evidence for the complexity we have proved in The-375

orem 3 and reflect the large difference between O(N2) and O(N log(N)) for376

increasing N . For example the ratio of execution times for the autoregressive377

process with N = 35.000 is about 1.046. Moreover, the algorithm is very fast for378

extreme large data and the approximation error decreases slightly with growing379

N . In Tab. 2 the small approximation error for N = 100 is due to the short380

and hence almost linear attractor. As expected, the other errors of the Lorenz381

experiment are higher since the attractor is 3-dimensional.382

7. Application to transition detection383

7.1. Introduction to the problem384

Assume that we are given a time series or a stream x = (x1, x2, x3, . . . ) which385

changes its dynamics at unknown time segments. It has been shown that the386

determinism DET (µ) is able to find these periods [5, 6, 23]. For this, the time387

series is analyzed window-wise for a window size w and step size s, leading to a388
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sequence D of determinism-values. More precisely, D(j) contains the determin-389

ism of the sub-sequence (xs·j , . . . , xs·j+w−1), j = 1, 2, 3, . . . . A transition in the390

dynamics is indicated when the system leaves its typical dynamical behaviour,391

in this case its typical range of the window-wise determinism values [6]. The392

bounds of this range are referred to as confidence levels. An example of a graph393

of D is illustrated as red line in Fig. 4. In the gray marked area the system394

from the upper plot changes its dynamics (details in Sec. 7.2) and consequently395

D exceeds its upper confidence bound, which is represented by the dashed red396

line.397

In this section we compare our proposed approximation ˜DET (µ) to the exact398

measure DET (µ) for the problem of identifying transition times. Again, we399

consider a minimal line length of µ = 2. It remains to select ε. For each window400

ε is determined separately such that the recurrence rate is a small fraction,401

e.g., 0.1 [6]. This leads to a constant (in time index i) denominator in Eq. (2)402

accentuating the behaviour of the changes in P (l).403

7.2. Design of the experiment with autoregressive data404

The experiment is inspired by [6]. We evaluate 100 realizations employing405

autoregressive processes of order 2,406

xi = axi−1 − bxi−2 + cηi.

The test time series is initially generated for x1 = x2 = 0 and a = 1.8, b =407

0.972, c = 0.64 for 1300 time steps. Then the parameters change for a period of408

500 time steps to a = 1.85, b = 0.917, c = 0.76. Finally the system returns to409

the initial parameters and stops at time step 3500. The resulting time series x410

is then analysed for a window size w = 400 and step size s = 25.411

In the exact case D contains the values of DET (2), where ε is chosen such412

that the recurrence rate PP(1)/w2 is 0.1. In the approximative case D̃ contains413

the values of ˜DET (2), where ε is chosen such that the approximate recurrence414

rate P̃P (1)/w2 is 0.1.415

In order to find the upper confidence level, we assume that the system with416

initial parameters is observed for N = 100 000 time steps and the distribution417

of the (approximate) determinism values for the windows is charged. We choose418

as transition level the 99.95%-quantile of those distributions, leading to a con-419

fidence level of 0.4425 for DET (2) and 0.4523 for ˜DET (2). For the evaluation420

the time points of exceeding and falling below these levels are compared to421

the actual transition time at 1300 and 1800. The results reveal that our fast422

approximation performs as well as the slow exact method (Tab. 3).423

7.3. Transitions in the logistic map424

We briefly illustrate that the approximate determinism ˜DET is also able to
find transitions in the logistic map

x1 = 0.7, xi+1 = axi(1− xi),
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Measure Left transition error Right transition error
DET (2) 61.25 64.75˜DET (2) 85.00 45.50

Table 3: Mean transition errors obtained from 100 realizations as described in Sec. 7.2. The
left/right transition error is defined as the absolute deviation from time index 1300/1800.
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Figure 5: Bifurcation diagram of the logistic map and its dynamics. We observe multiple
chaos-period transitions that are found by both measures, DET (red) and ˜DET (blue).

with control parameter a in the range [3.6, 3.8]. In the experiment we observed425

that the quality of the approximation is sensitive to ε. We found that a rather426

small threshold is beneficial. More precisely, we selected ε for each a separately427

such that the recurrence rate resp. the approximate recurrence rate is 0.01.428

Fig. 5 confirms that ˜DET has the capability to find dynamical transitions.429

8. Other RQA measures430

Using PP(ν) it is possible to specify identities for other diagonal line based431

RQA-measures. Detailed analysis of those is out of the scope of this work, but432

we briefly state the formulas in this section. In the following equations the left433

hand side is the classical definition and the right hand side is the identity in434

terms of PP(ν). As before, µ denotes the minimum diagonal line length, the435

phase space norm is ‖ · ‖∞ and the LOI is included unless otherwise stated.436

For the ratio RATIO(µ) between DET (µ) and RR, we get437
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N2

∑
l≥µ lP (l)(∑
l≥1 lP (l)

)2 = N2µPP
(µ) − (µ− 1)PP(µ+1)(
PP(1)

)2 .

Due to Eq. (7), the averaged diagonal line length L(µ) is given by438 ∑
l≥µ lP (l)∑
l≥µ P (l)

=
µPP(µ) − (µ− 1)PP(µ+1)

PP(µ) − PP(µ+1)
,

and the length of the longest diagonal line Lmax (excluding the LOI, i.e., P (N) :=439

0), determined by440

max{l | P (l) 6= 0} = min{ν | PP(ν) = N − ν + 1} − 1,

can be found by binary search in O(log(N)) iterations since ν 7→ PP(ν) is441

monotonically decreasing.442

Finally we should remember that these expressions can be calculated ex-443

actly and efficiently if ε = 0; and in case of ε > 0 the measures can be ap-444

proximated efficiently by replacing PP by P̃P . In both cases Algorithm 1445

determines the pairwise proximity measures efficiently. For L̃max the resulting446

computational complexity is O(N log2(N)). All other approximative measures447

are in O(N log(N)), whereas the complexity of the classical measures is O(N2)448

[11].449

9. Conclusions450

We have shown that the recurrence rate and many diagonal line based RQA-451

measures can be calculated efficiently, i.e., in O(N log(N)) if the similarity452

threshold ε is zero. For the case ε > 0 we have introduced approximations453

to these measures that are based on phase space discretization and a relation454

between the histogram of the diagonal line lengths P (l) and the introduced455

pairwise proximity measures of trajectory embeddings. For small embedding456

dimension ν or minimum diagonal line length µ the proposed approximations457

are very close to the exact quantities in our experiments with one-dimensional458

data, while execution times and memory consumption are significantly lower.459

However, we recommend to compare the approximations to the exact measures460

on the data of interest before doing serious RQA with it. In particular, if the461

trajectory is multi-dimensional the approximation error may increase. We also462

recommend to keep ε as small as possible since it determines the grid size of the463

discretization. Of course a small grid size leads to a gentle discretization and464

hence to low approximation errors.465

In future work it should be investigated whether data-adopted discretization466

lattices are able to improve the approximation accuracy. It is also interesting467

if there are conditions under which the ratio ˜DET (~x)/DET (~x) stays stable468

(nearly constant) in changing ~x. Of course, if the approximation error is small469

this stability is present, but if the error is large, this stability would still allow470
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us to compare dynamics rather than determine dynamics, which is sufficient for471

many applications, e.g. transition detection.472
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10. Appendix A - Proof of the Determinism Identity553

Proof of Theorem 2. Let ~x = (~x1, . . . , ~xN ) be a d-dimensional phase space554

trajectory (d ∈ N) of length N and the similarity threshold ε ≥ 0 as well as555

the minimum diagonal line length µ ∈ N be given. Assume that ‖ · ‖∞ is the556

underlying phase space norm, i.e., the recurrence plot of ~x is given by557

Ri,j = Θ(ε− ‖~xi − ~xj‖∞), i, j = 1, . . . , N,

and for all ν ∈ N the pairwise proximity measures PP(ν) are defined as558

PP(ν) =

N−ν+1∑
i,j=1

Θ(ε− ‖~xνi − ~xνj ‖∞).

By definition it holds
∑N
i,j=1Ri,j = PP(1), thus we have to show that the559

numerators in Eq. (6) are equal. We show560

N∑
l=µ

l · P (l) = PP(µ) + (µ− 1) · (PP(µ) − PP(µ+1)),

which gives additional insights into the relation between P (l) and PP (7). For561

this, we define the following index sets.562

Iµ = {(i, j) | Θ(ε− ‖~xµi − ~x
µ
j ‖∞) = 1}

Il = {(i, j) |
l−1∑
k=0

Θ(ε− ‖xi+k − xj+k‖∞) =

l∑
k=−1

Θ(ε− ‖xi+k − xj+k‖∞) = l}

Jl = {(i+ k, j + k) | (i, j) ∈ Il , k = 0, . . . , l − 1}
Iµl = Iµ ∩ Jl

Iµ contains exactly the index pairs (i, j) such that ~xµi and ~xµj are similar,563

thus PP(µ) is already determined by PP(µ) =
∑

(i,j)∈Iµ Θ(ε− ‖~xµi − ~x
µ
j ‖∞).564

Il is the set of index pairs (i, j) such that there is a diagonal line of exactly565

length l in R starting at (i, j), thus P (l) = |Il|.566

Jl is the set of index pairs (i, j) that exactly cover all diagonal lines of length567

l in R, i.e., l · P (l) = |Jl|.568

Denote θk = Θ(ε−‖xi+k − xj+k‖∞), then the relation between Iµl and Il is569

described by570
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(i, j) ∈ Il ⇔ θ−1 = θl = 0 and Θ(ε− ‖~xi+k − ~xj+k‖∞) = 1 for all k = 0, . . . , l − 1

⇔ θ−1 = θl = 0 and Θ(ε− ‖~xµi+k − ~x
µ
j+k‖∞) = 1 for all k = 0, . . . , l − µ

⇔ θ−1 = θl = 0 and
l−µ∑
k=0

Θ(ε− ‖~xµi+k − ~x
µ
j+k‖∞) = l − µ+ 1

(13)

⇔ (i+ k, j + k) ∈ Iµl for all k = 0, . . . , l − µ. (14)

Moreover, note that by construction Iµl1∩I
µ
l2

= ∅ for l1 6= l2 and
⋃
l≥µ I

µ
l =571

Iµ :572

Iµl1 ∩ I
µ
l2

= (Iµ ∩ Jl1) ∩ (Iµ ∩ Jl2) ⊂ (Jl1 ∩ Jl2) = ∅ for l1 6= l2, (15)⋃
l≥µ

Iµl =
⋃
l≥µ

Iµ ∩ Jl = Iµ ∩
⋃
l≥µ

Jl = Iµ. (16)

Now we have collected all relations to begin the actual proof. Since573

P (l) = |Il| =
∑

(i,j)∈Il

1
(13)
=

∑
(i,j)∈Il

∑l−µ
k=0 Θ(ε− ‖~xµi+k − ~x

µ
j+k‖∞)

l − µ+ 1
,

we get574

(l − µ+ 1)P (l) =
∑

(i,j)∈Il

l−µ∑
k=0

Θ(ε− ‖~xµi+k − ~x
µ
j+k‖∞)

and therefore575

∑
l≥µ

(l − µ+ 1)P (l) =
∑
l≥µ

∑
(i,j)∈Il

l−µ∑
k=0

Θ(ε− ‖~xµi+k − ~x
µ
j+k‖∞)

(14)
=
∑
l≥µ

∑
(i,j)∈Iµl

Θ(ε− ‖~xµi − ~x
µ
j ‖∞)

(15)
=

∑
(i,j)∈

⋃
l≥µ I

µ
l

Θ(ε− ‖~xµi − ~x
µ
j ‖∞)

(16)
=

∑
(i,j)∈Iµ

Θ(ε− ‖~xµi − ~x
µ
j ‖∞)

= PP(µ).
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Rearranging this equation leads to576

∑
l≥µ

lP (l) = PP(µ) + (µ− 1)
∑
l≥µ

P (l), (17)

and it remains to show that577

PP(µ) − PP(µ+1) =
∑
l≥µ

P (l).

But this already follows by applying (17) for µ and µ+ 1:578

PP(µ) − PP(µ+1) =
∑
l≥µ

lP (l)− (µ− 1)
∑
l≥µ

P (l)−

 ∑
l≥µ+1

lP (l)− µ
∑
l≥µ+1

P (l)


=
∑
l≥µ

lP (l)− (µ− 1)
∑
l≥µ

P (l)−

∑
l≥µ

lP (l)− µP (µ)− µ
∑
l≥µ

P (l) + µP (µ)


=
∑
l≥µ

P (l).

�579
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11. Appendix B - Example580

Assume that we want to compute the determinism of the sample trajectory581

~x = (0.5, 0.8, 0.4, 0.6, 0.8, 0.4, 0.9), given a similarity threshold ε = 0.1. First582

we consider the recurrence plots583

R
(ν)
i,j := Θ(ε− ‖~xνi − ~xνj ‖∞), R̃

(ν)
i,j := Θ(−‖~̃xνi − ~̃xνj ‖∞) (18)584

of the embedded (3) trajectory ~xν and its discretization ~̃xν = Φδ(~x
ν), where δ =585

0.2 (see (8) and Sec. 5.2.1). The embedded trajectories and the corresponding586

recurrence plots are illustrated in Fig. 6 for several embedding dimensions ν =587

1, 2, 3 in black, blue, and orange color, respectively. For example the recurrence588

plots for ν = 2 comprise the recurrences marked by blue color, the black only589

highlighted entries are no recurrences for ν = 2.590

For ν = 1 (write R = R(1)) we observe that R1,4 = 1, but R̃1,4 = 0. That
means the pair (0.5, 0.6) is similar, i.e.,

|0.5− 0.6| = 0.1 ≤ ε,

but classified as dissimilar:

Φδ(0.5) =

⌊
0.5

0.2

⌋
= 2 6= 3 =

⌊
0.6

0.2

⌋
= Φδ(0.6).

Due to symmetry the pairs (0.5, 0.6) and (0.6, 0.5) lead to C(S,¬S)-errors (see591

section 5.2). For all other pairs the classified and actual similarity statements592

coincide.593

Recall that the determinism is the ratio between the number of points on594

diagonal lines and all points in the recurrence plot. For the non-embedded595

trajectories ~x = ~x1 and ~̃x = ~̃x1 we obtain by counting the structures in the596

recurrence plots:597

DET (2) =
17

21
≈ 0.81, ˜DET (2) =

15

19
≈ 0.79. (19)598

Of course we have calculated the approximation inefficiently by employing599

the recurrence plot R̃ . Using Theorem 2 and Algorithm 1 we may compute600 ˜DET (2) algorithmically:601

Following Algorithm 1 we assign unique identifyers to the rows of ~̃xν . Note602

that in Fig. 7 the ~xν are transposed, hence in this case we are interested in603

unique columns. The histograms of the identifyers (col_ID) are charged and604

due to Theorem 1 we calculate (compare with Fig. 7)605

• P̃P (1) = 32 + 32 + 12 = 19606

• P̃P (2) = 22 + 22 + 12 + 12 = 10607

• P̃P (3) = 12 + 12 + 12 + 12 + 12 = 5608
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Finally, using Definition 1 (which is based on Theorem 2) we get the same result609

as before in Eq. (19):610

˜DET (2) =
2 · P̃P (2) − (2− 1) · P̃P (3)

P̃P (1)
=

15

19
≈ 0.79.611

(a) R(ν) : RPs of trajectories ~xν . (b) R̃(ν) : RPs of discretized trajectories
~̃xν

Figure 6: Recurrence Plots (RPs) of the recurrence matrices from Eq. (18) for ν = 1, 2, 3,
illustrated in black, blue, orange, respectively.

Figure 7: Histograms of trajectory embedding vectors.
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