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ABSTRACT

This paper assesses the seasonality of the urban heat island (UHI) effect in the Greater London area

(United Kingdom). Combining satellite-based observations and urban boundary layer climate modeling with

the UrbClimmodel, the authors are able to address the seasonality of UHI intensity, on the basis of both land

surface temperature (LST) and 2-m air temperature, for four individual times of the day (0130, 1030, 1330, and

2230 local time) and the daily means derived from them. An objective of this paper is to investigate whether

the UHI intensities that are based on both quantities exhibit a similar hysteresis-like trajectory that is ob-

served for LST when plotting the UHI intensity against the background temperature. The results show that

the UrbClim model can satisfactorily reproduce both the observed urban–rural LSTs and 2-m air tempera-

tures as well as their differences and the hysteresis in the surface UHI. The hysteresis-like seasonality is

largely absent in both the observed and modeled 2-m air temperatures, however. A sensitivity simulation of

the UHI intensity to incoming solar radiation suggests that the hysteresis of the LST can mainly be attributed

to the seasonal variation in incoming solar radiation.

1. Introduction

As climate change and urbanization globally con-

tinue, studies addressing their reciprocal impacts are

gaining growing importance (Kalnay and Cai 2003;

Parker 2010; UN-HABITAT 2011). The urban heat is-

land (UHI) effect, observed as an elevated temperature

of urban areas relative to rural ones, relates to both

challenges and is a persistent focus of urban climate and

environmental studies (Arnfield 2003; Stewart and Oke

2012). The UHI effect emerges through 1) land surface

modification (reduced albedo, less vegetation, increased

roughness, and thermal admittance), which favors heat

storage and trapping in the city (Oke 1982), and 2) an-

thropogenic heat release (from vehicles, buildings, and

human metabolism; Ichinose et al. 1999; Sailor and Lu

2004). It can also be caused partially by 3) increased

incoming longwave radiation as a consequence of air

pollution (Rouse et al. 1973). However, air pollutants

mostly have a minor or even negligible influence on the

UHI, which has been demonstrated through field mea-

surements (Nunez et al. 2000) and modeling (Estournel

et al. 1983; Oke et al. 1991).

Conventionally, the UHI intensity is assessed by us-

ing 2-m air temperature data obtained from urban and

rural weather stations. The air-temperature-based UHI
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intensity usually reaches its maximum on clear, calm

nights and could be as much as 128C (Oke 1987). Since

the 1970s, remotely sensed surface skin temperature

data have been used to study urban climate, including

the UHI effect. Constant development in sensor tech-

nologies and better understanding of atmospheric

physics have remarkably enhanced both the quality and

the quantity of data, making amultiscale investigation of

urban climate possible (Tomlinson et al. 2011). In the

last decades, UHI studies based on thermal remote

sensing have increased the knowledge on 1) spatial

patterns of UHI and its correlation with diverse con-

tributing variables, for example, sky view factor and

vegetation; 2) urban surface energy balance; and, to a

lesser extent, 3) surface–air relations (Voogt and Oke

2003; Weng 2009).

However, the surface skin temperature, in general,

differs from the 2-m air temperature (Norman and

Becker 1995; Jin and Dickinson 2010). Prigent et al.

(2003) compared the surface skin temperature with

in situ measured air temperatures. They found a positive

difference between the surface skin temperature and the

air temperature during daytime and a negative differ-

ence at night, which they attributed mainly to a quicker

response of surface temperatures to solar radiation.

Dense vegetation and high soil moisture can diminish

the difference by altering the partitioning of surface heat

fluxes in favor of the latent heat flux. Moreover, the

surface skin temperature and the 2-m air temperature

converge under cloudy conditions (Prigent et al. 2003;

Gallo et al. 2011).

To systematically quantify the UHI intensity, land

cover data have been employed to define the spatial

extent of cities as contiguous urban clusters (following

Rozenfeld et al. 2008), surrounded by a nonurban belt of

equal area (Peng et al. 2012). Combining this urban–

nonurban definition with remote sensed land surface

temperature (LST) data, Zhou et al. (2013) calculated

the UHI intensity—defined as the average temperature

in the urban cluster minus the average temperature in

the nonurban surroundings (background temperature)—

in an automated and systematic manner for all European

agglomerations.

One of the findings Zhou et al. (2013) present is the

region-specific seasonality of the surface UHI intensity

occurring in a large number of cities. Plotting the UHI

intensity as a function of the background temperature

exhibits a clockwise loop with higher intensities in spring

than in fall. The causes of this hysteresis are unclear, and

it is unknown if a similar phenomenon also takes place

for 2-m air temperature.

Table 1 lists some previous works that documented

the seasonal variation of UHI intensities. These studies

attribute the seasonality mainly to climate and synoptic

conditions, for example, monsoon, wind speed, relative

humidity, cloudiness, and vegetation, and to a lesser

extent to anthropogenic heat release. However, con-

clusions such as to what extent each factor determines

the seasonality are difficult to generalize, as the studies

differ considerably in terms of data used (Tair vs surface

skin temperature), data acquisitionmethod (automobile

traverse, remote sensing, and weather station observa-

tion), UHI intensity metrics (daily maximum vs mean),

and choice of rural reference (station dependent or

fairly arbitrary), as well as the time span of observation

(from 1 year to multiyear).

Nevertheless, there are still some features in common:

during the day, UHI intensities based on the surface skin

temperature measured by satellites are found to be the

highest in the wet summer season and weaker in the dry

season, whereas the air-temperature-based UHI in-

tensities show less obvious seasonal variations. Weaker

UHI intensities are usually observed in windier and

cloudier months; that is, the UHI is inversely related to

wind speed and cloudiness, as summarized by Arnfield

(2003). Recently, Schatz and Kucharik (2014) in-

vestigated explicitly the seasonality of UHI in Madison,

Wisconsin, by using a densely deployed sensor network.

They emphasize the key role of vegetation and snow-

cover conditions in shaping the seasonality of UHI in-

tensity, whereas factors such as wind and clouds only

fluctuate the seasonality to a certain extent. These

findings are consistent with earlier works (Imhoff et al.

2010; Peng et al. 2012).

However, little effort has been made to address sea-

sonality by integrating observations with increasingly

more sophisticated urban climate modeling. In this work,

we modeled the urban climate of London, United King-

dom, by the urbanboundary layer climatemodelUrbClim

(De Ridder et al. 2015). Combined with a standardized

methodology for quantifying the UHI (Zhou et al. 2013),

we were able to assess the hysteresis of this example.

In brief, the aim of this study is to verify 1) if themodel

can reproduce the hysteresis in the surface temperatures

of London, 2) if the hysteresis effect also occurs in the

2-m air temperature, and 3) if the phase shift between

astronomical and meteorological cycle is a plausible

explanation for the observed hysteresis effect.

2. Numerical model, experiment setup, and model
evaluation

a. The UrbClim model

The model simulations in this study were performed

with the urban boundary layer climate model UrbClim,
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designed to cover agglomeration-scale domains at a very

high spatial resolution (De Ridder et al. 2015). UrbClim

consists of a land surface scheme containing urban

physics coupled to a 3D atmospheric boundary

layer module.

The land surface scheme is based on the soil–

vegetation–atmosphere transfer scheme of De Ridder

and Schayes (1997) but is extended to account for urban

surface physics. This urbanization is accomplished by

representing the urban surface as a rough impermeable

slab, with appropriate values for the albedo, emissivity,

thermal conductivity, and volumetric heat capacity. The

main feature of the extension of the scheme is the in-

clusion of a parameterization of the inverse Stanton

number, which is known to be much higher in urban

areas (Kanda et al. 2007; De Ridder et al. 2012). Further

details can be found in De Ridder et al. (2015).

The land surface scheme takes part of its input vari-

ables (wind speed, temperature, and specific humidity

close to the surface) from values simulated in the

TABLE 1. Selected publications that reported seasonal variations of UHI intensity.

Study City Year Seasonal variation

Jauregui

(1997)a
Mexico City,

Mexico

1994 Maximum nighttime UHI intensity (;58C) occurred in the dry

season (Dec–Jan) and declined to a minimum (;28C) during
the wet months (Aug–Sep). Daytime UHI intensity reached a

maximum in Jul (;38C) and diminished to a minimum

(;18C) in Dec.

Figuerola

and Mazzeo

(1998)a

Buenos Aires,

Argentina

1994–97 Maximum UHI intensities were frequently found .48C in

winter and spring with weak wind and low cloudiness, while

under strong wind and cloudiness, UHI intensities in winter fell

dramatically. As the temperature increased in summer, negative

UHI intensities occurred more frequently.

Runnalls

and Oke

(2000)a

Vancouver, British

Columbia, Canada

1992–94 The nighttime UHI intensity was greatest in the fall, followed

by summer, winter, and spring.

Unger et al.

(2001)a
Szeged, Hungary 1999–2000 Bimodal with maximum UHI intensity (;48C) in midspring

(Apr–May) and late summer (Aug–Sep), largely diminished

in winter (;1.58C).
Wilby

(2003)a
London, United

Kingdom

1961–90 Nighttime UHI intensity peaked in Aug (;2.28C) and
reached its minimum in Jan (;1.18C). No remarkable

seasonality in the daytime UHI intensity was observed.

Kim and

Baik

(2005)a

Seoul, South Korea 2001–02 Strong nighttime and morning UHI intensity in fall and winter

(.48C), least developed in summer. No obvious seasonal pattern

for daytime UHI intensity.

Tran et al.

(2006)b
Tokyo, Japan 2001–02 Daytime UHI intensity reached its peak (;128C) around

Jul/Aug, followed by a decline until Jan/Feb (;38C).
Roth

(2007)a,c
(Sub)tropical cities In the cities under review, a pronounced seasonal variation of

nighttime UHI intensities was found, which was attributed to

the dry (maximum) and wet (minimum) seasons.

Zhou and

Shepherd

(2010)a

Atlanta, Georgia 1984–2007 UHI intensity reached its peak in spring (Apr–May), depending

on the chosen rural station, at 38 and 3.78C, respectively, and
decreased to 1.438 and 2.68C in August.

Pongrácz et al.
(2010)b

Munich, Germany;

Milan, Italy;

Warsaw, Poland;

Budapest, Hungary

2001–03 The daytime UHI intensities reached their peak in summer

(Jun–Jul) and diminished in winter (Nov–Feb). Nocturnal UHI

intensities remained stable (around 28–38C) between Mar and

Oct and weakened in winter except in Milan, where a

maximum UHI intensity of 48C occurred in Jan–Feb.

Cui and de

Foy

(2012)a,b

Mexico City 2006 For both skin and air temperatures, maximum nighttime UHI

intensities (up to 108C) appeared during the cold dry season

(Nov–Feb), while the minima (.58C) occurred during the wet

season (Jul–Oct). The skin-temperature-based daytime UHI

intensities were found to be strongest (;128C) in the wet season

and weakest (even negative) in the dry season, whereas the air

temperature based ones had low and relatively invariant values

across seasons.

a Air temperature based.
b Surface skin temperature based.
c Review article.
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atmospheric boundary layer model, a 3D model of the

lower atmosphere, extending to a constant height

of 3 km.

The atmospheric boundary layer module is tied to

synoptic-scale meteorological fields through the lateral

and top boundary conditions to ensure that the synoptic

forcing is properly taken into account. This model is

represented by conservation equations for horizontal

momentum (considering zonal and meridional wind

speed components u and y, respectively), potential

temperature, specific humidity, and mass (involving the

vertical wind speed component w). Pressure fields are

not calculated internally but are prescribed from a large-

scale host model from which UrbClim receives its

boundary conditions; hence, only the synoptic-scale

pressure gradient is accounted for. By doing so, we

avoid the complexities associated with a full mesoscale

meteorological model. More importantly, it allows for

the use of much longer time increments in the numerical

solver and a lower model top (since no absorbing layer is

required to damp gravity waves), which makes the

model much faster.

The large-scale driving model specifies the lateral

and top boundary conditions, the synoptic-scale pres-

sure gradient, and the downwelling radiation and

precipitation—the variables required by the land sur-

face scheme. This one-way nesting approach allows the

UrbClim model to account for the effect of synoptic

weather on local climate (De Ridder et al. 2015).

Terrain elevation data are taken from the Global Multi-

Resolution Terrain Elevation Data 2010 (GMTED2010)

dataset (Danielson and Gesch 2011), which has a

global coverage and is freely available. The spatial

distribution of land cover types, needed for the spec-

ification of required land surface parameters, is taken

from the 2006 Coordinate Information on the Envi-

ronment (CORINE) land cover data for Europe

(Büttner et al. 2007).
The urban land cover percentage is specified using the

urban soil scaling raster data files distributed by the

European Environment Agency. Maps of vegetation

cover fraction are obtained from the normalized dif-

ference vegetation index (NDVI) acquired by the

MODIS instrument on board the Terra satellite plat-

form. Vegetation cover fraction is specified as a function

of the NDVI, using the linear relationship proposed by

Gutman and Ignatov (1998), and then interpolated to

the model grid.

Model grid cells featuring exclusively nonurban land

use types are divided into vegetation and bare soil (the

complementary fraction). In the case of grid cells con-

taining urban land use, the urban fraction as derived

from the urban soil sealing raster data takes precedence

over theNDVI-based fractional vegetation cover data in

case both sum to over 100%. In case they sum to less

than that, the remaining fraction is assigned to bare soil.

Each of the surface types within a grid cell has its own

energy balance and corresponding temperature, al-

though the model employs aggregated values for both

the aerodynamic and the thermal roughness length pa-

rameters. The urban surface cover has an associated

very low thermal roughness length that strongly in-

hibits the turbulent transfer of heat from the urban

substrate to the atmosphere, so that a relatively large

share of the available radiant surface energy flux is

converted to storage heat rather than to turbulent

sensible heating of the atmosphere. This, together with

the typically high values of thermal inertia of urban

materials, leads to the large storage heat flux values

typically observed (or estimated as a residual of the

surface energy balance) over urban areas (Piringer

et al. 2007).

The urban substrate is represented as a massive slab,

which is discretized in six vertical layers, and its specific

volumetric heat capacity (2 3 106 Jm23K21) and ther-

mal conductivity (2Wm21K21) values are in line with

values found in the literature for urban areas (see, e.g.,

Oke 1987; Pielke 2002). Evaporation from the urban

surface is included by implementing a fractional surface

wetness parameter, which accounts for the amount of

water stored on the urban substrate, calculated as the

difference between precipitation on the urban fraction

and evaporation of the stored water. The maximal

fraction of wet surface is set as 0.14, with a maximum

storage capacity of 1.17 kgm22. Both parameters have

been estimated recently by Wouters et al. (2015).

The evolution of the temperature profile in the soil is

calculated using the same heat diffusion equations as

those used for the urban slab. The main difference is

that, for soil, the volumetric heat capacity and thermal

conductivity are functions of soil moisture content, as in

De Ridder and Schayes (1997). Water transport in the

soil is described by means of Richards’ equation

(Garratt 1992), accounting for infiltration of rainwater

in the soil and the uptake of soil water by plant roots.

Here also, the reader is referred to De Ridder and

Schayes (1997) for more details.

b. Experiment setup

The model described above was applied to simulate a

7-yr period (2006–12) for the wider urban agglomeration

of London, driven by meteorological data from the

ERA-Interim reanalysis dataset of the European Centre

for Medium-Range Weather Forecasts (ECMWF).

The domain was configured with 161 3 161 grid cells

in the horizontal direction, using a spatial resolution of
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1 km, equal to the resolution of the MODIS data. In the

vertical direction, 20 levels were specified, with the first

level 10m above the displacement height and the reso-

lution smoothly decreasing upward to 250m at the

model top located at 3 km height. This vertical dis-

cretization closely matched that of the ECMWF model

(De Ridder et al. 2015).

The simulation was initialized on 1 December 2005 at

0000 local time (LT). Initial soil temperature and soil

moisture data were taken from the ERA-Interim re-

analysis. The sea temperatures in the model were

treated separately, and they were adopted from the

ERA-Interim reanalysis during the whole simulated

period and not calculated internally.

To assess the sensitivity of the observed hysteresis

effect in the surface UHI of London to the annual cycle

of the incoming shortwave radiation, a sensitivity ex-

periment was carried out. In this scenario, referred to as

the SR experiment, the input shortwave radiation from

the ERA-Interim reanalysis was rescaled with a daily

factor so the clear-sky maximum radiation was always

equal to the value of 21 March, when it almost equaled

its annual mean value. Thus, all year round, the daily

cycle of incoming shortwave radiation under clear-sky

conditions remained constant, eliminating the annual

cycle. Note that we did not change the temporal varia-

tion of the incoming radiation. Cloudy conditions

remained cloudy. The values only were rescaled.

3. Data and UHI intensity calculation

We used the sameUHI intensity definition as explored

by Zhou et al. (2013). The idea is to define a city by its

physical extent, that is, via urban land cover. Overlaying

the city delineation (and an equal area belt around it) and

the heat map, the average temperatures in the city and its

surroundings are calculated so that the difference be-

tween city and background temperatures (i.e., the belt

temperatures) provides the intensity. A similar method-

ology has been used in prior research (Peng et al. 2012).

In detail, the calculation of the UHI intensity DT
consists of the following steps:

1) We applied the city clustering algorithm (Rozenfeld

et al. 2008, 2011) to CORINE land cover data at 250-m

resolution. The algorithm assigns any two urban cells

to the same urban cluster if their distance is lower than

or equal to a threshold distance l. As in Zhou et al.

(2013), we used l 5 500m and obtained the London

city cluster (Fig. 1a).

2) A belt of approximately equal size as the cluster was

determined by consecutively enclosing layers of non-

urban land use, avoiding other urban cells (Zhou

et al. 2013, their supplementary material).

3) Based on the gridded temperature fields, we calcu-

lated the average temperatures in the cluster TC and

in the belt TB. The temperature is either LST from

MODIS or modeled 2-m air temperatures as de-

scribed in section 2. The UHI intensity was then

calculated as DT 5 TC 2 TB. In any case, the

resolution is 1 km, consistent with that used in

MODIS. Figure 1b shows, as an example, the an-

nual mean 2-m air temperature map from the

UrbClim model.

The 2006 CORINE land cover data used in this study

include 38 European Environmental Agency member

states (Büttner et al. 2007). The 44 distinguished land

surface classes include artificial land coverage and are

reclassified into urban and nonurban in accordance with

Simon et al. (2010).

We used the MOD11A2 and MYD11A2 version-5

data from the MODIS Terra and Aqua platforms,

FIG. 1. City cluster and belt for the Greater London area and gridded temperature field. (a) City cluster (pink) identified by city

clustering algorithm with l5 500m. The belt (green) is of the same area as the cluster. (b) Modeled annual mean 2-m temperature for the

year 2011. The locations of the measurement stations are indicated by black squares, whereas the stations St. James Park and Charlwood

are indicated by black times signs. (c) Comparison between observed and modeled annual mean 2-m air temperatures with equation for

the straight line.
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respectively. Determined by overpass times, the Terra

satellite provides twice-daily data at around 1030 and

2230 LT, while the Aqua data are collected at 1330 and

0130 LT. Both data are aggregated into an 8-day tem-

poral resolution, which corresponds to 46 observations

annually. Wan (2008) validated LST version-5 data with

in situ measurements, indicating an accuracy better than

18C in most cases.

By averaging the four periods of MODIS data for

each observation, we obtained gridded temperature

fields of daily means. To minimize bias caused by cloud

contamination inherent in the data, we based our cal-

culation of each grid cell only on complete data. Grid-

ded daily means based on incomplete data are omitted.

Unless specified differently, we use daily averages for

our analyses hereafter. Moreover, we disregarded ob-

servations where either cluster or belt was affected by

at least 50% cloud cover. Finally, we had 276 valid ob-

servations (86% of the total) from 2006 to 2012 (the

UrbClim simulations were run over the same period).

We plotted the UHI intensity DT as a function of the

background temperature TB and calculated the monthly

averages of both quantities. To better assess the hys-

teresis, we performed a second-order Fourier approxi-

mation of both times series, in agreement with Zhou

et al. (2013).

4. Results

a. Observed and modeled 2-m air temperature
comparison

The UrbClim model has already been successfully

validated regarding its energy fluxes, 2-m air tempera-

tures, and urban–rural temperature differences for the

cities of Ghent (Belgium) and Toulouse (France; De

Ridder et al. 2015). The LST in the UrbClim land sur-

face scheme has also been validated in the past with

satellite data. In De Ridder (2006), the urban parame-

terization is tested for the city of Paris, and the simulated

LST compared favorably to observed values obtained

from thermal infrared satellite imagery. Afterward, the

land surface scheme was coupled to a mesoscale atmo-

spheric model and applied to both Paris and theGerman

Ruhr area, again yielding good comparisons between

simulated and observed LST from thermal infrared

satellite imagery (De Ridder et al. 2008, 2012).

Regarding the London domain in this study, we were

able to obtain 2-m air temperature measurement data

from a location inside the city center (St. James Park;

51.5048N, 0.1298W) and in the rural surroundings

(Charlwood; 51.1448N, 0.2308W) for the period 2010–12.

Unfortunately, the urban station is located inside a park,

which is known to be cooler than a true urban environ-

ment, so the measurements do not capture the full ex-

tent of the London UHI effect. To obtain comparable

statistics as in the LST analysis, the data were aggre-

gated into an 8-day temporal resolution that corre-

sponded to 46 observations each year. The error

statistics of the UrbClim model for both locations are

shown in Table 2. The overall performance of the model

is good, with a bias of only a few tenths of a degree, root-

mean-square errors below 18C, and correlation co-

efficients above 0.98.

However, the focus of this evaluation is on themodel’s

ability to reproduce observed urban–rural temperature

differences. The simulated temperature differences

agree fairly well with the observed ones, with a negli-

gible bias, a root-mean-square error below 0.58C, and
correlation coefficients up to 0.7.

To evaluate themodel’s ability to reproduce the spatial

pattern of 2-m air temperatures, measurement data from

six additional locations in and around the city were

gathered for the year 2011. The locations of the mea-

surement stations are shown in Fig. 1b, with the annual

mean 2-m air temperature from the UrbClim model in

the background. Figure 1c depicts the linear relationship

betweenmodeled and observed values, with a bias of 0.22

and a coefficient of determination R2 of 0.90, suggesting

the model can properly reproduce the observation re-

garding its annual mean spatial pattern.

b. Observed and modeled land surface temperature
comparison

We calculated the LST UHI intensity for London

from measurements as detailed in section 3, which we

compare in the following with the results of the

TABLE 2. Error statistics for the simulated (vs observed) urban (Tu; St. James Park) and rural (Tr; Charlwood) 2-m air temperatures and

their differences (DT). The quantities given are the bias, root-mean-square error (RMSE), and correlation coefficient (CORR).

Tu Tr DT

Year Bias RMSE CORR Bias RMSE CORR Bias RMSE CORR

2010 0.08 0.73 0.99 0.01 0.64 0.99 0.07 0.29 0.70

2011 0.26 0.93 0.99 0.17 0.91 0.98 0.17 0.42 0.59

2012 0.12 0.87 0.99 0.05 0.98 0.98 0.07 0.36 0.65
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UrbClimmodel (see section 2). Empirical andmodeled

temperatures have spatial and temporal overlap, and

we calculate the UHI intensities in the analogous

manner.

First, we want to analyze if the UrbClim model re-

produces the hysteresis-like seasonality in the LST.

Therefore, the UHI intensity DT is plotted versus the

background temperature TB. For both quantities, the

raw data in 8-day resolution are aggregated to monthly

means.

Figure 2 exhibits the raw values, the monthly means

with standard deviations, and second-order Fourier ap-

proximation. Figures 2a and 2b show the LST results for

the MODIS data and the UrbClim model, respectively.

In the case of the measured data, the monthly back-

ground temperature ranges between slightly over 08C
and almost 208C, whereas the UHI intensity is between

somewhat lower than 18C and almost 38C. The modeled

data show similar ranges, although slightly smaller UHI

intensity in summer and slightly higher background

temperature in winter.

Despite considerable spreading of the 8-day values,

the monthly values exhibit the characteristic clockwise

course in both Figs. 2a and 2b, which imply a phase

shift between the UHI intensity and the background

temperature. The UHI intensity reaches its peak

around the summer solstice, that is, in the strongest

incoming solar radiation, while the maximum values of

background temperature occur around the end of July

and the beginning of August. As can be seen in Fig. 2a,

the typical UHI intensity in May is larger than in

September by approximately 18C. The modeled data in

Fig. 2b show a similar effect, although a bit less pro-

nounced in May–September. Overall, the hysteresis-

like seasonality in the modeled LST matches the

observed pattern for London. The differences in the

shape of the Fourier approximations are minor com-

pared to the spreading of the raw data and the resulting

standard deviations.

The simulated 8-day averaged LST agrees with the

observations, both for the city cluster and the belt

(Table 3). The UrbClim model also performs well in

FIG. 2. Seasonality of UHI intensity for the London city cluster based on empirical MODIS (LST), observations (2-m temperatures), and

modeled UrbClim results (both). The inset icons denote how the UHI intensity (DT) is calculated, that is, based either (a)–(c) on the mean

temperature difference between urban area and its surroundings or (d),(e) on the temperature difference between St. James Park (urban)

andCharlwood (rural). TheUHI intensityDT is plotted as a function of the background temperatureTB. The numbers (1–12) within the plot

correspond to months of the year. Panels (a) and (b) show the results for land surface temperatures, whereas (c)–(e) are for the 2-m air

temperatures. The comparison between the observed andmodeled 2-m air temperatures [in (d) and (e)] is based on data from 2010 to 2012.
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simulating the LST-based UHI, with a bias of 20.03

and a correlation coefficient of 0.86.

c. Modeled land surface and 2-m air temperature
comparison

The described hysteresis-like seasonality has been

reported and reproduced (section 4b) only for land

surface temperature so far. Next, we want to verify if

the phenomenon occurs also in the 2-m air

temperature.

First, we investigate if the hysteresis is present in the

measurement data from the stations St. James Park and

Charlwood for the years 2010–12 and if the UrbClim

model shows comparable results. Afterward, we focus

on the full modeled period (2006–12) to make a com-

parison with the LST analysis. The comparison between

measurements and model results regarding a potential

hysteresis-like seasonality is presented in Figs. 2d and

2e. A hysteresis-like seasonality is absent in both the

observations and the model results, as all year round the

UHI intensity for 2-m air temperatures is between 18
and 28C.
Figures 2b and 2c show the results for the modeled

LST and 2-m air temperature, respectively. Here, we

calculate the daily mean temperature by averaging

the four times of the day. While the background

temperature TB exhibits a similar range in both cases,

it is apparent that the modeled 2-m air temperature is

not significantly different between the seasons. The

maximum deviation of approximately 0.28C occurs

between April and October (Fig. 2c). In comparison

to the size of the spreading, this effect can be

neglected.

As we do not observe any significant hysteresis-like

seasonality in the daily mean 2-m air temperature in

both the model and the observations, we can conclude

that it must be a phenomenon that is restricted to land

surface temperature. In other words, the UHI intensities

derived from LST and air temperature constitute dif-

ferent seasonalities.

In Fig. 2c, DT is approximately constant throughout

the year. Under the climate conditions, relatively high

UHI episodes can occur, even in winter, during dry

and sunny periods. Since sunny episodes and rainfall

events are possible all over the year, DT is almost

constant.

d. Seasonality of daytime and nighttime UHI
intensities

Figure 3 shows the seasonality of air-temperature-

based UHI for both daytime and nighttime. It is gener-

ally known that the nighttime UHI is larger than the

daytimeUHI for air temperatures (Oke 1987). TheUHI

intensity reaches its peak of about 28C at 0130 LT in

spring (April–May), whereas the minimum UHI in-

tensity occurs at 1330 LT (about 0.58C). On clear-sky

days, during the daytime, the surface is heated by solar

radiation, and the boundary layer becomes unstable,

favoring convection and turbulent mixing. This mixing

hampers the formation of a strong near-surface UHI

since a lot of warm air is transported upward to the at-

mosphere. After sunset, the surface cools and the

boundary layer becomes stable, favoring stronger near-

surface temperature gradients. The difference in cooling

rate between urban and rural area further intensifies the

UHI. This process might explain the bimodal season-

ality at 2230 LT. Because of the late sunset time (about

2120 LT) in June and July, the stabilization of the

boundary layer occurs after 2230 LT. The UHI intensity

reaches its peak several hours after sunset and at 0130

LT is approximately 0.48C larger than at 2230 LT in

June–July.

Table 4 shows the partial correlation matrix of UHI

intensities for different times of the day. For LST-

based UHI intensities, from both observation and

simulation, highly positive correlations are found be-

tween individual times of the day (shown in the left and

center matrices of Table 4). For air-temperature-based

UHI intensities, high correlations are found solely be-

tween daytime UHI intensities (1030 and 1330 LT) and

between nighttimeUHI intensities (0130 and 2230 LT),

whereas nonsignificant and even negative correlations

are found between daytime and nighttime UHI in-

tensities. This difference suggests that the LST-based

UHI intensities exhibit similar seasonalities at various

times during the day, while this consistency across

times does not exist with respect to air-temperature-

based UHI intensities. When averaging to daily mean,

the air-temperature-based UHI seasonality is attenu-

ated. This could explain why the LST-based daily mean

UHI exhibits a pronounced seasonality throughout the

study period, whereas a similar trend is absent for the air-

temperature-based UHI.

A previous study conducted by Wilby (2003) as-

sessed both daytime and nighttime UHI intensi-

ties based on 2-m air temperature data observed

from 1961 to 1990 at two weather stations (St. James

TABLE 3. Error statistics for the simulated 8-day averaged LST

vs observed MODIS LST for urban cluster TC , belt TB, and their

difference DT.

TC TB DT

Bias 0.18 0.21 20.03

RMSE 1.19 1.23 0.40

CORR 0.99 0.98 0.86
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Park and Wisley, 30 km from London). He

reported a maximum nighttime UHI intensity in Au-

gust (2.28C) and a minimum in January (1.18C),
whereas there was no remarkable seasonality in the

daytime UHI intensity. We recalculated the UHI in-

tensity in a similar way to Wilby (2003), that

is, defining the nighttime UHI intensity as DTmin 5
min(Tt

C)2min(Tt
B), t 2 fLT0130, LT2230g, and the day-

time UHI as DTmax 5max(Tt
C)2max(Tt

B), t 2 fLT1030,
LT1330g. As can be seen from Figs. 4a and 4b, in the

present study the daytime UHI intensities have low

values (about 0.58C) throughout the year, whereas the

nighttime UHI intensity reaches its maximum in April–

May (about 2.08C). Considering the difference in study

period, UHI definition, and large data spreading in the

previous study, it is reasonable to conclude that our

findings are consistent and well comparable with the

previous ones.

e. Sensitivity to the annual cycle in the radiation

We found that UrbClim reproduces the hysteresis-

like seasonality in the LST-based UHI and that the ef-

fect is largely absent in the 2-m air temperature UHI

(section 4c). Next, we want to investigate a possible

mechanism behind the hysteresis-like seasonality. It has

been hypothesized that the phenomenon is due to the

phase shift between astronomical and meteorological

seasons: the land surface temperature in the city follows

the astronomical seasons driven by solar radiation, and

the temperature in the surroundings follows the mete-

orological seasons corresponding to the regional climate

(Zhou et al. 2013).

FIG. 3. The seasonality of modeled air temperature. Background temperatures TB and UHI intensities DT are

shown for four local times of the day, (a) 0130, (b) 1030, (c) 1330, and (d) 2230 LT, that are consistent with the

MODIS overpass times. The data are fitted by second-order Fourier approximations.
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Here, we test this hypothesis by performing a model

run with manipulated external driving. As detailed in

section 2b, in the sensitivity experiment the clear-sky

maximum shortwave radiation (SR experiment) is kept

constant throughout the year. In Fig. 5, we compare the

LST UHI intensities of MODIS with the ones obtained

from the SR experiment. While in Fig. 2 the daily av-

erages are plotted, in Fig. 5 we study the four times of the

day separately.

During the daytime it can be seen that the hysteresis

shape greatly diminishes in the manipulated model run

and only small UHI intensities in the LST remain, in

contrast to the unaltered data observed with large

maximum DT of approximately 48C in June. During

the nighttime, however, the UHI intensities of the SR

experiment still exhibit a slight hysteresis shape, in

contrast to the nighttime of the MODIS data, where

the phenomenon does not occur. This remaining hys-

teresis at night could be due to a combination of the

higher soil moisture and colder deep soil temperatures

in spring, compared to autumn, keeping the rural LST

low and therefore increasing the UHI effect. Indeed,

observations indicate a seasonality in the soil moisture

content in the London region, which results in larger

thermal admittance and a decrease of warming rate in

the rural areas in spring relative to autumn. Figure 6

shows the 7-yr (2006–12) monthly mean soil moisture

for the Greater London area, obtained from the

NOAA Climate Prediction Center (CPC) soil mois-

ture data (Fan 2004). However, the UrbClim model

appears to be too sensitive to this effect, as it cannot be

seen in the nighttime MODIS data. During daytime

the seasonality of soil moisture plays a minor role in

the hysteresis effect, as the astronomical seasonality is

dominant.

5. Summary and discussion

In this paper we have analyzed the seasonal variation

of UHI intensities by combining satellite-based obser-

vations from MODIS and simulations with the urban

boundary layer climate model UrbClim. Based on both

LST and 2-m air temperature, the seasonality of UHI

intensity from 2006 to 2012 has been investigated. Al-

though both are supposed to describe the magnitude of

city warming compared to the surrounding, they con-

stitute different seasonalities. We find that the model

reproduces the hysteresis effect in the surface UHI in-

tensities. In the observed and modeled 2-m air temper-

ature, the phenomenon is largely absent, suggesting that

the seasonality is due to peculiarities of the LST. Both

observed and simulated LST-based UHI intensities ex-

hibit consistent seasonality across the different times of

the day. However, the seasonality of UHI intensities

based on air temperature is rather a function of the time

of the day.

FIG. 4. Monthly variations in (a) nighttime and (b) daytime UHI intensities based on 2-m air temperature

modeled by UrbClim in comparison with the results by Wilby (2003), where observational temperature data from

two weather stations from 1961 to 1990 were used to calculate the UHI intensities. Vertical bars denote standard

deviations.

TABLE 4. Correlations between UHI intensities of four individual times, based on MODIS-observed LST (DTMODIS
LST ), UrbClim sim-

ulated LST (DTUrbClim
LST ), and UrbClim simulated 2-m air temperature (DTUrbClim

T2m
). For LST-based UHI intensities, from both observation

and simulation, highly positive correlations are found between individual times of the day, whereas for air-temperature-based UHI

intensities, correlations are nonsignificant or even negative between different times. Asterisks represent p . 0.01.

DTMODIS
LST DTUrbClim

LST DTUrbClim
T2m

LT 0130 LT 0130 LT 0130

0.62 LT 1030 0.92 LT 1030 20.26 LT 1030

0.63 0.89 LT 1330 0.94 0.95 LT 1330 20.11* 0.66 LT 1330

0.71 0.65 0.65 LT 2230 0.95 0.87 0.93 LT 2230 0.74 20.04* 20.03* LT 2230
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A sensitivity test has been conducted by rescaling

the incoming shortwave radiation so that the clear-

sky maximum radiation is always equal to the value

of 21 March. In this case, the surface UHI intensity

is considerably reduced, supporting that the hyster-

esis is due to a delay between the meteorological

seasonality, driving the background temperature,

and the astronomical seasonality, driving the city

temperature.

In future work it could be of interest to relate this

perception with the earlier findings by Runnalls and

Oke (2000). They suggested that seasonalities of UHI

intensity could be mainly attributed to the difference in

thermal admittance between urban and rural areas,

which determines the warming and cooling rate of each

part. For urban areas, the thermal admittance could be

seen as constant throughout the year. The warming rate

of urban areas is proportional to the solar radiation

during the daytime, while its cooling rate due to in-

frared emission is almost constant during the nighttime.

In the nonurban area, where the thermal admittance is

highly subject to soil moisture and vegetation, the

warming and cooling rates exhibit pronounced sea-

sonal variations. Around the summer solstice the urban

warming rate reaches its maximum and so is the

difference between urban and rural warming. As a

consequence of this difference, theUHI intensity peaks

in June–July.

Our results indicate that the seasonality of the soil

moisture in the London region can contribute to sea-

sonal variations of the UHI intensity. Although this ef-

fect is less pronounced in the case of London, we expect

that larger differences (e.g., in more semiarid condi-

tions) could contribute significantly to hysteresis-like

curves in other regions.

FIG. 5. Hysteresis of UHI intensity for the London city cluster comparing the empirical MODIS values with the ones obtained from

the constant SR experiment as explained in section 2b. Analogous to Fig. 2, the UHI intensity DT is plotted as a function of the

background temperature TB for (top) MODIS and (bottom) UrbClim SR experiment. The numbers (1–12) within the plot correspond

to months of the year. The columns show the results for the four local times of the day: (a),(e) 0130; (b),(f) 1030; (c),(g) 1330; and (d),

(h) 2230.

FIG. 6. Monthly means of soil moisture for London, derived from

NOAA CPC soil moisture data at a 0.58 3 0.58 grid.
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