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Abstract. Most climate change impacts manifest in the form
of natural hazards. Damage assessment typically relies on
damage functions that translate the magnitude of extreme
events to a quantifiable damage. In practice, the availability
of damage functions is limited due to a lack of data sources
and a lack of understanding of damage processes. The study
of the characteristics of damage functions for different haz-
ards could strengthen the theoretical foundation of damage
functions and support their development and validation. Ac-
cordingly, we investigate analogies of damage functions for
coastal flooding and for wind storms and identify a unified
approach. This approach has general applicability for granu-
lar portfolios and may also be applied, for example, to heat-
related mortality. Moreover, the unification enables the trans-
fer of methodology between hazards and a consistent treat-
ment of uncertainty. This is demonstrated by a sensitivity
analysis on the basis of two simple case studies (for coastal
flood and storm damage). The analysis reveals the relevance
of the various uncertainty sources at varying hazard magni-
tude and on both the microscale and the macroscale level.
Main findings are the dominance of uncertainty from the haz-
ard magnitude and the persistent behaviour of intrinsic un-
certainties on both scale levels. Our results shed light on the
general role of uncertainties and provide useful insight for
the application of the unified approach.

1 Introduction

As climate extremes, natural hazards are an inherent part
of the climate system. There is increasing evidence that a
changing climate leads to changes in hazard characteristics

and can even result in unprecedented extreme weather and
climate events (IPCC, 2012). For instance, sea level rise ag-
gravates the intensity of coastal floods such that expected
damage increases more rapidly than mean sea level (Boettle
et al., 2016).

For a risk assessment of natural hazards, damage functions
are employed to translate the magnitude of extreme events to
a quantifiable damage. Often the focus is on the modelling of
the hazard, while the damage assessment receives less atten-
tion (Merz et al., 2010).

Accordingly, the availability of damage functions is very
limited. On the one hand, empirical damage functions may
not be inferable due to a lack of observations for certain im-
pacts or sites. On the other hand, the correlations between
loss and the explanatory variable(s) might be weak and loss
estimates could become unreliable due to the high level of
uncertainty. This results in the need for a comprehensive
damage assessment in order to enable the quantification and
comparison of the impacts from different natural hazards and
their interactions (Kreibich et al., 2014).

For this purpose, the work at hand provides an investiga-
tion into the common aspects of damage functions for dif-
ferent hazards. It considers similarities in damage functions
and exposure for coastal flooding (as applied by Hinkel et al.,
2014) and windstorms (Heneka and Ruck, 2008). A general
derivation of the damage functions reveals that these consti-
tute two facets of a more general approach which we refer to
as a unified damage function.

Moving towards a multi-risk assessment, it is shown how
this approach can be extended to heat-related mortality. This
is of particular concern since heat-related fatalities currently
comprise over 90 % of total natural hazard fatalities in Eu-
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Figure 1. (a) Relative flood damage function obtained for the case study of Kalundborg (Boettle et al., 2011), with a log–log inset. (b) Relative
storm-damage function for a German district (Prahl et al., 2012). (c) Damage function for the city of Bologna, relating mortality increase to
apparent temperatures (data extracted from Stafoggia et al., 2006). The shaded areas in (b) and (c) represent uncertainty bands.

rope and are also a major issue for developing countries (Gol-
naraghi et al., 2014; Munich Re, 2013).

The unified damage function also provides a platform
for the discussion of potential uncertainties. Embedding the
damage function in a probabilistic framework, this study
investigates the relevance of different uncertainty sources
for damage estimation. Excluding considerations about the
stochastic nature of extreme events, we consider uncertain-
ties in the damage function subject to a hypothetical hazard
magnitude. A variance-based sensitivity analysis (VBSA)
(Saltelli et al., 2008) is employed to quantify the influence
of uncertainties at different hazard magnitudes. Furthermore,
the analysis compares the relevance of uncertainties on the
microscale and the aggregated portfolio levels. As a result,
the work at hand provides indications for considering rele-
vant uncertainties in damage assessments.

In Sect. 2, we begin by deriving the basis of the uni-
fied damage function in the context of coastal flooding and
windstorms and extend the concept to heat-related mortal-
ity. The role of different uncertainties is discussed in Sect. 3,
where we also derive the probabilistic framework for the uni-
fied damage function. Two case studies are parameterized in
Sect. 4 to serve as the basis for the sensitivity analysis con-
ducted in Sect. 5. We conclude with a discussion of our key
results in Sect. 6.

2 Unified damage function

Damage functions are an important tool for an impact assess-
ment of climate-related hazards. For example, Fig. 1 shows
three damage functions that relate to the hazards of coastal
flooding, wind storms, and excessive heat. It is the goal of
this section to determine a unified damage function that has
applicability in each of these fields. For this purpose, the
analogies between two existing damage functions for coastal
floods and windstorms are analysed and an extension to heat-
related mortality is proposed.

Henceforth, we rely on the following definitions. A dam-
age function is defined as the mathematical relation between
the magnitude of a (natural) hazard and the average damage
caused on a specific item (building, person, etc.) or portfolio
of items. The emphasis is on direct monetary damage, but the
findings can be generalized to any measurable quantity.

In this context, the microscale level relates to a single
item. In contrast, the macroscale level refers to a portfolio
of independent items with similar properties (e.g. residen-
tial buildings). With this definition, we go beyond similar
definitions that define the macro domain solely via the spa-
tial extent (e.g. Merz et al., 2010). In the regional context,
the macroscale damage function may refer to a city or other-
wise spatially delineated portfolio.

Damage can be expressed in absolute or relative terms
(Merz et al., 2010). In order to facilitate comparison between
different hazards, we consistently employ relative figures for
both micro- and macroscale damage.

2.1 Coastal floods – explicit threshold representation

In the following, we give account of a damage function that
has been frequently applied for the assessment of coastal
flooding (e.g. Boettle et al., 2011; Hinkel et al., 2014).

We begin by defining a microscale damage function g,
which relates the relative damage r of an item i to the hazard
magnitude x:

ri = g(x− λi). (1)

The damage is conditional on the exceedance of the item-
specific hazard threshold λi . In other words, a single item
will suffer damage only if its hazard threshold is exceeded.

The hazard magnitude may be represented by a more or
less complex indicator. Frequently the most basic indicator,
maximum flood height, is chosen (Hallegatte et al., 2013;
Hinkel et al., 2014). Neglecting ancillary damaging effects,
such as floating debris, the damage to an individual build-
ing is dominated by the inundation. Accordingly, the hazard
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Figure 2. Schematically, (a) shows a macroscale damage function based on a building portfolio with a distribution of hazard thresholds as
shown in (b), where coloured bars indicate portfolio segments affected at hazard magnitude x0. (c) shows the applied microscale damage
function. Accordingly, the coloured arrows indicate the damage inflicted on the respective portfolio segments at x0.

threshold is identified as the elevation of the building site and
the threshold exceedance as the inundation level.

The microscale damage function has a lower bound of 0
for x < λi and increases monotonically to its upper bound
gmax for x ≥ λi . Considering relative damages, the upper
bound is less than or equal to 1 and represents the poten-
tial maximum damage. In general, g can exhibit jumps and
may hence not be differentiable.

For a macroscale damage assessment, e.g. for a coastal
city, it is assumed that all items in the portfolio are exposed
to the same hazard magnitude. Local fluctuations (e.g. caused
by obstruction or varying distance to coast) are considered as
a source of uncertainty in Sect. 3. For now, the fraction of
affected items c within a portfolio of n items is given by the
number of items for which x reaches or exceeds λi . Explic-
itly,

cexpl(x)=
1
n

n∑
i=1

H(x− λi), (2)

where H denotes the Heaviside step function, defined as

H(z)=
{

0, for z < 0
1, for z ≥ 0. (3)

The damage ratio for the portfolio (relative damage) is
given by the average damage of the individual items:

dexpl(x)=
1
n

n∑
i=1

g(x− λi)

=
1
n

n∑
i=1

ri . (4)

While the above equation assumes equal monetary value
for each item, generalization is simple. Different item values
can be incorporated by weighting the sum with a normalized
asset value vi (i.e. rescaled such that the average equals 1).

In order to emphasize the similarity to the storm-damage
function described in the following section, we define a dis-
crete frequency distribution f (λj ) for the portfolio and

rewrite Eq. (4) as

dexpl(x)=
∑
j

f (λj )g(x− λj ), (5)

where the sum runs over all discretized threshold values λj .
The relationship between macroscale damage, portfo-

lio composition, and microscale damage function is shown
schematically in Fig. 2. Given a hypothetical hazard mag-
nitude of x0, all colour-coded portfolio segments will be
affected since x0 exceeds their threshold. Accordingly, the
coloured arrows in Fig. 2c indicate the damage suffered by
each portfolio segment. The sum of these damages amount
to the macroscale damage level seen in Fig. 2a.

The key characteristic of this approach is the consideration
of a granular portfolio of buildings, each with an observable
hazard threshold. The approach is reliant on the availability
of building-specific information and prior knowledge on the
microscale damage function and hence represents a bottom-
up approach.

2.2 Wind storms – implicit threshold representation

In this section we give account of a storm-damage function
developed by Heneka and Ruck (2008), which is then set into
contrast with the previously discussed coastal flood damage
function.

Storm-damage functions are typically calibrated to insur-
ance data. The data comprise the fraction of affected build-
ings (claim ratio) and the damage ratio for a defined region
(Prahl et al., 2012).

It can be assumed that buildings have a specific resistance
to wind (i.e. a threshold wind speed) that depends on their
characteristics (Walker, 2011). However, the detailed build-
ing characteristics are usually not known and there is no sim-
ple proxy for the hazard threshold. In consequence, the haz-
ard threshold must be defined probabilistically, as follows.

In analogy to the coastal flood example, let λi denote the
hazard threshold of an individual item. From a probabilistic
point of view, λi constitutes an independent realization of

www.nat-hazards-earth-syst-sci.net/16/1189/2016/ Nat. Hazards Earth Syst. Sci., 16, 1189–1203, 2016
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a random variable 3, whose probability density distribution
is given by f3(λ).

For a given portfolio, P(3≤ x) represents the expected
value of the share of items whose hazard threshold has been
attained or exceeded at a given x. Hence, the claim ratio is
defined by the distribution of hazard thresholds:

cimpl(x)= P(3≤ x)

=

x∫
0

f3(λ)dλ. (6)

Having identified the distribution of hazard thresholds,
the macroscale damage ratio is given by the convolution of
the probability density of the hazard threshold and the mi-
croscale damage function g(x− λ):

dimpl(x)= (f3∗g)(x)

=

x∫
0

f3(λ)g(x− λ)dλ. (7)

In other words, the potential damage at any hazard threshold
λ is weighted with the probability density of λ. Via integra-
tion, the macroscale damage comprises all the contributions
from hazard thresholds below the hazard magnitude x.

As in the previous case of coastal flooding, the damage
function considers a granular portfolio of exposed buildings.
The key difference is that in the case of wind storms a direct
observation of the hazard threshold is not feasible. Instead, an
implicit description of the portfolio is given by the distribu-
tion of hazard thresholds. In order to obtain this distribution,
the damage function is calibrated against macroscale damage
data in a top-down approach.

Simple inspection shows that Eq. (7) for wind storm is the
continuous analogue to Eq. (5) for coastal flooding. Conse-
quently, both approaches – bottom-up in the case of coastal
floods and top-down for wind storms – can be understood as
different facets of a unified damage function.

2.3 Extension to heat-related mortality

Formally, the mathematical relationships derived in the pre-
vious sections also hold for other natural hazards such as
heat-related mortality.

In general terms, the mortality rate is a measure of fa-
talities in a given population over a certain period of time.
While it is not always possible to attribute fatalities to distinct
causes, the effect of excess mortality due to the impact of heat
waves has been widely studied (e.g. Gasparrini et al., 2015;
Leone et al., 2013). Typically, excess mortality describes the
increase of daily mortality in relation to a temperature indica-
tor. An example for excess mortality for the city of Bologna
is given in Fig. 1c. As can be seen, the expected mortality
starts to increase just above 20 ◦C of apparent temperature

(Stafoggia et al., 2006). In absolute terms, the increase in
mortality can be defined as the daily number of heat-related
fatalities divided by the total population.

Although it is a delicate issue to discuss human mortality
in a technical language, we believe that it allows for an intu-
itive and meaningful application of the unified damage func-
tion. First, decease is expressed via a Heaviside step func-
tion, where 0 and 1 denote life and death respectively. The
step function takes the part of the microscale damage func-
tion g in the unified damage function. Second, the hazard
threshold relates to the maximum heat-wave intensity (e.g.
apparent temperature) tolerated by an individual. While this
threshold is generally not known and may also fluctuate over
time, a statistical description of the distribution of heat-wave
thresholds within the population would be feasible.

Extending the regional focus, Leone et al. (2013) and oth-
ers have shown an influence of local climatic conditions as
well as socio-demographic and economic characteristics on
the shape of the damage function. However, a comprehensive
decomposition of the hazard threshold is yet to be found.

Caution should be taken when considering the uncertainty
of the hazard threshold. In contrast to the cases of coastal
flood and storm damages, where building portfolios change
only gradually, human heat tolerance is subject to contin-
uous biophysical, behavioural, and environmental changes.
Hence, a path dependence of the threshold exceedance is ex-
pected for ongoing heat waves.

3 Uncertainty

While the stochastic occurrence of hazardous events has been
subject to ample research, the origin and propagation of un-
certainty within the damage function has received less atten-
tion. Often, a rough understanding of sensitivity is obtained
from estimating alternative scenarios (e.g. Hallegatte et al.,
2013; Hinkel et al., 2014). Other studies focus on an empir-
ical description of uncertainty (e.g. Heneka and Ruck, 2008;
Merz et al., 2004) but do not provide a comprehensive anal-
ysis of potential sources.

To enable a comprehensive sensitivity analysis of uncer-
tainty from different sources, the unified damage function is
cast into a probabilistic framework. We begin by defining
a taxonomy of uncertainty sources that are relevant in our
context.

3.1 Brief taxonomy of uncertainty sources

Uncertainties arise at each step along the causal chain, from
the modelling or observation of the hazard through the es-
timation of micro- and macroscale damage to the valida-
tion against reported losses. We focus on the propagation
of uncertainties within the damage function, linking the mi-
croscale with the macroscale behaviour. For this reason,
model and parametric uncertainty are excluded. Model un-

Nat. Hazards Earth Syst. Sci., 16, 1189–1203, 2016 www.nat-hazards-earth-syst-sci.net/16/1189/2016/
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certainty would arise from selecting an inadequate damage
function that deviates from the actual hazard–damage rela-
tion. Parametric uncertainty relates to incomplete knowledge
about the model parameters (but not the explanatory vari-
ables).

It is common to categorize uncertainties into those that are
due to statistical variability (aleatory) and those that are due
to incomplete knowledge (epistemic) (Merz and Thieken,
2009). While model and parametric uncertainty belong to the
latter category, the attribution is not clear-cut for uncertain-
ties in explanatory variables. In principle, all aleatory uncer-
tainty could be addressed as epistemic by raising the level of
detail and modelling all minute sub-scale processes. Hence,
Bedford and Cooke (2001) state that “the categorization into
aleatory and epistemic uncertainties is for the purposes of a
particular model”.

In order to maintain an intermediate level of detail, the
considered uncertainties are classified as aleatory, i.e. statis-
tically tractable. Having excluded model and parametric un-
certainty, the remaining sources of uncertainty can be identi-
fied from the mathematical description of the damage func-
tion. For this purpose, Eq. (4) is cast into its most general
form, including a variable asset weight vi and allowing for a
local hazard magnitude x̃i to fluctuate around x:

dexpl(x)=
1
n

n∑
i=1

vig(

ei︷ ︸︸ ︷
x̃i − λi)︸ ︷︷ ︸
ri

. (8)

On the right-hand side of Eq. (8), the asset weight vi , the rel-
ative damage ri , and the exceedance ei are identified as po-
tential sources of uncertainty. These are intrinsic uncertainty
sources as they manifest within the damage function. On the
left-hand side, the hazard magnitude represents an extrinsic
source of uncertainty for the damage function. If observa-
tions of macroscale damage were available for the calibration
or validation, these would represent an additional source of
extrinsic uncertainty.

The sources of uncertainty are summarized in Fig. 3 and
each source is briefly described in the following.

a. The asset values of affected items can vary significantly
(e.g. different house prices). The attribution of values
to location is feasible only on a detailed case study
level, while large-scale assessment typically relies on
by-proxy estimation of average asset value (e.g. Hal-
legatte et al., 2013; Hinkel et al., 2014). Especially in
the latter case, unknown asset values pose a significant
source of uncertainty.

b. Even if structures of similar type are equally affected
(i.e. at the same threshold exceedance) their damage can
differ considerably. The underlying damaging processes
are not well understood and are dependent on construc-
tion types and employed materials. The resulting uncer-
tainty could in principle be reduced by modelling all

Within the damage function 

Extrinsic uncertainty Intrinsic uncertainty 

Related to a damage assessment or validation 

d.  Hazard magnitude 

e. Reported portfolio damage 
for calibration/validation 

b.  Damage level per item 

a.  Asset value 

c. Exceedance due to 
− Local hazard fluctuation 
− Hazard threshold variation 

Figure 3. Classification of the sources of uncertainty into intrinsic
and extrinsic.

physical processes involved. However, data limitations
usually permit no more than a stratification to a few pre-
defined asset classes (Hammond et al., 2015).

c. The threshold exceedance for an item is subject to un-
certainty in the hazard threshold (λi) and fluctuations
of the local hazard magnitude (̃xi). The hazard thresh-
old may either be not directly observable (e.g. for storm
damage) or be affected by measurement error (e.g. using
elevation models for flood damage assessment). Simi-
larly, the local hazard magnitude is affected by observa-
tional or modelling error.

d. On the macroscale level, the hazard magnitude is typi-
cally described by a single indicator (e.g. the maximum
flood level or gust speed). For all practical purposes,
this indicator is subject to uncertainty, stemming ei-
ther from imprecise measurement, uncertain model out-
put, or confidence levels estimated from extreme value
statistics (Coles and Tawn, 2005). Prahl et al. (2012)
highlight the relevance of this uncertainty by indicating
that variability of reported storm losses could be largely
due to uncertainty in wind measurements.

e. For purposes of calibration and validation, model esti-
mates are often put into comparison with reported fig-
ures of damage or economic loss. Like any observation,
these figures are subject to uncertainty. For example, re-
ported figures may be affected by gradual damage ac-
cumulation masking the effect of individual hazard oc-
currences, by incentives for insurance holders (e.g. de-
ductibles), and by wealth levels that affect the construc-
tion quality and the likelihood of purchasing insurance.

3.2 Probabilistic description of uncertainty

A quantitative analysis of the aforementioned uncertainties
requires an extension of the basic damage function. Here, we
derive a comprehensive probabilistic framework for the uni-
fied damage function. The framework also forms the mathe-
matical basis for the subsequent sensitivity analysis.

www.nat-hazards-earth-syst-sci.net/16/1189/2016/ Nat. Hazards Earth Syst. Sci., 16, 1189–1203, 2016
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Figure 4. The Lisbon urban cluster supplied by B. Zhou (see Zhou
et al., 2013). The red-shaded area represents continuous and discon-
tinuous urban fabric as classified in the CORINE land cover data
(Büttner et al., 2007).

We begin by defining random variables for each of the
micro- and macroscale model variables. Microscale variables
are the local hazard magnitude X̃, the hazard threshold3, the
threshold exceedance E, the inflicted relative damage R, and
the relative asset weight V . The asset-weighted damage for
a single object is described by L. Similarly, we define the
macroscale random variables for the hazard magnitude and
its measurement, X and X̂. The macroscale damage for the
portfolio takes into account the different weights of the asset
values and is described by D. In the following, the proba-
bility density distribution (PDF) of each random variable is
denoted as f(·).

The exceedance, e = x̃−λ, closely links the uncertainty in
the local hazard magnitude with the uncertainty of the haz-
ard threshold. The PDF of the random variable E for the ex-
ceedance is hence given by the convolution of the PDFs ofX
and 3 as follows:

fE|X=x(e)= fX̃|X=x (̃x)∗f3(−λ). (9)

The distribution of the relative damage caused, fR|E=e(r),
is conditional on the level of exceedance. The combination

Table 1. The number of inundated buildings within the Lisbon ur-
ban cluster at hypothetical flood levels between 0 and 10 m.

Flood level (m) Inundated buildings

Total Increase (%)

0.0 0 –
0.5 19 –
1.0 28 47
1.5 36 29
2.0 43 19
2.5 67 56
3.0 107 60
3.5 146 36
4.0 210 44
4.5 453 116
5.0 670 48
5.5 888 33
6.0 1284 45
6.5 1621 26
7.0 1895 17
7.5 2356 24
8.0 2659 13
8.5 3025 14
9.0 3435 14
9.5 3985 16

10.0 4478 12

with Eq. (9) yields an expression for the distribution of rela-
tive damage conditional on the hazard magnitude:

fR|X=x(r)=

∞∫
0

fR|E=e(r)fE|X=x(e)de. (10)

We define the asset-weighted damage as the product of rel-
ative damage and normalized asset value, l = rv /n. In the
case that individual asset values are not known, a probabilis-
tic asset weight v is employed. Its PDF, fV(v), can be ob-
tained by rescaling the PDF of absolute asset values such that
the expected value equals 1.

The PDF of l is obtained by combining the PDF of asset
weights with Eq. (10):

fL|X=x(l)=

∞∫
0

fR|X=x(n l/v)fV (v)dv. (11)

Since the macroscale damage d is the sum of the weighted
microscale damages, its PDF is given by the convolution of
the density functions for the asset-weighted damages of each
of the n portfolio items:

Nat. Hazards Earth Syst. Sci., 16, 1189–1203, 2016 www.nat-hazards-earth-syst-sci.net/16/1189/2016/
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Table 2. Parameterization of the probabilistic damage function for the estimation of damage from coastal flooding in Lisbon. The variables
µ and σ denote the mean and standard deviation respectively.

Component Parameterization References

Portfolio composition Frequency distribution for Lisbon (this paper) see Table 1
Microscale damage function g(z)= z

z+1 m Hinkel et al. (2014)
Asset value LogN (µ= 1,σ = 0.5) adapted from Ohnishi et al. (2011)
Damage level LogN (µ= g,σg=0.5 = 0.1) (this paper) based on Lawrence (1988)
Threshold exceedance N (µ= x− λ,σ = 0.2m) Hallegatte et al. (2013) and EEA (2014)
Hazard magnitude N (µ= x,σ = 0.1m) Fortunato et al. (2014)

Table 3. Parameterization of the probabilistic damage function for the storm-damage simulation for a German building portfolio. The vari-
ables µ and σ denote the mean and standard deviation respectively.

Component Parameterization References

Portfolio composition N (µ= 50.5ms−1,σ = 7.8ms−1) Heneka and Ruck (2008)

Microscale damage function g(z)=
(

z
70 m s−1

)2
Heneka and Ruck (2008)

Asset value LogN (µ= 1,σ = 0.5) adapted from Ohnishi et al. (2011)
Damage level LogN (µ= g(z),σr=0.5 = 0.1) (this paper) based on Lawrence (1988)
Threshold exceedance N (µ= x− λ,σ = 1ms−1) (this paper) based on Mitsuta and Tsukamoto (1989)
Hazard magnitude N (µ= x,σ = 1.5ms−1) Prahl et al. (2012) and Hofherr and Kunz (2010)

D =

n∑
i=1

Li

fD|X=x(d)= fL1|X∗fL2|X∗. . .∗fLn|X. (12)

Finally, uncertainty in the true hazard magnitude x (e.g.
resulting from measurement or model output x̂) is modelled
via PDF f

X|X̂=x̂
(x). Using Eq. (12) it follows that

f
D|X̂=x̂

(d)=

∞∫
0

fD|X=x(d)fX|X̂=x̂(x)dx. (13)

4 Case studies for the sensitivity analysis

Based on our taxonomy of uncertainties, we provide an ex-
emplary parameterization of the unified damage function for
two separate climate-related hazards: (i) coastal flooding in
Lisbon, Portugal, and (ii) winter-storm damage for a German
building portfolio comprised of 5000 individual buildings.

The Lisbon case exemplifies a bottom-up approach, where
the individual hazard thresholds are known explicitly. Since
coastal flooding is not bound by artificial administrative
boundaries, we consider a cluster of continuous urban ag-
glomeration in the Lisbon metropolitan area (Fig. 4). The
cluster extent was kindly supplied by B. Zhou (see Zhou
et al., 2013) and had been generated from 2006 CORINE
land cover data (Büttner et al., 2007). It includes several con-
nected suburbs along the shores of river Tejo and the north of
the Setúbal peninsula.

The portfolio of flood-prone buildings within the cluster of
Lisbon is based on statistical data provided by the Instituto
Nacional de Estatística1, the national Portuguese statistics in-
stitute. Census data from 2007 on the number of buildings at
the highest resolution available (Freguesia, i.e. urban quar-
ters) were downscaled via the CORINE land cover classes
for continuous and discontinuous urban fabric.

The number of buildings within each CORINE cell were
assigned to elevation levels obtained from the EU-DEM2,
a hybrid digital elevation model (DEM) based mainly on
SRTM and ASTER GDEM data. A flood-fill algorithm
(Poulter and Halpin, 2008) was employed to determine
which DEM cells were affected at different flood levels, in-
creasing in steps of 0.5m up to a maximum of 10m. All em-
ployed data are publicly available. Table 1 shows the number
of flooded buildings within the Lisbon urban cluster at flood
levels up to 10m.

Microscale building damages in the Lisbon cluster are es-
timated with the damage function employed by Hinkel et al.
(2014), described by a saturating power law z/ (z+1m). The
function implies that relative damage increases proportional
to the inundation level for z � 1m and saturates at 1 for
large z.

A complementary top-down approach is pursued for the
German building portfolio, with an implicit description of
the hazard threshold by means of a probability density distri-
bution. In the case of storm hazard, the determinants of the
hazard threshold are less clear-cut than for flood damages.

1http://www.ine.pt
2http://www.eea.europa.eu/data-and-maps/data/eu-dem
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Figure 5. (a–c) show the damage function components for the case study of coastal flooding in Lisbon, Portugal. (d–f) demonstrate the
methodology for storm damage within a building portfolio of 5000 individual buildings, based on the study by Heneka and Ruck (2008).
The shaded areas around the damage functions indicate 95 % confidence intervals. The insets in (a) and (d) show the macroscale damage
function on a log–log scale.

While they depend strongly on construction type and build-
ing age, a strong residual uncertainty remains. Heneka and
Ruck (2008) argue for a simple statistical description of haz-
ard thresholds via a normal distribution with mean 55ms−1

and standard deviation 7.8ms−1. Due to the lack of similar
works, we adopt their parameterization to generate a generic
portfolio of 5000 residential buildings.

The mean microscale damage caused by severe winds is
often described as a power law with an upper bound repre-
senting complete destruction (Prahl et al., 2015). Again fol-
lowing Heneka and Ruck (2008), we apply a simple square
power law.

Unlike the general features of the damage function, the na-
ture of the uncertainties involved is typically not well under-
stood and their quantification heavily relies on assumptions.
Consequently, the required PDFs of the asset value, the mi-
croscale damage, the exceedance, and the hazard magnitude
were estimated from literature, where available, and other-
wise based on own considerations. Tables 2 and 3 provide a
summary of the case study parameterization for each of the
case studies, including the employed references. Due to the
scarcity of information on uncertainty concerning microscale
damage and the asset value, an identical parameterization
was used for both case studies. Details on the estimation of
uncertainties are given in Appendix A.

Figure 5a–c and d–f show the derived macroscale dam-
age function, the portfolio composition, and the assumed mi-
croscale damage function for both cases respectively.

5 Sensitivity analysis

Going beyond the qualitative description of the involved un-
certainties, this section focusses on their potential impact
on damage estimates. From a non-linear damage function
we expect potential interactions between different uncertain-
ties that may vary with the hazard magnitude. Moreover,
the analysis should take the different scales into account, as
the macroscale damage is effectively an aggregation of mi-
croscale damages.

The influence of the various sources of uncertainty is as-
sessed by performing a sensitivity analysis. Sensitivity anal-
ysis usually considers the effect of variation in one or more
input variables on the dependent variable. For simple linear
models, it may be sufficient to vary only one input variable
at a time, since there is no interaction between different in-
put variables. Non-linear models, in contrast, require a global
sensitivity analysis, where simultaneous changes of all input
variables are considered.

5.1 Method

We employ the VBSA, which estimates the contribution of
each input variable to the total variance of the dependent
variable (Saltelli et al., 2008). VBSA is a global sensitivity
analysis and uses a Monte Carlo approach to sample from
the probability distributions of the uncertain variables.

Nat. Hazards Earth Syst. Sci., 16, 1189–1203, 2016 www.nat-hazards-earth-syst-sci.net/16/1189/2016/
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The general algorithm of VBSA is summarized as follows.
First, two (s× t) matrices A and B are defined, where each
column vector represents one of the t input variables that has
been sampled s times. Initially, the matrices are filled with
uniformly distributed random values between 0 and 1. Then,
inverse cumulative distribution functions are used to con-
vert the random vectors to the respective input variables of
the model, i.e. the damage function. For each input variable
with index i, a new matrix C(i) is constructed, comprising all
columns with index j 6= i from A and the column j = i from
B.

The total-effect index is chosen as the main metric for sen-
sitivity. It describes the share of output variance that is due
to the direct and indirect effects of an uncertain variable. The
direct effect (also called first-order effect) measures the lone
contribution of varying a single variable, averaged over dif-
ferent realizations of the remaining variables. Indirect effects
(higher-order effects) are due to interactions between two or
more variables, e.g. a second-order effect may arise from the
interaction between the threshold exceedance and the dam-
age level.

The total-effects index TEi of the damage function F(·) is
evaluated using the recommended Jansen estimator (Jansen,
1999; Saltelli et al., 2010):

TEi =
1
2s
∑s
k=1

(
F(A)k −F(C(i))k

)2
σ 2 , (14)

with

σ 2
=

1
2s

s∑
k=1

(
F(A)2k +F(B)

2
k

)

−

(
1
s

s∑
k=1

F(A)k +F(B)k

)2

. (15)

Note that in Eq. (15) we include both matrices A and B in
order to obtain a closer estimate of the variance than by using
matrix A alone.

The VBSA was applied on three distinct levels: (i) the mi-
croscale level related to a single item, (ii) the macroscale
level limited to intrinsic uncertainty, and (iii) the macroscale
level including extrinsic uncertainty. The sample size s was
set to 20 000. At level (i), s random samples of the asset
value V , the damage level R, and the exceedance E were
drawn from the probability distributions fV (v), fR|E=e(r),
and fE|X=x(e) respectively. At level (ii), the same proce-
dure was applied, albeit for each of the items that sum up
the portfolio. Finally, at level (iii), the hazard magnitude X
and the macroscale damageD (including the effects of intrin-
sic uncertainties) were drawn from the distribution functions
f
X|X̂=x̂

(x) and fD|X=x(d) respectively.
In order to evaluate the uncertainty of the sensitivity in-

dices, the bootstrap method was used to obtain uncertainty
intervals. Specifically, the s random samples were resampled
(i.e. selected randomly with replacement) 1000 times, and

each time the sensitivity indices were recalculated. From the
resulting distribution, the 95 % uncertainty range was esti-
mated.

5.2 Results from the sensitivity analysis

Figure 6 summarizes the VBSA results for the Lisbon case
study. Figure 6a shows the total-effect index for the intrinsic
uncertainties at the microscale level (i.e. concerning a single
building). It can be seen that at low inundation levels un-
certainty in the threshold exceedance (due to local hazard
fluctuations and/or variation of the hazard threshold) dom-
inates. However, at inundation levels beyond 1m its rele-
vance quickly diminishes and uncertainty in the building as-
set value dominates. While the effect of the damage-level
uncertainty surpasses that of the uncertainty in the thresh-
old exceedance at most inundation levels, it is generally out-
weighed by the uncertainty in asset value.

The overall behaviour seen for the microscale case also
holds true for the accumulated building portfolio of Lisbon.
Excluding extrinsic uncertainty, Fig. 6b shows the sensitivity
of the portfolio damage to intrinsic uncertainties. In contrast
to the microscale case, the plot indicates a stronger impact of
the uncertainty in the threshold exceedance. This behaviour
arises from the fact that there are additional buildings af-
fected as the flood level increases. Hence, the marked bump
of the curve above 4m flood height is explained by the strong
increase of affected buildings at that elevation (cf. Table 1).

On the macroscale level, Fig. 6c shows the effect of the
accumulated intrinsic uncertainties and the extrinsic uncer-
tainty in the global hazard magnitude. The complex be-
haviour of the two curves can be decomposed into two main
aspects. Firstly, the relative importance of intrinsic uncertain-
ties decreases with rising flood levels. Secondly, the strong
impact of intrinsic uncertainties around a flood level of 2m
results from the low fraction of newly affected buildings, as
seen in Table 1. Higher fractions at 3m and in particular be-
yond 4m lead to an increased relevance of the uncertainty in
hazard magnitude.

This behaviour can be explained as follows. For a fixed
number of affected buildings, intrinsic uncertainty outpaces
the uncertainty in hazard magnitude. However, an increase in
affected buildings reduces the relative magnitude of intrinsic
uncertainty due to diversification. This is not the case for the
uncertainty in hazard magnitude, which acts as a bias for the
entire portfolio.

The sum of the total-effect indices of each variable is equal
to 1 only in the absence of higher-order effects. Sums larger
than 1 are due to potential double counting, as higher-order
effects are attributed to each of the interacting variables. It
is clear from inspection that the results given in Fig. 6a–c
indicate a minor role of higher-order effects. However, for
completeness, we provide a detailed breakdown on first- and
higher-order indices in the Supplement.
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Figure 6. (a–c) show the results of variance-based sensitivity analysis (total-effect index) for the Lisbon case study at different scales.
Shaded areas indicate boot-strapped confidence bands. For microscale damages, (a) shows the attributable effect of intrinsic uncertainty
in asset value, damage, and threshold exceedance on the total variance. Similarly, (b) shows the effect of the intrinsic uncertainties on the
variance of the aggregated portfolio. In (c), the portfolio-aggregated microscale uncertainties are weighed against the hazard uncertainty, i.e.
error in estimated flood level. (d) shows the standard deviation against the expected value of flood damages on log–log scale. Each curve
includes the uncertainty sources indicated by the legend.

In the absence of interaction, the relevance of the uncer-
tainties is determined by their relative magnitude. In this re-
gard, Fig. 6d shows the isolated effect of selected input vari-
ables on the standard deviation of damage estimates. The
comparison with Figs. 6b and c shows that the source of un-
certainty exhibiting the largest standard deviation is also the
dominating factor in the sensitivity analysis.

The sensitivity results obtained for the second case study
– storm damage in a hypothetical German city – are similar
to the Lisbon case. Figure 7a shows the relative contributions
of the intrinsic uncertainties to the variance of the microscale
damage. Despite the different shapes of the microscale dam-
age function (cf. Figs. 5c and f) there is a strong resemblance
to Fig. 6a. A different behaviour is seen at an exceedance
wind speed of 70ms−1, where the microscale damage func-
tion reaches saturation. At this point, complete destruction
has taken place, leaving only the uncertainty of the original
asset value.

On the macroscale level, intrinsic uncertainties show a
sensitivity that is similar to the microscale level. The curves

shown in Fig. 7b are considerably smoother than those of
the Lisbon case study. This underlines the conjecture that the
irregularities in the Lisbon case study are due to the hetero-
geneous portfolio distribution. This aspect is also reflected in
the relation between intrinsic uncertainties and the extrinsic
uncertainty in the hazard magnitude in Fig. 7c. Here, the un-
certainty in the hazard magnitude dominates for almost the
entire range of gust speed. The narrowing at very low gust
speeds is a result of the interdependence between the uncer-
tainties in the exceedance and the hazard magnitude when
the portfolio is barely affected. Finally, Fig. 7d complements
the sensitivity results, showing the standard deviation of the
potential storm damage against the expected value.

6 Conclusions

Based on damage assessments for coastal flood and storm
hazards, a unified damage function was identified and em-
bedded into a probabilistic framework for the consideration
of uncertainty.
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Figure 7. (a–c) show the results of variance-based sensitivity analysis (total-effect index) for the German storm-damage case study at dif-
ferent scales. Shaded areas indicate boot-strapped confidence bands. For microscale damages, (a) shows the attributable effect of intrinsic
uncertainty in asset value, damage, and threshold exceedance on the total variance. Similarly, (b) shows the effect of the intrinsic uncer-
tainties on the variance of the aggregated portfolio. In (c), the portfolio-aggregated microscale uncertainties are weighed against the hazard
uncertainty, i.e. error in estimated flood level. (d) shows the increasing standard deviation against the expected value of damage estimates on
a log–log scale. Each curve includes the uncertainty sources indicated by the legend.

While an exchange of information between the various
hazard communities could potentially trigger methodologi-
cal improvement (Merz et al., 2010), the approaches for as-
sessing direct damage are typically hazard specific (Meyer
et al., 2013). Hence, this study has investigated the analogies
of the approaches for coastal flood, storm damage, and heat-
related mortality. The defining property of these approaches
is the consideration of granular portfolios of exposed items
(e.g. residential buildings) or people. In our view, the appli-
cability of the unified approach extends to any hazard that
affects such a granular portfolio. Furthermore, the unified ap-
proach represents a synthesis of synthetic bottom-up and em-
pirical top-down damage evaluation. With its broad scope, it
is seen as a potential building block towards a theory of dam-
age functions.

Cross-hazard comparison of uncertainties within the uni-
fied approach has the potential to provide valuable insight
on the nature and relevance of uncertainties along the causal
chain. From a practitioner’s point of view, determining the
most relevant sources of uncertainty is arguably more im-

portant than quantifying each potential uncertainty source.
Serving this purpose, valuable insight could be gained from
a variance-based sensitivity analysis of the unified dam-
age function. The analysis goes beyond similar studies (e.g.
Egorova et al., 2008; de Moel and Aerts, 2011) by consider-
ing uncertainty on both the microscale and macroscale levels,
as well as at different hazard magnitude. Investigating both
the case of coastal flooding for the city of Lisbon and the
case of storm damage in a German town, a set of general
conclusions could be drawn.

On a general level, extrinsic and intrinsic sources of un-
certainty were distinguished. Extrinsic sources manifest as
a random bias for the entire portfolio (e.g. hazard magni-
tude), while intrinsic uncertainties arise locally and affect in-
dividual portfolio items (w.r.t. asset value, damage level, and
threshold exceedance).

As demonstrated by both case studies, extrinsic uncer-
tainty can play a crucial role as the dominant source of un-
certainty. In contrast to the intrinsic uncertainties, whose ag-
gregated effect (i.e. in terms of the standard deviation of

www.nat-hazards-earth-syst-sci.net/16/1189/2016/ Nat. Hazards Earth Syst. Sci., 16, 1189–1203, 2016
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the macroscale damage) increases sub-linearly with portfo-
lio size due to diversification, the effect of extrinsic uncer-
tainty is directly proportional to portfolio size. Hence, given
a sufficiently large portfolio and uncertainty in the hazard
magnitude, intrinsic uncertainty sources may be negligible
for damage assessment. This is of particular importance in
climate science, where practitioners often deal with ensem-
ble simulations exhibiting large model spreads. It is also rele-
vant for natural hazard research, where extreme value theory
often implies broad confidence intervals for extreme events.

An example where this result allows for additional insight
is the work of Heneka and Ruck (2008). In their damage
assessment, uncertainty was attributed to a random bias on
the threshold distribution for each post-code area. However,
the assumed bias is equivalent to an uncertainty in the haz-
ard magnitude, i.e. error from physical modelling. Such un-
certainty in gust estimation is not only more intuitive than
a threshold bias but also consistent with the validation re-
sults of the employed atmospheric model (Hofherr and Kunz,
2010).

Considering the relevance of intrinsic uncertainty sources,
our results show that the composition of uncertainty within
the microscale damage function largely determines the role
of intrinsic uncertainties at the portfolio level.

Amongst the intrinsic uncertainties, the uncertainty due
to local threshold exceedance (being a combination of local
hazard fluctuations and local variations in hazard threshold)
is only significant for low hazard magnitudes. This magni-
tude range may not be relevant in certain cases, e.g. focussing
on high-end scenarios or including protective measures such
as sea walls. The case studies also show the extent to which
variability in asset values can dominate intrinsic uncertainty.
While that uncertainty could be reduced if spatially resolved
data were available, this is typically not the case for data-
scarce regions within developing countries, which are also
more severely affected by natural disasters (IPCC, 2012).

Despite the different microscale damage functions used,
both case studies show a similar sensitivity to uncertainties.
This indicates that the validity of our conclusions on uncer-
tainty reaches beyond the considered hazards. Moreover, the
effect of different microscale damage functions (of the same
one-parameter family) could be simulated by a re-scaling.
For the sensitivity results, for example, a more shallow mi-
croscale damage function would result in a stretch along the
hazard axis, while preserving overall behaviour.

The effect of large-scale protection measures, e.g. sea
walls, was not considered in this study for two reasons.
Firstly, such measures are specific to flood hazards and have
no counterpart for other hazards, such as wind storms. Sec-
ondly, sea walls modify the incident hazard by interrupting
events below the design protection level and are hence not
an immediate component of damage estimation. However,
it is known that the probability of protection failure, e.g.
crevasses, represents a major source of uncertainty for dam-
age assessment (de Moel et al., 2012).

In practice, there are some limitations to the unified dam-
age function that arise from the simplicity of the approach.
At increased cost and effort of data acquisition, more spe-
cialized approaches could provide superior damage estimates
(e.g. Kreibich et al., 2010; Pita et al., 2013). However, the
strengths of the discussed approach are in its versatility and
the ability to provide valuable insight for applications where
detailed data for calibration and validation are missing. The
latter aspect is highlighted by our general conclusions on un-
certainties. Given the evident lack of reliable information on
uncertainty, as encountered for the parameterizations of our
case studies, the results may guide further investigation.

Addressing the need for comprehensive approaches for
risk analyses and management, we have shown that certain
damage functions for coastal floods and windstorms are two
facets of a unified damage function. Further, it was indicated
how this unified approach could be extended to the estima-
tion of heat-wave fatalities.

With its wide applicability to the assessment of both loss
and fatalities, the unified damage function has the potential
to facilitate knowledge transfer between climate-related haz-
ards and to narrow the gap for a multi-hazard damage as-
sessment. Moving towards this goal, the interdependence and
cascading effects of climate-related hazards become of wider
concern. For further research, we hence propose the exten-
sion of the unified approach to include non-stationary hazard
thresholds.
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Appendix A: Uncertainty parameterization

A1 Lisbon case study for coastal flooding

A1.1 Hazard magnitude uncertainty

For our case study region, the Portuguese coast and in par-
ticular Cascais, Fortunato et al. (2014) estimate a tidal un-
certainty of 5cm and an uncertainty of approximately 10cm
for extreme water levels calculated by a dedicated circulation
model. Based on this result and due to the lack of information
on the distribution of uncertainty, we make the assumption of
a normally distributed error in overall flood level with a stan-
dard deviation of 10 cm. If ensemble predictions of surge lev-
els were available, the ensemble spread (standard deviation)
could serve as a indicator for the forecast error (Flowerdew
et al., 2009, 2010).

A1.2 Threshold exceedance uncertainty

Modelling flood damages, exceedance uncertainty is mostly
driven by errors related to the elevation model used. For Por-
tugal, statistical validation of the EU-DEM against ICESat
measurements (EEA, 2014) indicates a mean error > 0.5m
and an average standard deviation of approximately 2m.
However, errors in flood-prone lowlands are expected to be
strongly spatially correlated and to exhibit less local fluc-
tuations (Hallegatte et al., 2013). In the lack of a detailed
DEM validation for Lisbon, we assume a modest normally
distributed pixel error with a standard deviation of 0.2m.

A1.3 Damage level uncertainty

Actuarial practice suggests that the log-normal distribution
may serve as a first approximation to the broadly skewed
damage claim distributions (Lawrence, 1988). By applying
a constant scale factor, the log-normal distribution represents
a multiplicative error term that is proportional to the average
damage caused. Defining the microscale damage curve as the
mean of the log-normal distribution, we set the scale factor
such that the standard deviation σ = 0.1 at a relative dam-
age d = 0.5, implying a standard deviation of approximately
20 % for d � 1. The upper tail of the log-normal damage
distribution is truncated at d = 1, which represents complete
destruction and loss.

A1.4 Asset value variation

Regarding storm or flood damages to individual buildings,
the built-up values can be approximated by the distribution
in house prices. For the case of Tokyo, Ohnishi et al. (2011)
show that house prices generally follow a log-normal distri-
bution, with price bubbles affecting mainly the tails of the
distribution. While comparable studies are not available for
the European region, one may assume that relative house
prices follow a similar distributional shape and width. On

relative terms, the results by Ohnishi et al. (2011) translate
to a log-normal distribution normalized to an average value
µ= 1 and with a standard deviation σ = 0.5.

A2 Storm damages in a German building portfolio

A2.1 Hazard magnitude uncertainty

For maximum wind gusts, which are required for the assess-
ment of storm damages, Prahl et al. (2012) report a strong
variation between measurements at nearby sites and esti-
mate that 75 % of measurements fall within the range of
±1.5 ms−1. Reports show an even stronger modelling uncer-
tainty when comparing gust estimates from a mesoscale at-
mospheric model from a mesoscale atmospheric model with
measured gusts (e.g. Ágústsson and Ólafsson, 2009; Hofherr
and Kunz, 2010). In our calculations, we hence assume wind
gust uncertainty to follow normal distribution with a standard
deviation σ = 1.5ms−1.

A2.2 Threshold exceedance uncertainty

Wind gusts exhibit a strong spatial variability at short ranges.
This aspect is demonstrated, inter alia, by the fact that the 3s
gust factor (relating extreme wind gust to mean wind speed)
drops by more than 20 % if spatial averaging is applied
for short distances less than 1km (Mitsuta and Tsukamoto,
1989). While there is no indication in the scientific literature
on the uncertainty in storm hazard threshold, the macroscale
uncertainty in storm gust speed poses an upper bound for the
local gust variability. In line with macroscale gust speed un-
certainty, we assume a normally distributed local variability,
albeit with a reduced standard deviation of 1ms−1.

A2.3 Damage level uncertainty and variation in asset
values

In the lack of local empirical studies for the uncertainty in
damage levels or the variation in asset values, we employ an
identical parameterization for both the coastal flooding and
the storm hazard case studies. The parameterization for the
damage level uncertainty and the variation in asset values is
described in Sect. A1.
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