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Multiscale recurrence analysis of spatio-temporal data
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2)Humboldt Universität zu Berlin, Department of Physics, 12489 Berlin, Germany
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The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In
this work we propose a method which uses the mapogram as a similarity measure between spatially distributed
data instances at different time points. The resulting similarity values of the pairwise comparison are used to
construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and
recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach
allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal
dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts
with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices
with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale
consideration in order to take spatial pattern of different scales and with different rhythms into account. So
this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

PACS numbers: 02.50.Sk 07.05.Kf,05.10.-a,05.45.-a,05.45.Ra,05.45.Tp
Keywords: spatio-temporal dynamics,spatial chaos, time series analysis, recurrence plot

In many scientific disciplines, e.g. climatology,
biology, ecology, and social sciences, the quantifi-
cation of spatio-temporal dynamics is an impor-
tant task in order to describe the observed dy-
namical system, for instance: the human brain
activity which is strongly influenced by a hier-
archical spatial organization of the brain tissue
reaching from neurons to functional regions; or
ecologic systems with large-scale interactions be-
tween the populations and the physical environ-
ment as well as short-scale ones among the or-
ganisms themselves. The investigation of such
dynamics is still a challenge and the search for
sufficient tools for this multi-scale analysis is still
a topic of current research. A promising frame-
work is the recurrence analysis where dissimilar-
ities of paired timestamps of the recordings are
successively used to display the complexity of the
rhythms. In this work we propose an extension
of the recurrence approach based on mapograms
enabling the separation of dynamical components
of different spatial scales with their own com-
plex rhythms. So, we are able not only to sep-
arate mixed regular patterns of specific scale and
rhythm but also to reveal large-scale rhythms in
pseudo random fields and coupled map lattices
beyond the dominant small-scale dynamics which
are new insides into underlying mechanisms of the
observed spatial distributed systems.

a)maik.riedl@pik-potsdam.de

I. INTRODUCTION

In many fields of science, e.g. climatology, biol-
ogy, ecology, and social sciences, the analysis of spatio-
temporal data is an important task quantifying and mod-
eling the complex dynamics of the investigated systems.
Especially the detection of different dynamical regimes
plays an important role in this study which is connected
with a sufficient description of the observed behavior.
Hence, it does not surprise that the development of ana-
lytical tools for this kind of analysis is still an important
topic of current research. In the majority of the known
methods, this analysis is based on a pairwise compar-
ison of pictures or matrices resulting from a series of
observations in order to uncover some temporal recur-
rence of spatial structures. Recent studies have shown
that the framework of the recurrence analysis1,2 is a
promising approach for this task. So Marwan et al.3

proposed an extension of the recurrence plot (RP) for
spatially distributed data, a generalized RP. Although
this approach was originally designed for quantification
of complex spatial structures: e.g. bone structure3, Tur-
ing structures, traveling waves in the Belousov Zhabotin-
sky reaction, satellite images of spatial chlorophyll dis-
tribution in oceans colonies of plankton, fractals, snap-
shots of coupled map lattices, and structures in digi-
tal mammographic images4–8; the idea was also success-
fully applied to spatio-temporal data for detecting regime
shifts in reaction diffusion models, e.g. the complex
GinzburgLandau equation9 and the BelousovZhabotin-
sky reaction10. In these applications, each time stamp
of the two-dimensional systems is represented by mea-
sures based on the generalized RP which resulted in time
series of these measure indicating changes of the spatial
dynamics over time. But in most cases this reduction
of spatial information is too strong in order to analyze
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temporal recurrence of complex spatial patterns. There-
fore methods are needed which directly compare spatial
structures. Fortunately, such approaches already exist.
In ecology, the so-called kappa statistic11 is often used
for this purpose, and a modification of the Bhattacharyya
similarity measure is popular in visual tracking12,13. A
new idea has arisen that such global comparison of spa-
tial structures might be embedded into the recurrence
methodology for an improved description and quantifi-
cation of spatio-temporal dynamics14,15. Agust́ı et al.14

chose the spatiogram12 in this way, whereas Marwan et
al.15 considered the distance of high dimensional state
vectors representing the spatial structure in each time
step. A disadvantage of the first method is the high
level of abstraction where the spatial structure is approx-
imated by a Gaussian peak. So, relevant patterns with
a smaller scale than the size of the considered frame will
be ignored. In contrast to that, the second approach
resolves such finer patterns, but it is sensitive to noise
or chaotic behavior because it strongly depends on the
amplitude information. Another need for the analysis
of such spatio-temporal data is the consideration of dif-
ferent spatial scales because of the possible superposi-
tions of rhythms which are based on patterns of differ-
ent spatial scales. Unfortunately, neither the spatiogram-
based RP (SGRP, App.B) nor the high-dimensional RP
(HDRP, App.C) provide such tuning feature for a multi-
scale analysis.

Therefore we propose here a novel use of the
mapogram13 in the recurrence methodology, the
mapogram-based RP (MRP), in order to extend the use
of the RP for a multi-scale analysis of spatio-temporal
dynamics. In Sec. II we introduce the algorithm of the
mapogram and its use for a multi-scale analysis by means
of the RP. In Sec. III A, this tool is applied to two rather
simple examples, traveling waves and white noise, in or-
der to illustrate the ability of this method to produce the
expected recurrence patterns which are known from the
classical RP approach. Further, examples of superposed
spatio-temporal dynamics are investigated, in Sec. III B,
to motivate a multi-scale analysis by means of the ma-
pogram. In Sec. III C, this motivation is accentuated
by the analysis of a more practical and complex exam-
ple, a coupled map lattice with semi-logistic mapping
rule16 modeling the dynamics of spatial distributed pop-
ulations. Finally, a summary and conclusion are given in
Sec. IV.

II. METHOD

In this section, we introduce the mapogram which we
propose for extending the spatio-temporal analysis by
means of the RP approach. The aim of this method

is a pairwise comparison of two-dimensional data fields
and the quantification of their similarity (an extension
to three or even higher dimensions is straightforward).
The data fields consist of the same set of elements of a
two dimensional vector space. To each element the value
of a feature (quantity, measure, or property) is assigned
which might be different in both data fields. Formally,
such data field is given by F = {fij}i=1,...,Ni;j=1,...,Nj

where i and j are the indexes of the elements and fij the
assigned values of the feature. N = Ni ∗Nj is the num-
ber of the field elements. The first step of the mapogram
is a simplification of the variation of fij by means of a
histogram

nb =

Ni∑
i=1

Nj∑
j=1

gb(fij) (1)

where the binary matrices gb resulted from

gb(fij) =

{
1 fij ∈ b-th bin
0 otherwise

(2)

b = 1, . . . , B is the index of the histogram’s bins, B dis-
joint right side closed intervals which fully cover the range
of fij or a contiguous part of it. So nb is the number of
elements with values in the b-th bin. The Ni×Nj binary
matrices are normalized

mb,i,j =
gb(fij)

nb
(3)

and convoluted with a kernel function Kγ , the blurring,
which leads to the mapogram. This spatial smoothing is
done for each mb,i,j and is controlled by the positive def-
inite non-zero parameter γ, the band width of the kernel
given in units of sample points:

mb,γ,i,j =

Ni∑
i′=1

Nj∑
j′=1

mb,i′,j′Kγ

(
‖(i′, j′)− (i, j)‖

γ

)
(4)

In the original approach, Nilsson13 used a Gaussian ker-
nel. For an easier interpretation of the relationship be-
tween the kernel’s bandwidth and the considered spatial
scale, we use instead the Epanechnikov kernel17 which
has a bounded domain of non-zero elements:

Kγ(x) =
3

4γ2
(1− x2)I(x) (5)

x is the normalized spatial distance between the points
(i, j) and (i′, j′) and I(x) is the indicator function which
is equal to the unity for |x| ≤ 1 and otherwise zero. As
in the spatiogram (see App. B Eq. B4), the similarity
between the two fields is calculated by a weighting of the
Bhattacharyya coefficient, here

The following article appeared in Chaos 25, 123111 (2015) and may be found at
http://dx.doi.org/10.1063/1.4937164.



3

Smf,f ′(γ,B) =

B∑
b=1

√
nbn′b

(
∑
b nb)(

∑
b n
′
b)

Ni∑
i=1

Nj∑
j=1

√
mb,i,j,γm′b,i,j,γ

(
∑
ijmb,i,j,γ)(

∑
ijm

′
b,i,j,γ)

(6)

where the second factor is the weight. The range of the
similarity measure is from 0 to 1, respectively fully dis-

similar and equal data fields. For γ → 0, the mb,γ,i,j

(Eq. 4) tends to mb,i,j (Eq. 3). In the limes γ = 0, the
similarity measure is set to

Smf,f ′(0, B) =

B∑
b=1

√
nbn′b

(
∑
b nb)(

∑
b n
′
b)

Ni∑
i=1

Nj∑
j=1

√
mb,i,jm′b,i,j (7)

which corresponds to the κ-statistics11. In the following
text, this unblurred version of the mapogram approach,
the lowest level of blurring, is indicated by γ = 0. In
relation to that, the highest level of blurring is marked
by γ =∞ which corresponds to Smf,f ′ = 1 for the blurred

mapogram (Eq. 6). Further details can be found in Nils-
son et al.13.

The parameters of the mapogram are the kind of bin-
ning for the histogram and the strength of blurring: i)
The aim of this binning is a simplification of the vari-
ations of the values in the data field. There are global
and local binning schemes. In the global scheme, there
are bins which are equal for the compared data fields. In
contrast to that, the local scheme depends on the distri-
bution of each single data field and resulted in different
bins for both ones. The number of the bins is strongly
connected to the size of the bins and the resulting resolu-
tion of the variation. In this work, we only use the global
scheme, in order to keep the example as simple as pos-
sible. ii) The choice of the blurring coefficient γ is less
complicated, since two-times of its value correspond to
the minimal spatial scale of patterns which will be con-
sidered (cf. App. A). So the blurring has properties of a
low pass filter. This is used to tune the spatial scale in a
multi-scale analysis and can be stressed by constructing
a bandpass like version by using

∆Smf,f ′ = Smf,f ′(γ2, B)− Smf,f ′(γ1, B) (8)

where γ1 and γ2 (γ1 < γ2) correspond to the smallest and
the highest spatial scale, respectively, of the considered
band.

The aforementioned extension to 3D is done by con-
sidering a three-dimensional data field (Eq. 1) and the
use a three-dimensional kernel function (Eq. 5). Then,
the resulting binary matrices (Eq. 3) and their blurred
versions (Eq. 4) are also three-dimensional. Taking the
higher-dimension into account, the summation over two
indexes (Eqs. 1,4,6, and 7) is replaced by a summation
over three ones.

The similarity measures of the mapogram, the spa-
tiogram, and the kappa statistic take the spatial vari-

ability into account. For application to spatial-temporal
dynamics, we will use these tools in the framework of the
RP analysis in order to investigate the temporal evolu-
tion of the spatial variability. For this purpose, an RP is
constructed based on the mentioned similarity measures.
Let us assume that the data come from repeated mea-
surements of a spatially distributed system. Further, the
measure for each timestamp results in a two-dimension
field of values Ft. These snapshots of the spatial dy-
namics are pair-wise compared by means of a similarity
measure leading to the similarity matrix St,t′ which gives
the similarity of the snapshots at the time points t and
t′. If St,t′ > ε then both snapshots are assumed as simi-
lar and the corresponding entry of the binary recurrence
matrix is set to one

Rt,t′(ε) = Θ(St,t′ − ε) (9)

Θ denotes the Heaviside function which is 1 for values
greater than zero and 0 otherwise. There are several
strategies to select a sufficient value of the threshold2. It
could be globally set by a portion of the maximum phase
space diameter or locally, fixing the number of neighbors
of the single points. In this work, we fix the recurrence
rate to 10%.

After this conversion, we can use the full power of the
established recurrence quantification analysis and recur-
rence network analysis2,18 for the investigation of the
temporal evolution of the spatial patterns. For exam-
ple, there might be a quantification of the diagonal lines
which fulfill the condition

(1−Ri−1,j−1)(1−Ri+l,j+l)
l−1∏
k=0

Ri+k,j+k ≡ 1 (10)

The histogram of their lengths is used to calculate the
measure determinism DET which is defined by:

DET (ε, lmin) =

∑N
l=lmin

lH(l)∑N
l=1 lH(l)

. (11)

It is the fraction of points in the RP which are organized
as diagonal lines expressing the regularity or predictabil-
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ity of the observed dynamics. H(l) is the histogram of
their lengths and lmin is a minimal length that can be
set up to reduce the influence of tangential motion2. We
set lmin to 3, the smallest length of a line which covers
not only the case of regular oscillation but also chaotic
behavior where only short lines are expected.

III. APPLICATION

A. Simple basic models

1. Waves

First we apply the MRP to a simple but basic exam-
ple of spatio-temporal dynamics. We start with parallel
traveling waves in the plane which are constructed by

f(x, y, t) = A sin(
2π

T
y + vt) (12)

for all x. The parameter T defines the spatial scale of
the pattern (i.e., the distance between successive max-
ima in y-direction), whereas v determines the velocity
of the temporal change of the pattern, the moving from
up to down. So, the temporal recurrence is given by
2π/v. In the examples, the sampling points are 1, 2,. . .,
100 for x, y and t. Snapshots of simulations, the re-
sulting spatial patterns, are shown in Fig. 1 for different
values of T . The velocity v is 0.5 rad per time step.
Applying the MRP we expect a RP with lines parallel to
the main diagonal as in the classical RP of a harmonic
oscillation. For comparison for the HDRP, the unblurred
mapogram-based RP (UMRP), and the SGRP are shown
in Fig. 2. The plots (Fig. 2) indicate that the HDRP
(DET ≈ 0.97), the SGRP (DET ≈ 0.92) as well as the
UMRP (DET ≈ 1) are able to produce the expected
structure of diagonal lines as the classical approach in
the case of one-dimensional harmonic oscillations.

2. White noise

The second example is white noise which is used as
counter example where the plot shows no regularities.
Let us consider a series of 100 100x100 matrices where
the values of the elements are realizations of independent
normally distributed random numbers N(0, 1). As in the
previous example the different methods for recurrence
analysis of spatio-temporal data are applied (Fig. 3).
They show that only the use of the UMRP leads to the
expected scattered points (Fig. 3b, DET ≈ 0.01). In the
other cases there are vertical and horizontal structures
(Fig. 3a and c, DET ≈ 0.02 and DET ≈ 0.04, respec-
tively) which indicate more frequent realizations of the
random field. A reason of such structures could be an
interaction of the algorithm of the pseudo random gen-
erator (MATLAB 2012b, The MathWorks Inc.) with the

filling procedure of the 3D-datafield (2 spatial plus 1 time
dimension). The comparison of HDRP and UMRP in
Fig. 3a and b, respectively, visualize that a digitalization
neglects these problems on small scales of the 2D random
matrices. On larger scales, this clustering appears again
as shown in the SGRP (Fig. 3c) which points out the
advantage of a multi-scale analysis in order to separate
components of spatio-temporal dynamics. In the follow-
ing, the advantage of this multi-scale analysis by means
of the blurred mapogram-based RP (BMRP) is putted
over in Sec. III B and III C applying it to other examples
of spatio-temporal dynamics.

B. Superposed dynamics - Example of multi-scale
approaches

1. Superposed waves

The aim of multi-scale approaches is the separation
of components of superposed dynamics in order to dis-
tinguish the underlying mechanisms. Let us stress the
example of traveling waves (Eq. 12). We add two in-
stances with different spatial scales T1 and T2 and veloc-
ities v1 and v2. The first component is defined by A1 = 1,
v1 = 0.3, and T1 = 14. The moving direction is changed
to a horizontal one exchanging y by x in Eq. 12. So the
recurrence time of a spatial pattern is 2∗π/v1 ≈ 20. The
second component is given by A2 = 0.5, v2 = 0.2, result-
ing in a recurrence time of 2 ∗ π/v2 ≈ 30, and T2 = 50.
Its moving direction is the same as defined in Eq. 12.
Because of the higher amplitude, the first component is
the dominant one in the whole dynamics. The result-
ing HDRP (Fig. 4a, DET ≈ 0.96) displays the expected
diagonal line structure of the dominant dynamics indi-
cated by the vertical distance of the diagonal lines which
is equal the recurrence time of about 21. The second
rhythm is encoded by thicker lines at a distance of the
least common multiple of the recurrence times of both
single components, about 60. In order to distinguish
both components, we applied the MRP with the blur-
ring coefficient equal to 0 and 15 to the data (Fig. 4b
and c, DET ≈ 0.97 and DET ≈ 0.97, respectively). The
UMRP (Fig. 4b) leads to a RP like the HDRP. The use
of a blurring coefficient of 15 reveals the expected diago-
nal line structure of the 2nd harmonic component with a
distance of the diagonal lines of about 30. Let us switch
the dominance of both components by switching the am-
plitude values (A1 = 0.5 and A2 = 1). The resulting
RP are shown in Fig. 5. The HDRP and the use of the
UMRP (Fig. 5a and b, DET ≈ 0.97 and DET ≈ 0.98,
respectively) now only display the diagonal structure of
the superposed dynamics. The use of BMRP uncovers
the second component too (Fig. 5c, DET ≈ 1), but the
rhythm of the first part is masked by diagonal lines with
a distance of 60, which is again the least common multi-
ple of the separated component (30) and the covered one
(20). The band-pass version of the mapogram approach
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FIG. 1. Snapshots of the parallel waves of Eq. 12 which travel from top to the bottom of a 100×100 data field. The different
scales of the spatial patterns are determined by T = 10 (a), T = 50 (b), and T = 100 (c).
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FIG. 2. RPs of travelling waves shown in Fig. 1. The scale of the spatial pattern is T = 50 and the velocity is v = 0.5 rad per
time step. The plots are the HDRP (a), the UMRP (b), and the SGRP (c). The recurrence rate is set to 0.1. For the UMRP
and the SGRP there are two bins {(−∞, 0], (0,∞]}.
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FIG. 3. RPs of a run of 100 data fields of the size 100×100 with realizations of independent normally distributed random
numbers N(0, 1). The plots are the HDRP (a), the UMRP (b), and the SGRP (c) for the same run. The recurrence rate is set
to 0.1. For the UMRP and the SGRP the range of the values are divided into 10 equally sized bins.
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FIG. 4. Different RPs of a superposition of two examples of Eq. 12. The first component moves from right to left (A = 1, T = 14,
v = 0.3). The second component moves from up to down (A = 0.5, T = 50, v = 0.2). There is the HDRP (a), the UMRP
(γ = 0; bins: {[−∞,−0.5], (−0.5, 0.5], (0.5,∞]})(b), and the BMRP (γ = 15; bins: {(−∞,−0.5], (−0.5, 0.5], (0.5,∞]})(c). The
recurrence rate is set to 0.1.
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FIG. 5. Different RPs of a superposition of two examples of Eq. 12. The first component moves from right to left A = 0.5,
T = 14, v = 0.3). The second component moves from up to down (A = 1, T = 50, v = 0.2). There is the HDRP (a), the UMRP
(γ = 0; bins: {[−∞,−0.5], (−0.5, 0.5], (0.5,∞]})(b), and the BMRP (γ = 15; bins: {(−∞,−0.5], (−0.5, 0.5], (0.5,∞]})(c). The
recurrence rate is set to 0.1.

(Eq. 8) solves the problem. We consider the mapograms
with γ1 = 0, γ2 = 15, and γ3 =∞ where S is equal 1 by
definition for γ3. The resulting bands of the spatial scale
are [0−30] (Eq. 8, γ1 and γ2) and [30−∞] (Eq. 8, γ2 and
γ3). Setting the ∆S of Eq. 8 into Eq. 9 we get Fig. 6a and
b (DET ≈ 1 and DET ≈ 0.98, respectively). Ignoring
the main diagonal in panel (a), the distance between the
other lines is about 20 and 40, the recurrence time and
a multiple of it, respectively, of the first component. As
expected the spatial scale (T = 14) of the indicated com-
ponent lies in the considered band [0− 30]. In panel (b),
the distance is about 30 reflecting the recurrence time
of the second component. Here, the spatial scale of the
uncovered dynamic (T = 50) is in the considered band
[30−∞], too.
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FIG. 6. RPs for the example of Fig. 5. It bases on the band-
pass version of the mapogram (Eq. 8) with γ1 = 0 and γ2 = 15
(a); and γ1 = 15 and γ2 = ∞ (b). The other parameters are
the same as in Fig. 5.
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2. Additive noise

Next we add noise to traveling waves of Eq. 12 (T = 20,
v = 0.5, and A = 1) in order to study the robustness of
the MRP. We take white noise which consists of a set of
pairwise independent Gaussian distributed random num-
bers. The signal-to-noise ratio is set to 0.1. Fig. 7 dis-
plays the resulted HDRP, UMRP and BMRP for γ = 2
(DET ≈ 0.24, DET ≈ 0.07, and DET ≈ 0.29, respec-
tively). All panels clearly show the expected diagonal line
structures in spite of a high noise. But we also see ver-
tical and horizontal structures in HDRP (Fig. 7a). We
remember the artifacts for the example of pure white
noise (Fig. 3). In order to separate the periodic patterns
and the noisy components, we applied the band-pass ver-
sion of the mapogram as in the preceding example (Fig. 8
a-c, DET ≈ 0.05, DET ≈ 0.26, and DET ≈ 0.02, re-
spectively). Here the bands of spatial scale are: [0 − 4]
(γ1 = 0, γ2 = 2, Eq. 8; panel (a)), [4 − 30] (γ1 = 2,
γ2 = 15, Eq. 8; panel (b)), and [30 − ∞] (γ1 = 15,
γ2 = ∞, Eq. 8; panel (c)). We find now a clear sepa-
ration of the expected recurrence pattern of white noise,
the traveling waves and the artifacts of the pseudo ran-
dom generator. So, the multi-scale approach by MRP
gives not only a separation of different dynamical com-
ponents but also the scale of their corresponding spatial
patterns which is reflected by the selected bands.

C. Spatial chaos

In this section, we will consider another complex
spatio-temporal dynamics in order to illustrate the use
of the MRP in a more practical multi-scale analysis. We
analyze a coupled map lattice (CML) with a semi-logistic
mapping rule. This model is defined by a regular square
lattice ({i, j}, i = 1, . . . , N , j = 1, . . . , N), the states of
the nodes Xij ∈ [0, 1], and a rule for updating the states.
The size of the lattice is set to 120x120 where only the
central lattice of 100x100 is analyzed in order to avoid
possible edge effects. At each time step the Xij are syn-
chronously updated according to the set of rules which
involves interactions between neighboring nodes:

Xn+1
ij = rY nij (1− Y nij ) (13)

Y nij =
1

#{Ω}
∑

(i,j)∈Ω

Xn
ij (14)

Here, the neighborhood Ω contains the target node (i, j)
and the 8 surrounding ones if the target node is a central
one. In the case of nodes of the boundaries the number
of neighbors is adapted. Dzwinel16 proposed this model
for a description of the growth of spatial distributed pop-
ulations. The analysis of this model showed that there
is an accumulation point at r ≈ 3.5699, i.e. the onset
of chaos. For lower values of the control parameter r

the author found a cascade of period doubling as in the
original logistic map where the states converge quickly
to uniform and synchronized nodes. Surprisingly, higher
values resulted in a cascade of band merging instead of
the chaotic behavior of the one-dimensional map. Fur-
ther the states variance increase, i.e. the Xij diversifies
progressively and irregular spatial clusters, representing
the evolution of complex spatial structures, can be ob-
served. Dzwinel concluded that the global chaotic tem-
poral behavior is transferred into spatial chaos. This dy-
namics finally stabilizes for r > 3.9 in a regime where
the mean < Xij > fluctuates around the fixed point
(X∗ ≈ 2/3). For illustration, we show the bifurcation
diagram (Fig. 9) and examples of time steps for differ-
ent values of the control parameter r (Fig. 10). The
question is how this spatial chaos looks like? We focus
on the range 3.7 ≤ r ≤ 3.9, for example, to answer this
question. For the values of r = 3.70, 3.71, 3.72, . . . , 3.9,
we simulate runs of length 100,000 time steps eight times
where the initial conditions were realizations of a ran-
dom field. The last 100 time steps of each run are used
to construct the RP by means of the mapogram with
γ = 0, 5, 10, 15, . . . , 50, a multi-scale approach. The do-
main was split into 64 bins, as recommended by Dzwinel,
and the recurrence rate was set to 0.1. Typical recurrence
patterns are shown in Fig. 11 which are simultaneously
found in each simulation, i.e. for each selected value of r,
corresponding to different scales of the considered spatial
patterns. In Fig. 11a we consider small spatial scales by
choosing γ = 0. The RP reveals a drift of the recurring
patterns, i.e., we find regular structures near the main
diagonal which change to noise like structures for regions
more far from the center. The periodicity of this regu-
lar recurrence structure near the main diagonal changes
from a period of four for r = [3.7, 3.86] to a period of
two for r = [3.87, 3.9]. The period of four shows that
the four arms of the bifurcation diagram (for r = 3.6, for
example, in Fig. 9) still exist but merge into two arms for
r = [3.7, 3.86], if we focus on spatial patterns of smaller
scales. Despite the regular structure in the RPs of small
scale spatial patterns, the determinism is DET = 0, in-
stead of an expected high value, because of the empty odd
columns of the RP avoiding diagonal lines. These empty
columns indicate that in one of the two arms of the bi-
furcations diagram (for r = [3.7, 3.86] in Fig. 9) the small
spatial patterns never recur. In Fig. 11b (DET ≈ 0.59)
we consider large spatial scales by setting γ = 50. Here,
the RP shows an irregular occurrence of shorter diagonal
lines as well as white bands and rectangle like structures.
It is related to large spatial scales and respectively visu-
alizes chaotic behavior and different attractors. In the
range of smaller spatial scales there is a periodic change
of columns in the RP where snapshots recur and where
snapshots do not recur (Fig. 11a). This pattern can be
observed for 3.7 ≤ r ≤ 3.88 and relates to the upper and
the lower branch of the bifurcation diagram (Fig. 9), re-
spectively. This recurrence pattern and that one of the
larger spatial scales can be easily distinguished by the
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FIG. 7. Recurrence analysis of the dynamics of parallel waves with additive noise which travels from top to the bottom of a
100x100 data field (Eq. 12, T = 20, v = 0.5 rad per time step). Panel (a) display an example of the resulted HDRP whereas
(b) and (c) show the MRPs (respectively γ = 0 and γ = 2; bins: {(−∞, 0], (0,∞]}). The signal-to-noise ratio is 0.1 and the
recurrence rate is 0.1.
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FIG. 8. RPs for the example of Fig. 7. It bases on the band-pass version of the mapogram (Eq. 8) with γ1 = 0 and γ2 = 2 (a),
γ1 = 2, γ2 = 15 (b), and γ1 = 15 and γ2 =∞ (c). The other parameters are the same as in Fig. 5. The three plots reflect the
different components of the spatio-temporal dynamics: the noise (a), the periodic pattern (b), and long-term artifacts of the
pseudo-random generator (c).

quantity DET (Eq. 11). That means, the two-periodic
changes of the recurrence leads to a value of 0, whereas
the other one is characterized by a non-zero value. The
black region in Fig. 12a (DET = 0) shows the spatial
scale where the two-periodic change of the recurrence
can be observed. Obviously, the structure vanishes for
a higher level of blurring, while the threshold of the dis-
appearance successively decreases until r = 3.86. That
indicates a decreasing scale of this spatial pattern which
shows this recurrence structure. The outlier at r = 3.83
(window of period 3 in the logistic map) resulted from one
of the eight runs where the period of 4 time steps appears.
With the disappearance of the two-periodic change of re-
currence, recurrence patterns of chaotic behavior appear
(e.g. Fig. 11b). The light band along the border of the
black region in Fig. 12a indicates the scale of the un-
derlying spatial pattern which decreases with rising val-

ues of the control parameter. In this example we focus
on the region r ≥ 3.7. A consideration of lower values,
3.57 ≤ r ≤ 3.7, needs a higher resolution of the closed
interval between 0 and 1 because the size of the single
branches decreases with decreasing values of the control
parameter and the branches have to be covered by more
than one bin in order to describe the rhythm. A reduc-
tion of the bin size could be one solution for this problem
but leads to an increased number of bins which have to
be compared and to a smaller filling of the bins reducing
the significance of the bins. This rise of computational
steps resulted in a longer operation time. Another strat-
egy is the use of non-equally sized bins which are locally
defined for each time step. But this more detailed in-
vestigation is outside the focus of this paper and will be
done in future works.
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FIG. 9. Bifurcation diagram of the CML (Eqs. 13 and 14). The size of the lattice is 120× 120 data points. For each considered
value of r, there was a run of 100,000 iterations. A point represents the spatial means of the inner elements of the lattice
(100× 100) neglecting boundary effects. For each run (value of r) only the last 100 iterations are considered to avoid transient
behavior.
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FIG. 10. Snapshots of realizations of the CML (Eqs. 13 and 14). The simulation parameter are the same as in Fig. 9 except
the controlling parameter which is r = 3.6 (a), r = 3.8 (b), and r = 4 (c).

IV. CONCLUSION

In summary, we have proposed an extension of the re-
currence plot approach, the MRP, which allows a multi-
scale analysis of spatio-temporal data. The application
to traveling waves in the plane shows that the MRP is
able to reproduce the results of the other recurrence tools
in the case of only one dynamical component. For two
superposed components the new method separates both
ones which is not possible with the other approaches.

Further the application to more complex examples, such
as additive noise and spatial chaos, leads to new insides
into the underlying mechanism, i.e. long term corre-
lations and gradual decrease of the spatial scale of the
rhythmic pattern, respectively.

In particular, the simple example of traveling waves
shows that the MRP produces the diagonal structures of
a regular oscillation as the HDRP (Fig. 2). But there
is no equivalence between UMRP and HDRP which is
indicated by the example of pure noise (Fig. 3). The
differences are rather an indicator for more than one dy-
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FIG. 11. MRPs of realizations of the CML (r = 3.78). The domain [0, 1] is divided into 64 equal sized bins. The blurring
coefficients are γ = 0 (a) and γ = 50 (b).
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FIG. 12. Statistics of DET (Eq. 11) depending from the control parameter r of the model and the blurring coefficient γ of the
MRP (binning: 64 equal sized bins). (a) The mean and (b) its error (standard deviation divided by the square root of 8) are
calculated from 8 runs for each value of the control parameter. The light band show that with increasing r the scale of the
pattern showing chaotic behavior decreases.

namical component which is proved by the separation in
the example of additive noise. A major cause of the differ-
ent results is the simplification of the spatial pattern by
means of the histogram in the MRP. Here, the discretiza-
tion proves its usefulness for the investigation of complex
dynamics as in the field of symbolic dynamics. Further-
more, the example of composed traveling waves shows
that we have to distinguish two cases. If the components
partitions on the resulted variance successively decrease
and the corresponding spatial scales of the components
increase, then the low pass property of the BMRP is suffi-
cient to separate the parts (Fig. 4). Otherwise, the band-
pass like version of the BMRP have to be used, since the
dominant component covers the underlying part with the
smaller spatial scale in the original BMRP (Fig. 6 and 5,
respectively). Surprisingly, the separation in the case of
additive noise by means of this band-pass like version of
BMRP offers a way to visualize the quality of pseudo

random generators (Fig. 8). There are many quanti-
ties evaluating the quality of pseudo random generators
which includes statistics19 as well as quantities from RP
analysis and information theory20. But we do not know
any algorithm which uses a regular arrangement of a se-
ries of pseudo random numbers in a 3D matrix in order
to reveal regularities coming from the construction algo-
rithm. So this way of sorting and the use of the multi-
scale analysis by means of BMRP could be a new ansatz
in future studies concerning the evaluation of pseudo ran-
dom numbers. The potential of the multi-scale analysis
of spatio-temporal dynamics by means of BMRP is un-
derlined by the application to the CML. Here, we could
show that the spatial chaos, stated by Dzwinel16, has
different spatio-temporal components where their spatial
scales are controlled by the model parameter. But this
example also elucidates a critical point of the MRP that
is the selection of the center and the size of the bins. In
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contrast to the straightforward use of the blurring co-
efficient for the determination of the minimal resolved
spatial pattern, the binning does not only depend on the
observed systems state space but also on the focus of
the observer her/himself. As in the theory of symbolic
dynamics, decreasing bin sizes leads to increasing reso-
lutions, i.e. accuracy. In the case of a state space with
regions of different fine structure as in the last example,
the use of adaptive bin sizes is recommended. We do not
illustrate the influence of instationarities, e.g. trend, but
here the solution could be the use of a binning depending
on each time step, for example the definition of the bin
edges by percentiles of each snapshot.

All in all, the proposed MRP and its use in multi-scale
approach promises a more detailed description of spatio-
temporal dynamics in comparison to the aforementioned
tools which might help to answer questions from the sci-
entific fields of climatology, ecology, plasma physics, and
medicine, for example.
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Appendix A: Spatial scale and blurring

Let us analyze the connection between the blurring
and the scale of the observed spatial pattern. We con-
sider the low pass filter effect of the blurring from another
point of view. Instead of noise reduction, here we inves-
tigate the ability to cut-off spatial pattern with a smaller
scale than a threshold. As mentioned in the introduction,
this opportunity of tuning is the great advantage of the
novel tool in comparison to the other approaches. Let
us consider striped pattern which resulted from snap-
shots of traveling waves (Eq. 12). The parameters are
T = 5, 10, . . . , 100 and v = 0.5. For each value of T , we
compared the snapshot with its 90◦ rotated version. The
different orientation should clearly reduce the similarity
Smf,f ′ (Eq. 6 and 7) of both. That is the striped pattern
induces this difference, so its blurring should leads to an
increase of Smf,f ′ . We calculate Smf,f ′ for different values of
the blurring parameter, γ = 0, 2, . . . , 50, in order to find
the point where the differences between the compared
snapshots vanish in relation to T (Fig. 13). The edge

between the white region and the gray one indicates the
cutoff characteristic of the blurring. It shows that the
blurring fully remove spatial patterns with scales which
are smaller than twice of the value of the blurring pa-
rameter γ. Further, the comparison of Fig. 13a and b
indicates that this cutoff relation is less effected by the
number of bins.
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FIG. 13. The similarity measure (Eq. 6 and 7) of the compar-
isons between instances of Eq. 12 (T = 5, 10, . . . , 100, v = 0.5)
and their 90◦ rotated versions in relation to the level of blur-
ring which is given by the kernel bandwidth γ = 0, 2, . . . , 50
(Eq. 5). The values of the similarity measures are color coded.
The number of bin is 2 ({(−∞, 0], (0,∞]} panel (a)), and 3
({(−∞,−0.5], (−0.5, 0.5], (0.5,∞]} panel (b)) .

Appendix B: Spatiogram based recurrence plot

We start with a field F = {fij}i=1,...,Ni;j=1,...,Nj
and

build its histogram by means of the binary matrices in
Eq. 2. Based on these binary matrices, the mean index
of the elements in the b-th bin is calculated by

µib =
1

nb

Ni∑
i=1

Nj∑
j=1

igb(fij) (B1)

µjb =
1

nb

Ni∑
i=1

Nj∑
j=1

jgb(fij) (B2)

Further the covariance of the indexes is given by

σb =
1

nb − 1

Ni∑
i=1

Nj∑
j=1

(
(i− µib)2 (i− µib)(j − µ

j
b)

(i− µib)(j − µ
j
b) (j − µjb)2

)
gb(fij) (B3)

The triple (nb, (µ
i
b, µ

j
b), σb) represents the spatial distri-

bution of the field elements in the b-th bin. That is, the
spatial distribution is assumed as the two dimensional
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Gaussian distribution N((µib, µ
j
b), σb). In the case of an

empty bin or a bin with only one element, the triple is set
to (0, (0, 0), 0) and (1, (ij), 0.5), respectively, where 0.5 is
the minimal variance in the case of two neighboring field
elements. The ensemble of triples is called spatiogram.
Based on this, the similarity between two fields, F (t) and
F (t′), is quantified by the weighted Bhattacharyya coef-
ficient

Ssf,f ′ =

B∑
b=1

ψb

√
nbn′b

(
∑
b nb)(

∑
b n
′
b)

(B4)

ψb = 8π|σbσ′b|1/4N(µb, µ
′
b, 2(σb + σ′b)) (B5)

Where N(a, µ, σ) is a two dimensional normal distribu-
tion with the expected vector µ and covariance matrix
σ which is evaluated at point a. The correction term
ensures that 0 ≤ Ssf,f ′ ≤ 1 and Ssf,f ′ = 1 for any f21.
Finally, the similarity measure is used to build the RP
by Eq. 9 like the mapogram.

Appendix C: High dimensional recurrence plot

In contrast to the spatiogram and the mapogram, here
the point wise dissimilarity of two data fields F (t) and
F (t′) is used to construct an RP15. For this purpose,
each data field is transformed to a high dimensional vec-

tor, ~x(t) ∈ RN2

. Using this representation, the dissim-
ilarity of two data fields is given by the distance of the
corresponding vectors

Dt,t′ = ‖~x(t)− ~x(t′)‖ (C1)

where ‖ . . . ‖ is a chosen metric. In this work we use the
Euclidean metric, i.e.

Dt,t′ =

√√√√ Ni∑
i=1

Nj∑
j=1

(fij(t)− fij(t′))2 (C2)

Finally, the RP is build by

Rt,t′ = Θ(ε−Dt,t′) (C3)
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