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Abstract – We introduce a new method for incorporating short-term temporal variability of both 

power demand and variable renewables (VRE) into long-term energy-economy models: the 

RLDC approach. The core of the implementation is a representation of residual load duration 

curves (RLDCs), which change endogenously depending on the share and mix of VRE. The 

approach captures major VRE integration challenges and the energy system’s response to 

growing VRE shares without a considerable increase of numerical complexity. The approach 

also allows for an endogenous representation of power-to-gas storage and the simultaneous 

optimization of long-term investment and short-term dispatch decisions of non-VRE plants. As 

an example, we apply the RLDC approach to REMIND-D, a long-term energy-economy model 

of Germany, which was based on the global model REMIND-R 1.2. Representing variability 

results in significantly more non-VRE capacity and reduces the generation of VRE in 2050 by 

about one-third in baseline and ambitious mitigation scenarios. Explicit modeling of variability 

increases mitigation costs by about one fifth, but power-to-gas storage can alleviate this increase 

by one third. Implementing the RLDC approach in a long-term energy-economy model would 

allow improving the robustness and credibility of scenarios results, such as mitigation costs 

estimates and the role of VRE. 
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1. Introduction 

There is broad evidence that anthropogenic climate change is threatening the welfare and 

development of human societies [1]–[3]. Combustion of fossil fuels  is the main driver of 

anthropogenic climate change, causing over 60% of global greenhouse gas emissions [4], [5], 

which is why climate change mitigation requires a transformation of the global energy system 

towards low-carbon technologies. Identifying mitigation scenarios that minimize the 

macroeconomic costs (so-called mitigation costs) of achieving a prescribed climate target 

requires long-term numerical energy-economy models that capture key interactions between the 

energy, economic and climate systems, as well as interactions within the energy system itself 

(heat, transport and power sector). 

The power sector appears to be a centerpiece for climate change mitigation. Most mitigation 

scenarios show that the power sector decarbonizes earlier and more extensively than the non-

electric energy part of the energy system [6]–[9]. Electricity can be supplied by a number of 

comparably low-cost mitigation options such as renewable energy sources, carbon capture and 

storage and nuclear power, whereas supplying non-electric energy demand with low greenhouse 

gas emissions relies strongly on biomass. Electrification is also an important mitigation strategy 

for transport and residential heating. 

Future power systems will likely show a significant share of renewable energy of which a large 

contribution will come from the variable
1
 renewable energy sources (VRE) wind and solar 

photovoltaics (PV). This is not only indicated by current high growth rates, ambitious policy 

targets and renewable support schemes, but also estimated in mitigation scenarios based on long-

term energy-economy models [6], [10]–[14]. The recent EMF27 model comparison [14] shows 

that for all but one model, renewables provide more than 35% of power supply in the second half 

of the century, and half of the models show renewables share of 59% or higher. In those 

scenarios with high overall renewable deployment wind and solar PV contribute the major 

electricity share (>40%) in the second half of the century. 

However, long-term energy-economy models have a deficit that leads to inaccurate or even 

biased results: Typically, they only have a crude representation of power sector variability, 

                                                
1 “Variable” (or sometimes intermittent) is used to describe generators that rely on fluctuating weather conditions 
(wind and solar plants) and thus can hardly be controlled in their power output. 
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which needs to be improved in particular to give an accurate account of the economics of VRE 

[14], [15]. This includes both variable power demand as well as VRE like wind and solar and 

their integration into energy systems. Variability on temporal scales from minutes to years 

shapes the economics of the power sector. As demand is inherently variable and electricity 

cannot be stored easily, a heterogeneous mix of power-generating technologies is optimal, rather 

than a single technology [16]–[20]. If a model does not represent the variability of demand there 

is a tendency to bias the results towards more base-load technologies and to underestimate the 

total costs of power supply. Neglecting the variability of VRE intensifies this bias since VRE 

variability imposes costs on the power system as a whole. These costs are often termed 

integration costs and can be substantial at high VRE shares [21], [22]. Consequently, the 

economic value and optimal deployment of VRE strongly decrease due to their variability [23]–

[27]. For wind this amounts to 25–35 €/MWh at a share of 30–40%, according to an extensive 

literature review [22]. For a fundamental analysis of the impacts of power sector variability 

(demand and VRE) on the economics of electricity see Ref. [28]. 

Accounting for short-term power sector variability in models that focus on long-term 

transformation pathways of the energy system is highly challenging, due to the trade-off between 

model scope and detail in the presence of numerical and complexity limits. Long-term energy-

economy models have a very wide scope, i.e., coverage of multiple sectors, a centennial 

perspective on mitigation challenges, often a global perspective, and a representation of the 

major drivers of climate change and mitigation options. Inevitably, this limits the level of detail 

that can be represented. Many models use a temporal resolution for investment decisions of 5–10 

years. Power demand and supply are aggregated and balanced in terms of annual averages, in 

contrast to actual electricity demand, wind speeds, and solar radiation variability time scales. 

Numerical constraints prohibit increasing the resolution of long-term energy-economy models to 

a degree that would allow for an explicit representation of variability. To keep model complexity 

manageable, one needs a lean, yet accurate representation of power sector variability and VRE 

integration that successfully bridges relevant timescales. 

Most long-term energy-economy models use  stylized representations covering different aspects 

of variability; these representations have limitations and leave room for refinement [14], [29], 

[30]. A review of 17 long-term energy-economy models [14] reveals  a range of methods to 

represent VRE variability spanning from highly stylized economic approaches over constraint 
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and cost-penalty based methods to investment requirements in integration options. Two of these 

models have no dedicated representation of variability, but account for the imperfect 

substitutability between different power sources using constant elasticity of substitution (CES) 

production functions. Such an approach is highly stylized and tends to preserve power supply 

structures as observed today, making it difficult to explore the types of transformative changes 

required for low stabilization. One common approach is to limit the maximum generation share 

of wind and solar by means of an exogenous constraint, e.g., to 15% each. This rigid approach 

might be overly pessimistic as dedicated studies and real-world experience indicate that VRE 

integration poses no insurmountable technical barrier [31]. A less rigid approach is the 

imposition of an integration cost penalty per generated unit of electricity from VRE that 

increases with the VRE generation share (see e.g. [32]). While representing monetary integration 

challenges, this approach is not capable of capturing the pivotal impacts of VRE on the non-VRE 

part of the power system. Increasing shares of VRE result in a substantial reduction of full-load 

hours of dispatchable power plants, and thus alters optimal investments in the non-VRE part of 

the energy system [33]. Another prominent approach is to impose fixed investments in specific 

integration options with rising VRE shares, e.g., firm capacity from gas-fired power plants, 

electricity storage or transmission infrastructure. However, a single integration option is unlikely 

to mitigate all aspects of variability, these approaches are difficult to parameterize and the 

preselection of specific integration options hampers the opportunity for the model to determine a 

cost-effective way to cope with variability. 

Another common approach is to introduce “time slices”, as implemented, e.g., in the TIMES 

model class [34], the LIMES model [35], [36] or the ReEDS model [37], [38]. Time slices 

capture different representative situations in the power sector, such as winter vs. summer, day vs. 

night and weekday vs. weekend. This concept is quite successful in capturing the variability of 

demand with a low number of time slices, as demand follows very regular patterns. However, an 

adequate representation of the correlation between demand on the one hand, and the more 

complex patterns of wind and solar power on the other, requires a relatively large number of time 

slices, leading to high numerical complexity [39], [40].  

Finally, the MESSAGE model [29] introduces an additional balance equation for “flexibility”, in 

which flexible generation from an endogenous mix of dispatchable plants and electricity storage 

technologies balances flexibility requirements from variable demand and VRE supply, 
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characterized by a single constraint. The parameterization does not build on technical parameters 

or have a rigorous definition, but is derived from a limited ensemble of scenarios of a generic 

unit-commitment model with six nodes. It is unclear to what extent the approach represents 

power-sector variability for a range of regions and system configurations. A refinement might 

entail a more comprehensive parameterization and potentially a differentiated representation of 

different aspects of variability, for example by finding specific “flexibility” constraints for 

different time scales of load balancing. 

The research community using long-term energy-economy models works on consolidating 

different approaches and developing best practices. Explicit modeling of some aspects of 

variability, implicit representations of other aspects using exogenous parameters, and/or soft-

coupling with high-resolution models can be part of the solution. In correspondence to the above 

limitations of the prevalent approaches we suggest three criteria that a sound representation of 

variability should fulfill. First, it should be comprehensive, i.e., it should represent the most 

important aspects of demand and renewable supply variability. Second, it should be robust, i.e., 

its parameterization should be valid for a broad range of different energy system configurations. 

To this end the representation should either build on a rigorous definition of economic impacts of 

variability or on physical constraints that capture variability such that the correct economic 

impacts are induced. Third, a representation should be flexible, i.e., it should allow for an 

endogenous choice of different integration options, including adjustments of the non-VRE part 

of the energy system. 

This paper presents a novel modeling approach for representing variability in long-term energy-

economy models that aims at meeting these criteria. It is based on a model representation of 

residual load duration curves
2
 (RLDCs) that change depending on the model-endogenous share 

and mix of VRE. RLDCs are a purely physical concept only requiring demand and VRE supply 

data without using exogenous cost parameters, yet it delivers the economic impact of both the 

major aspects of demand and VRE supply variability. RLDCs reflect the temporal distribution of 

demand and residual demand
3
, which determines the cost-efficient mix of non-VRE power 

plants. Changes of the RLDC with increasing VRE shares induce potential shifts in the non-VRE 

                                                
2
 The RLDC is derived by subtracting the time series of VRE power supply from the time series of power demand 

and then sorting the resulting curve in descending order. See a more detailed introduction in the appendix A.1. 
3 Residual demand is the power demand after subtracting VRE supply. 
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capacity mix. Moreover, RLDCs capture so-called “profile costs”, which depend on the temporal 

matching of VRE supply profiles with (residual) power demand. While profile costs can be even 

negative at low shares, e.g., for solar PV in many US regions, profile costs are the largest cost 

impact imposed by VRE variability at higher shares of VRE (>15%) ([22], [41]), i.e., they tend 

to be substantially larger than costs related to additional balancing or grid requirements of VRE.
4
 

Ref. [33], [41] show that RLDCs capture the three main drivers of profile costs: a low capacity 

credit and resulting requirements for firm capacity, reduced utilization of the capital embodied in 

dispatchable plants
5
, and over-produced VRE generation. There are several integration options 

that reduce profile costs [41]. Apart from a shift towards less capital-intensive dispatchable 

plants the RLDC approach covers endogenous investment in seasonal energy storage via 

hydrogen and methane (power-to-gas storage). This provides some flexibility to mitigate the 

challenges and corresponding costs of power sector variability. Other integration options such as 

short-term storage and demand-side management (DSM) cannot easily be modeled (as discussed 

in Section 2.4). In addition, the approach contains model equations that in a stylized way account 

for minimum load limits of dispatchable generators, ancillary services and operating reserve 

requirements. Note that these additional methodical elements rely on exogenous parameters that 

are difficult to parameterize in a rigorous way. By contrast, the parameterization of the RLDC, 

which is the core of the approach, can be parameterized more stringently from VRE supply and 

load data. 

In this paper we describe the RLDC approach and demonstrate its impact on the results of 

REMIND-D, a long-term energy-economy model for Germany ([42], [43]). There are two 

reasons why we use this model. First, the German government has both adopted an ambitious 

climate-change mitigation target and  agreed on a nuclear phase out; at the same time, the share 

of VRE has risen considerably in the past two decades and carbon capture and storage (CCS) as 

a mitigation option faces serious acceptance concerns. Hence, the potential role of renewables, in 

particular wind and solar PV, in climate change mitigation is crucial and its variability can be 

expected to have a major impact on future mitigation scenarios. Second, the model structure and 

equations of REMIND-D resemble those of the global integrated assessment model REMIND-R, 

                                                
4
 The reason is that the supply of additional VRE plants is correlated with the existing VRE plants and thus the 

matching with residual demand gets unfavorable at higher VRE shares. 
5 In principle, the utilization is reduced for all dispatchable plants; however, for capital-intensive base-load plants 
this is particularly costly. 
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which will allow a transfer of the RLDC equations. Stylized representations of power sector 

variability are particularly relevant for global models because their wide scope limits the level of 

model details.  

The paper is structured as follows. The RLDC approach is explained in Section 2, including a 

representation of power-to-gas storage. Impacts of this approach on model results of REMIND-D 

are reported in Section 3. Finally, conclusions are drawn in Section 4. 

2. Method 

In this section we describe the RLDC approach. In section 2.1 we present the core: a 

representation of load duration curves (LDCs) and RLDCs in long-term energy-economy 

models. In Section 2.2 we suggest two complementary elements: a constraint that accounts for 

minimum generation requirements of dispatchable plants, and a constraint that requires operating 

reserves for sufficient flexible generation (introduced in Ref. [29]). In Section 2.3 we 

demonstrate how the approach allows a representation of power-to-gas storage in which 

renewable over-production is stored as hydrogen or methane. Finally, in Section 2.4 we outline 

the limitations that prevail to date. 

2.1. The RLDC approach 
 

The preparatory step for the RLDC approach is implementing an approximation of the LDC. In 

the subsequent step, the RLDC is represented in terms of the change of the LDC induced by 

VRE. LDCs are already used in some long-term energy-economy models, [14]. While typically a 

step function is applied to approximate the shape of the LDC, here we suggest a more accurate 

representation that also contains a triangular part. Hereby the LDC is reduced to three parts: A 

base load box, an intermediate load triangle
6
, and peak capacity including a reserve margin 

(Figure 1). The approximation is derived from regional demand data such that the deviation 

between the linear pieces and the actual LDC data is minimized and the integral of the original 

LDC is conserved. The reserve margin provides additional firm capacity to assure reliability in 

case of contingency events, e.g., outages of plants or grid lines. Different values are applied in 

                                                
6 Note that these terms are indicative and do not necessarily match other definitions of base, intermediate or peak 
load. 
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different power systems. In our application we assume a capacity margin of 20% of peak load
7
 in 

absence of VRE (or equivalently 20% of residual load in case of approximation of the RLDC, 

see below). The International Energy Agency argues that capacity margins in the order of 20% 

are common in liberalized electricity markets [44, p. 23], and show this figure also specifically 

for Germany [45, p. 163], [46, p. 8]. Note in addition that this figure corresponds to the U.S. 

standard [29]. 

 

Figure 1: The LDC is approximated by a linear function (left). Three different parts build up the load: A base load box, 
an intermediate load triangle, and a capacity margin. (schematic illustration) 

With growing VRE shares, dispatchable power plants merely cover residual load: The RLDC 

depends on the share and mix of wind power and solar PV, and the linear approximation in the 

model changes accordingly (Figure 2). The change in the RLDC induced by VRE is controlled in 

terms of four parameters (Cbox, C∆, Cpeak, νbox), which are functions
8
 of the generation shares of 

wind power and solar PV. Prior to model optimization, the function parameters are derived from 

a data analysis based on VRE supply and power demand data. More precisely, each parameter 

has been first estimated for a broad range of wind and solar shares and then fitted with a 

polynomial of the two variables wind and solar share. While increasing the degree of the 

                                                
7
 Peak load refers to the highest load hour of a specific year. 

8 Note that VRE over-production could be regarded as a fifth parameter. However, this parameter does not need to 
be estimated, because it can be calculated from the other four parameter and the given solar and wind share. 



9 

 

polynomial allows for an increased fit accuracy, it also increases model complexity and run time. 

Considering this tradeoff we chose a third-degree polynomial (with mixed terms), which allowed 

for a coefficient of determination 𝑅2 of about 0.8. 

 

Figure 2: The RLDC is approximated by a box and a triangle (left). This is implemented into the model as a 

transformation of the original LDC (right). The transformation is controlled by the change of four parameters (𝐂𝐛𝐨𝐱, 𝐂∆, 

𝐂𝐩𝐞𝐚𝐤, 𝛎𝐛𝐨𝐱) that are functions of the VRE generation share and mix of VRE power. (schematic illustration) 

By endogenizing the RLDC changes we enable the model to anticipate the resulting long-term 

effects, i.e., VRE contribution to total capacity, the reduced utilization of dispatchable plants and 

the over-produced VRE generation. Analogously, when investing in dispatchable power plants, 

the model considers the long-term capacity requirements for covering base load, intermediate 

load and the capacity margin, as well as the long-term development of annual full load hours 

(FLH) (i.e. capacity factors
9
) over the lifetime of the dispatchable plants. Note that as a part of 

this also the total peak capacity requirements are fulfilled, which has been formulated in a single 

model equation in Ref. [29]. 

The RLDC approach allows for the simultaneous optimization of investment as well as operation 

decisions in the power system under the consideration of short-term variability: Every unit of 

installed capacity of a dispatchable technology can in principle operate in each part of the three 

                                                
9 The capacity factor of a generating technology is a number between 0 and 1given by the relation of its full-load 
hours compared to the total hours of one year. 
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parts of the RLDC (base, intermediate and capacity margin). In every time step (typically 5 to 10 

years) the overall installed capacity of a technology is split cost-efficiently among the three parts 

of the RLDC. The FLH of each generating unit in this time step depend on the part of the RLDC 

where the unit is operating. While in principle every generation technology can contribute to 

covering each part of load, the specific economic characteristics of the heterogeneous 

technologies suggest typical operation decisions. For example, nuclear and coal plants (in 

particular lignite) have high specific investment costs and low variable costs, and thus require 

high operating hours, with operation predominantly as base-load. In contrast, gas turbines will 

mainly be dispatched to cover peak load. For each part of the RLDC model equations balance the 

respective electricity and capacity demand and supply (see Appendix A.2). 

The above approximation uses an intermediate load triangle. Alternatively, the RLDC can also 

be approximated with three boxes as illustrated in Figure 3 (left). Analogously to the above 

formulation these boxes would change endogenously with growing VRE shares. This 

approximation is less accurate but might ease the implementation for two reasons. First, it avoids 

some equations of higher order that are needed to properly dispatch capacities in the intermediate 

load triangle (see Appendix A.2). Second, the boxes could be implemented similarly to a small 

number of representative time slices, which are already implemented in a number of models. The 

main novelty of our approach is the dynamic change of heights and widths of the time slices 

depending on VRE shares (Figure 3, right), which substantially reduces the number of time slices 

required to capture the variability of load, wind and solar. 
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Figure 3: Using boxes as an approximation of the RLDC is less accurate than a stepwise linear approach (which results in 

an intermediate load triangle) but might be easier to implement. In the horizontal formulation (left), each box represents 

a load band, which is characterized by a specific width corresponding to a number of hours over the year. In the vertical 

formulation (right), each box is characterized by a specific height corresponding to load values. As the vertical 

formulation is similar to modeling time slices, the RLDC approach might benefit from experience made with this 

approach in a number of models. The main difference compared to traditional time slice approaches is the dynamic 
change of heights and widths depending on VRE shares. 

2.2. Additional elements 
 

There are two additional elements used to complement the RLDC approach, which account for 

uncertainty (i.e. stochasticity) of VRE and load as well as for power system flexibility, i.e., the 

ability of the non-VRE part of the system to adjust generation on short notice to balance residual 

load. 

The first additional element of the RLDC approach is a “minimum load box”. There are three 

different reasons why in the next decades, VRE will not be able to cover total power demand in a 

single moment. First, thermal generators have a limited flexibility of reducing their output. There 

is a minimum load each plant unit must supply before it has to shut down, which imposes some 

time lag until it can supply again. Second, the provision of ancillary services like frequency 

control currently requires operating reserves that are necessary to maintain the security of power 

systems, although VRE generators can provide active power control [47]. One part of operating 

reserves are dispatchable capacities that run at partial load to be able to increase their output on 

short notice. Third, combined heat and power (CHP) plants might need to generate power even 

in situations of over-produced VRE because of required heat generation. As a result a minimum 

amount of dispatchable capacity remains supplying throughout the year even in situations when 

demand could actually be fully met by the VRE generators in place. 

The height of this continuous band of dispatchable generation is sometimes referred to as “grid 

flexibility” or “system flexibility” [48], [49], [50]. We incorporate this in a “minimum load box”, 

which is a fourth part of the RLDC. Current estimates for minimal dispatchable electricity 

generation in Germany are 15 – 28 GW (13 – 20 GW for ancillary services [51] and 2 – 8 GW 

from CHP plants [52]), which is 15% – 27% of peak load (103 GW). An empirical estimation for 

Germany shows a slightly higher figure of 30% for 2012-14 [53]. The modeled height of the 

minimum load box (ℎ𝑚𝑖𝑛) should be parameterized for future power system, because this 

constraint becomes binding only at high VRE shares (above about 25% VRE). 
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However, future values are uncertain and there are both drivers that increase and decrease the 

minimal dispatchable generation in a system. Requirements for operating reserves might increase 

with VRE and thus a part of the system’s minimal dispatchable generation would increase. On 

the other hand, there are drivers that might compensate this effect. Improved VRE forecasts, 

more efficient power markets (e.g. shorter trading periods in intra-day markets, or later gate-

closure), the capability of VRE to contribute to ancillary services, and the use of power 

electronics to provide ancillary services, might reduce the need for dispatchable operating 

reserves. In addition, must-run constraints might decrease because power plants flexibility might 

increase for two reasons. First, technical characteristics of power plants are likely to change, e.g., 

minimum load of individual thermal plants could decrease. Second, heat and power generation 

will be more and more decoupled leading to a flexibilization of CHP plants (e.g. by increasing 

the use of heat storage). However, such future developments are difficult to foresee in 

quantitative terms. Due to the significant potential to relax minimal dispatchable generation in 

the future we assume the minimum load box height to be about one third of current values, i.e., 

10% of peak load (Figure 4). In principle, one could introduce an endogenous relation between 

this height and VRE deployment; however, we believe that this would add complexity without 

improving robustness of results, as the endogenous relation cannot be accurately parameterized. 

 

Figure 4: A minimum load box accounts for limited system flexibility, which requires some supply from dispatchable 
capacities throughout the year. 
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The “minimum load box” increases the over-produced amount of VRE (shaded area) and allows 

some dispatchable plants to run at a constant output throughout the year. The chosen height of 

the minimum load can affect the results, especially in scenarios with large shares of VRE power. 

Relaxing the constraint decreases the over-produced VRE generation and hereby directly 

increases the optimal VRE generation share. In addition, this decreases integration challenges of 

VRE and could induce additional investment in VRE capacity. 

In addition to the implementation of RLDCs, we implemented a balance equation for 

“flexibility” (equation (15)), which was developed and parameterized for the MESSAGE model 

[29]. Flexibility coefficients 𝛼 are attributed to each source of generation and load to 

approximate a level of flexibility that is either provided (positive coefficients for dispatchable 

generation) or required (negative coefficients for load and VRE generation). The coefficients 𝛼𝑡𝑒  

are multiplied with the respective annual generation from each technology 𝐺𝑡𝑒. The negative 

coefficient for load 𝛼𝑙𝑜𝑎𝑑 is multiplied with total annual load 𝐺𝑡𝑜𝑡𝑎𝑙. These terms are combined 

in a balance equation such that positive flexibility provisions cover negative flexibility 

requirements. 

The second additional element is the balance equation for “flexibility” described in the 

introduction and first presented in Ref. [29] as “operating reserve constraint”. The constraint 

aims at assuring sufficient operating reserves and flexible generation to cope with additional 

balancing, ramping and cycling requirements with growing VRE shares. The above-described 

model representation of RLDCs does already incentivize investments in more flexible thermal 

plants
10

 and the minimum load box also addresses some aspects of flexibility. A combination 

with “operating reserve constraint” is possible without double-accounting of flexibility 

requirements. However, the additional operating reserve constraint turns out to be not binding in 

the scenarios results in this paper. 

2.3. Power-to-gas storage 
 

The RLDC approach allows for modeling power-to-gas storage endogenously. The suggested 

model realization of power-to-gas storage consists of an electrolysis process that transforms 

over-production from VRE supply to hydrogen, followed by a potential second step in which 

                                                
10 The reduced utilization of thermal power plants induces a shift towards less capital-intensive intermediate and 
peak load power plants, which are more flexible than base-load plants. 
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hydrogen can be further transformed to methane. A key determinant for the profitability of 

power-to-gas is the amount of available over-production and its frequency distribution. Both 

depend on the VRE share and mix and can be derived directly from geometric shape of the 

RLDC. This is illustrated in Figure 5. The model endogenously chooses an electrolysis capacity. 

The shaded area equals the resulting amount of over-production that is input to electrolysis. The 

width of this area is given by the frequency distribution of over-production and determines the 

FLH of the electrolysis. Hydrogen can be directly used, e.g., in the transport sector, fed into the 

natural gas grid (on a limited scale), or alternatively be transformed to methane. The latter option 

requires CO2 as an input, which can be provided from biogas fermentation or synthesis. Power-

to-gas storage and other seasonal storage types that are characterized by high converter costs and 

low reservoir costs can easily be represented within the RLDC approach by assuming that the 

reservoir is only filled and emptied once a year. This is equivalent to saying that the reservoir has 

to be as large as the total amount of electricity that is stored over one year – a somewhat 

conservative approach, which is however acceptable due to the low reservoir costs. By contrast, 

short-term storage technologies and DSM are more difficult to represent in the RLDC concept 

and in long-term energy-economy models in general (see next section). 

 
Figure 5: The representation of RLDCs allows implementing power-to-gas storage via hydrogen and methane. 
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2.4. Limitations of the RLDC approach 

As every simplifying method, the RLDC approach has shortcomings. Some aspects of variability 

require high modeling detail and can therefore hardly be captured in such an aggregated 

approach. Note that many of these shortcomings apply to long-term models in general and point 

to promising fields of further methodological research. 

By using duration curves, information about the temporal sequence for generation and demand is 

lost. This hinders a direct and accurate representation of some aspects that are characterized by 

these short-term dynamics such as demand-side management, short-term storage, and flexible 

thermal generation
11

. 

Short-term storage and demand-side management technologies are characterized by the fact that 

they frequently shift small amounts of electricity in time. Sequential temporal information about 

residual load is necessary for modeling their operation, e.g., their number of annual cycles and 

the resulting optimal capacity and amount of electricity shifted in time. As a consequence these 

options of mitigating integration challenges are not represented in the RLDC approach. This 

biases the scenario results towards underestimating the deployment of VRE by overestimating 

back-up requirements and over-produced VRE generation. To overcome this drawback short-

term storage and DSM could in principle be considered by reshaping the RLDC parameterization 

such that it account for the electricity-shifting impact of these technologies. However, the impact 

of short-term storage and DSM on the RLDC is very complex. Thus a parameterization would 

require using a highly-resolved production cost model for a range of wind and solar penetrations. 

In addition, losing the sequential order of load and VRE supply creates a challenge for 

representing aspects of flexible thermal generation such as ramping and cycling constraints, 

minimum load, minimum up and down times, part-load efficiency, operating reserve 

requirements, and corresponding costs. In general, a long-term energy model cannot guarantee 

that there is sufficient flexibility to reliably balance supply and demand in the calculated optimal 

capacity expansion path. Other highly-resolved production cost models are designed for this 

purpose, which can be soft-coupled to a long-term model (see for example REF. [54]–[56]). The 

error made by using only a long-term model depends on both the general modeling of power 

                                                
11 Flexible thermal generation refers to the ability of thermal power plants to adjust their generation on short 
notice over a wide range with low associated costs. 



16 

 

sector variability (VRE and load) and the use of additional constraints to implicitly account for 

flexibility. While we did not quantify the error (which would have required a highly-resolved 

model coupling) we argue that it is small for models using the RLDC approach for three reasons: 

1. Accounting for RLDCs alone does already incentivize investments in more flexible 

thermal plants. The reduced utilization of thermal power plants induces a shift towards 

less capital-intensive intermediate and peak load power plants, which are more flexible 

than base-load plants. 

2. Many studies show that the costs for providing sufficient flexibility with increasing VRE 

shares are low, i.e., less than 6 EUR per MWh of VRE (<10% of VRE generation costs) 

even at high VRE shares ([57]–[59]). The substantial uncertainties of future technology 

costs are much larger than these small additional costs, which will therefore only have a 

minor effect on the findings derived from scenarios that span technology cost ranges.  

3. Additional elements complement the use of RLDCs, such as the “minimum load box” 

and an operating reserve constraint (Section 2.2) and hereby approximately account for 

some aspects of flexibility such as minimum load of thermal power plants and operating 

reserves. 

Beyond the fundamental RLDC structure that can be rigorously derived from time series, 

implicit representations of detailed aspects rely on parameters that mimic future system 

properties in a rather stylized way. These parameters are often difficult to define rigorously 

because a number of system-dependent small-scale aspects need to be collapsed into a single 

value. As this paper focuses on introducing the conceptual side of a new approach of 

representing power sector variability, the main effort was not on deriving the parameters. We 

have derived them from empirical estimates, highly resolved model analyses and qualitative 

arguments as described in the respective sections, but further refining the parameterization and 

adopting it to regionally differentiated power systems would be a valuable future improvement. 

Another important limitation of using RLDCs is that modeling power exchange between multiple 

regions is highly challenging. Again this is because the chronological order of load and VRE 

supply is lost and consequently the RLDC of connected regions are not synchronous in time. The 

RLDC approach is most suitable to represent a single region or regions that do not transfer 

significant amounts of electricity between them. In addition, finding a representative RLDC 
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parameterization of a region requires an aggregation which will neglect some spatial 

heterogeneity. The aggregation of spatial aspects does also hinder an accurate accounting of 

additional grid costs. Implementing transmission cost penalties can help overcoming this deficit, 

see for example Ref. [32]. 

3. Application of the RLDC approach in REMIND-D 

For a first application of the RLDC approach we use the REMIND-D model, which is described 

in Section 3.1. In Section 3.2 we investigate the impact on scenario results of modeling power 

sector variability with the RLDC approach. 

3.1. Model and data 

REMIND-D is a long-term energy-economy model for Germany; a detailed description of the 

model and the calibration data is available in Ref. [42]. The equations are derived from the 2010 

version of the global model REMIND-R 1.2, [60], [61], which did not include any representation 

of variability in the power sector – this feature was only added in REMIND 1.3 and improved 

since then [32]. REMIND-D finds the welfare-optimal mitigation pathways until 2050, 

considering technological mitigation options in the power, heat and transport sector. The optimal 

solution is calculated by an inter-temporal, non-linear optimization algorithm, assuming perfect 

foresight and accounting for endogenous technological learning. Hereby, it combines a Ramsey-

type growth model that reflects general macroeconomic dynamics and a detailed bottom-up 

energy system module. The temporal resolution is in steps of five years to keep the complexity 

of the numerical model manageable, which is sufficient to represent investment decisions. 

However, short-term power sector variability must be accounted for in a stylized way. The model 

REMIND-D is used as a first application of the RLDC approach. 

For parameterizing the RLDC approach in REMIND-D we use wind and solar generation data 

from actual quarter-hourly feed-in data from German Transmission System Operators (TSOs) for 

2011, which is publicly available on the respective websites
12

. To simulate higher VRE shares 

we scale up the time series linearly. This approximation in principle tends to overestimate the 

correlation of VRE supply and hereby would overestimate VRE integration challenges. 

                                                
12 www.50hertz-transmission.net, www.tennettso.de, www.amprion.net, www.enbw.com 

http://www.50hertz-transmission.net/
http://www.tennettso.de/
http://www.amprion.net/
http://www.enbw.com/
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However, this is somewhat balanced by a spatial aggregation
13

 over the four different TSO zones 

in Germany, which implicitly assumes perfect domestic transmission (“copper plate 

assumption”). The geographical dispersion of wind power in 2011 is regarded as fairly 

representative also for future wind power expansion. 

For parameterizing demand, hourly data for the German power system in 2011 were downloaded 

from the ENTSO-E website
14

. The temporal profile is assumed to remain the same for the future. 

The data were interpolated linearly to match the quarter-hourly resolution of VRE generation. 

The variability of offshore wind power supply is parameterized with wind onshore data due to a 

lack of offshore wind data. 

 

Figure 6: Residual load duration curves for different shares of wind power and solar PV based on German load and VRE 

feed-in data for 2011. These data are used for the RLDC parameterization in the long-term model. Note that the shares 
are given as potential VRE generation (including curtailment) relative to total annual load. 

Figure 6 shows a part of the ensemble of RLDCs on which the parameterization in the long-term 

model is based. It displays the development of RLDCs for increasing shares of either wind power 

or solar PV (the parameterization considers a broader range of shares and mixes of wind and 

solar). These RLDCs retain the same shape independently of the historic year that provides the 

annual load and VRE supply data (in our case 2011). However, systematic changes in the future 

temporal distribution of load can change RLDCs. Such changes are uncertain and difficult to 

                                                
13

 The spatially aggregated times series for wind power (and solar PV) is derived by adding the 2011 feed-in data of 
all four TSO zones resulting in a spatial average weighted by the VRE generation in each zone. 
14 https://www.entsoe.eu/data/data-portal/ 

https://www.entsoe.eu/data/data-portal/
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estimate, which is why we believe that using the current distribution is the best approximation 

for the time being. 

3.2. Results: impacts of modeling variability in REMIND-D 

We compare the REMIND-D model outputs with the new RLDC approach to a REMIND-D 

version without any representation of variability and integration challenges. We examine both 

the direct impact of variability on the deployment of VRE and the indirect effect on the residual 

system like dispatchable generation and storage requirements. Moreover we determine broader 

impacts like the mitigation cost penalty due to variability and separately estimate the effect of 

power-to-gas storage. A comparison between model results of REMIND-D with those of other 

model-based scenarios looking at the future development of renewables in Germany is beyond 

the scope of this paper. A dedicated analysis of this kind [62] revealed that the application of the 

RLDC approach leads to VRE generation trajectories for Germany that are well within the range 

projected by detailed, bottom-up simulation models.  

To maintain focus on the RLDC approach, we use a predefined scenario. All results shown here 

apply the boundary conditions of the ‘continuation’ scenario in [43], which enforces a set of 

trends in the electricity and transport sector. Nuclear power plants are phased out according to 

legislation and carbon capture and storage (CCS) is assumed to be unavailable because of its 

poor prospects in Germany [63]. Coal power plants are allowed to reduce their annual generation 

or serve solely as reserve power plants before the end of their technical lifetime if cost-efficient 

(from a system perspective), e.g., due to high CO2 prices. We show results for the baseline 

scenario, where no carbon budget is applied, and for a standard ambitious mitigation scenario, 

i.e., achieving the German policy target of 80% emissions reduction in 2050 relative to 1990. 

The RLDC approach is implemented including the additional elements of a minimum load box 

and the operating reserves constraint introduced in Ref. [29]. A first result is that the latter 

constraint, if parameterized according to Ref. [29], is not binding in any scenario, i.e., that even 

though the RLDC approach focuses on capturing profile costs, it tends to provide sufficiently 

flexible generation. The main reason is that an RLDC with high VRE shares induces a shift 

towards typical peak- and mid-load capacities such as gas or biomass plants, which not only 

reduces profile costs but also provide enough flexible generation, in contrast to base-load plants 

like coal plants that are characterized by supplying less flexibility. 
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The direct impact of the RLDC approach on modeled VRE generation levels is shown for the 

baseline scenario (Figure 7, left) and the standard mitigation scenario (Figure 7, right). The 

consideration of variability with the RLDC approach substantially reduces the power generation 

from VRE, by 35% in the baseline scenario and by 27% in the mitigation scenario in 2050. The 

shaded areas show sensitivity results for the VRE generation with 20% higher and lower VRE 

capital costs. In the mitigation scenario, varying the costs of VRE does only slightly change 

deployment levels, since there are hardly alternative mitigation options in the power sector to 

reach the ambitious reduction target if both nuclear and CCS are constrained. The strong effect 

of the RLDC approach is mainly induced by over-production. However, this can be used for 

producing hydrogen via electrolysis. 

 

Figure 7: Representing variability with the RLDC approach substantially reduces the power generation from VRE, by 

35% in the baseline scenario and by 27% in the mitigation scenario in 2050. The shaded areas show sensitivity results for 
the VRE generation with 20% higher and lower VRE capital costs. 

In the mitigation scenario up to 25% of VRE generation cannot directly be used in 2050 because 

it exceeds demand or interferes with dispatchable minimum load requirements. Figure 8 (left) 

shows that this amounts to up to 90TWh of potential annual curtailment, of which over 80% are 

then used as input to power-to-gas storage, with endogenous capacity of roughly 40GW of 

hydrogen electrolysis and 2GW of methanization. Due to efficiency losses the 90 TWh of 

curtailed electricity production is decreased by 46% to an actual stored energy of 49 TWh 

(35TWh hydrogen, 14TWh methane) (Figure 8, right). 
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Figure 8: A high fraction of total curtailment of VRE can be used for power-to-gas storage (left). A small fraction of 
hydrogen is transformed into methane (right). 

Comparing electricity generation and the non-VRE capacity mix for the mitigation scenario with 

and without the RLDC approach gives insights as to the indirect effect of variability, i.e., how 

the non-VRE system changes due to variability of demand and VRE. Figure 7 shows that the 

share of VRE generation in 2050 reduces from 72% to 55% with the RLDC approach, with the 

difference being made up by more dispatchable generation. Total power generation decreases 

because power demand is price-elastic and the costs of power generation increase with power 

sector variability. Dispatchable renewables like biogas, hydro-power and geothermal plants are 

used to a considerable extent, increasing the total share of renewables to 90% in 2050. In contrast 

to the case without RLDCs, a small share of fossil generation from combined-cycle gas plants 

remains in the power system, because in an autarkic German system the mismatch between VRE 

supply and residual load at high VRE shares is larger than the limited potential of dispatchable 

renewable energy sources. These combined-cycle gas plants replace coal power plants that are 

decommissioned before the end of their technical lifetime, driven by decreasing FLH for 

dispatchable plants and a high CO2 price (85 €/t CO2 in 2020). These gas plants also provide 

sufficient flexibility to meet the operating reserve constraint. 
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Figure 9: The development of the electricity generation mix without (left) and with (right) the RLDC approach, keeping 
all other scenario characteristics unchanged. 

Figure 10 illustrates how the model approximation of RLDCs acts in the GHG mitigation 

scenario. While potential VRE generation increases to about 75% (including curtailment) of 

electricity generation in 2050 the base load box reduces to a width of about 5000 full-load hours 

per year (left side, the minimum load box is not shown here). For 2030 Figure 10 (right) shows 

the endogenous annual dispatch of dispatchable generators, i.e., how the different parts of annual 

residual load are covered. The minimum load box is filled with must-run generation from natural 

gas CHP plants as well as partly dispatchable RES generation from geothermal and hydro plants. 

Intermediate load is covered with generation from biogas plants and combined-cycle natural gas 

plants. Peak load is covered by combined-cycle and open-cycle gas plants. In addition, 14 GW of 

capacity reserve are required (reserve margin of 20% of peak load), which is provided by 

capacity that has been decommissioned for daily operation such as mainly hard coal or lignite 

capacity (compare with Figure 11). 
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Figure 10: The endogenous development of the linear approximation of RLDCs shows how residual load transforms in 

the GHG mitigation scenario as VRE generation grows in time (left). For 2030 the annual dispatch of dispatchable 
generators illustrates how the different parts of annual residual load are covered (right). 

Figure 11 shows the development of the capacity mix for non-VRE capacities. With the RLDC 

approach, required generation capacity in 2050 is three times higher than in the case without 

RLDCs even though the total electricity generation is slightly reduced. Combined-cycle gas 

plants and gas turbines (open cycle gas plants) are cost-efficient options to provide firm capacity 

due to their low specific-investment costs. 

This significant increase of total installed generation capacity is caused by a more accurate 

reflection of demand variability in particular peak demand situations and the low capacity credit 

of VRE with the RLDC approach. Without the new approach, REMIND-D does not account for 

power sector variability, which is tantamount to assuming that power demand and supply are 

homogenous in time
15

 [28]. This corresponds to a situation in which power demand is constant 

and VRE provides base-load electricity and reduces capacity requirements as if they could 

supply constant power output. This bias strongly underestimates capacity requirements in real 

power systems with high VRE shares. In the scenario without the RLDC approach, installed firm 

                                                
15 This is different in the global model REMIND-R, which applies share-dependent cost markups to wind and solar 
power to represent storage, transmission and curtailment needs since version 1.3 [32]. 
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capacity could only serve about 35% of peak capacity. Moreover, gas power plants are 

discriminated against because their specific value for covering peak load is not reflected when 

neglecting variability. 

 

 

Figure 11: The development of the non-VRE capacity mix without (left) and with (right) the RLDC approach. 

With the RLDC approach, mitigation becomes more expensive because the important mitigation 

option VRE incurs additional integration costs on a power system level. Also, the mitigation 

effect of a unit VRE capacity is reduced. The power generation from VRE needs to be partly 

curtailed or transformed by costly power-to-gas storage with limited efficiency, while more 

dispatchable plants and generation are required to provide capacity and operating reserves. 

Figure 12 shows the mitigation costs of the ambitious mitigation scenario, in terms of cumulative 

discounted consumption losses over the period 2010-2050, compared to the baseline scenario. 

Here we also analyze a model version with an intermediate implementation step: a representation 

of RLDCs but without power-to-gas storage. From left to right we add elements of the novel 

method resulting in three different mitigation cost figures. With the RLDC but without power-to-

gas storage, mitigation costs increase from 1.20% to 1.41%. Thus, introducing variability 

enlarges mitigation costs by 18%. This is a considerable increase given that the technology 

portfolio remains unchanged and the new equations only affect the power sector. On the other 

hand the consideration of variability fundamentally reshapes the operation and planning of the 
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power system and limits renewable energy, which is the only low-carbon energy supply option in 

these scenarios. Power-to-gas storage can reduce this increase by about one third, with mitigation 

costs amounting to 1.34% consumption losses under implementation of the full RLDC approach. 

The impact of variability on mitigation costs might further decrease with the availability of more 

alternative mitigation options in the power sector such as nuclear power or CCS, as well as with 

increased flexibility options such as demand-side management and large-area pooling, which 

would change the RLDC due to a spatial aggregation of VRE supply and demand over a large 

area like Europe. As the analyzed scenarios assume full autarchy of the German power sector, 

there is no cross-border electricity trade that might improve the match between VRE supply and 

demand and thereby reduce integration challenges through European cooperation.    

 

Figure 12: Mitigation costs in terms of cumulative discounted consumption losses compared to the respective baseline 

scenarios. Considering variability enlarges mitigation costs by 18%. Power-to-gas storage can reduce this increase by one 
third. 

4. Summary and conclusion 

Improving the representation of power sector variability is among the highest priorities for the 

further refinement of integrated energy-economy climate models used for analyzing long-term 

climate change mitigation scenarios. Our novel approach can serve as an appropriate model 

representation of power sector variability because of three main merits. It firstly covers the most 
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important variability impacts, secondly is valid for a broad scenario space with different energy 

system configurations and thirdly provides flexibility of choosing among multiple pathways of 

integrating VRE. In an application for the model REMIND-D, the substantial impact of the 

approach on model results confirms that power sector variability matters. Thus, implementing 

the RLDC approach in a long-term energy-economy model would improve the robustness and 

credibility of mitigation scenarios. In particular, it would foster a more accurate estimation of 

mitigation costs and the role of VRE in low-carbon transformation scenarios. 

The novel approach incorporates power demand and supply variability through the use of 

RLDCs. RLDCs are a purely physical concept based only on demand and VRE supply data, yet 

deliver the economic impact of the most important aspect of variability of demand and supply. 

The unfavorable matching of the temporal profiles of VRE supply with demand results in so-

called profile costs due to lower utilization of dispatchable power plants. These profile costs can 

be substantial at high VRE shares and tend to be higher than integration costs for additional grid 

and balancing requirements of VRE ([22], [41]). More specifically, for a broad range of shares of 

wind and solar PV the novel approach represents a number of cost-driving aspects of power 

sector variability such as firm capacity requirements, the reduction of FLH of non-VRE plants, 

over-production of VRE and minimum load and operating reserve constraints. Hereby, the 

modeled energy system can endogenously adjust in response to increasing VRE deployment, 

namely via a shift in the non-VRE capacity mix, deployment of power-to-gas storage or 

curtailment of over-produced VRE generation.  

We demonstrate the RLDC approach with REMIND-D [42], [43], a long-term energy-economy 

model for Germany. The impacts on the results compared to a version without any representation 

of variability are substantial. With the RLDC approach implemented, power generation from 

VRE reduces by 35% in the baseline scenario and by 27% in an ambitious mitigation scenario in 

2050. The model requires significantly more non-VRE capacity, in particular gas-fired plants. 

The consideration of variability changes key macro-economic figures: Mitigation costs increase 

by 18%. The availability of power-to-gas storage can reduce this increase by one third. Note that 

the scenarios neglect cross-border electricity trade that might improve the match between VRE 

supply and demand and reduce integration challenges. 
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Future research should address the remaining limitations of the RLDC approach. An important 

question is how to address short-term storage technologies and demand-side management in 

long-term energy-economy models. Finding a representative RLDC for a large region requires 

assumptions about how to aggregate regional-specific VRE supply and demand patterns. 

Assuming perfect grid interconnections (copper plate assumption) overestimates the smoothing 

effect on variability by pooling variable demand and VRE supply over large areas. In addition, 

the RLDC approach does not allow to explicitly modeling power exchange between sub-regions 

and corresponding grid infrastructure. Hence, the approach is most appropriate for models that 

resolve large regions, which do not trade electricity among each other. Complementing the 

approach with a carefully parameterized function for additional grid costs of VRE is a promising 

way forward. Also, better parameterization of those complementing parameters that cannot be 

rigorously derived from physical quantities and time series, e.g., minimum load band and reserve 

margin requirements, for a range of power sector set-ups would improve the validity of the 

approach. The basic direction of improving the RLDC approach is to complement the 

endogenous representation of RLDCs with other elements, such as cost parameters for detailed 

variability aspects and exogenous deployment of integration options like short-term storage, 

which can be derived from higher-resolved models. 
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A. Appendix 

A.1. Residual load duration curves 

This section briefly introduces LDCs and RLDCs. Electricity demand is variable (see Figure 13, 

left) and price-inelastic (in the short-term) and consequently electricity providers need to adjust 

generation instantly. Variable demand also implies that power plants differ in their annual FLH. 

This can be illustrated with a LDC, which is derived by sorting the load curve, i.e., the time 

series of power demand for one year or longer (Figure 13) from highest to lowest values. The 

maximum of a LDC indicates the capacity required to cover total annual electricity demand, 

which equals the area below the curve. The curve is shaped by the temporal distribution of 

variable demand, which determines the potential FLH of power-generating plants. 

 

Figure 13 (schematic): The LDC (right) is derived by sorting the load curve (left) in descending order. 

The residual load curve is a time series that is derived by subtracting the time series of VRE from 

the time series of power demand (Figure 14, left side). The RLDC is then derived by sorting the 

residual load curve in descending order (Figure 14, right side). The area between the LDC and 

the RLDC is the potential electricity generation from VRE. Note that the shape of the area does 

not indicate the temporal distribution of VRE supply, due to different sorting of load and residual 

load, yet this information is not relevant for the RLDC approach. RLDCs are shaped by the 

temporal distribution of residual demand and hereby determine the potential FLH of dispatchable 

plants, which are crucial to the optimal technology mix in a power system. In that sense the 

RLDC replaces the LDC in a situation with VRE. 
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Figure 14 (schematic): The residual load curve (a time series) is derived by subtracting the time series of VRE from the time 
series of power demand (left). The RLDC (right) is derived by sorting the residual load curve in descending order. The area in 
between the RLDC and the LDC equals the potential contribution of VRE. 

A.2. Equations of the RLDC approach 

In the following we show the core equations of the RLDC approach. All equations are valid for 

each time step, i.e., every variable depends on the time, which is not shown here. For every non-

VRE power generating technology 𝑡𝑒 the respective total endogenously installed capacity 𝐶𝑡𝑜𝑡,𝑡𝑒  

is endogenously decomposed into three parts (𝐶𝑏𝑜𝑥,𝑡𝑒 , 𝐶∆,𝑡𝑒 , 𝐶𝑝𝑒𝑎𝑘,𝑡𝑒) that operate in the three 

different parts of the RLDC: the base load box, the intermediate load triangle, and the peak-

capacity part (Figure 15, left). 

𝐶𝑡𝑜𝑡,𝑡𝑒 = 𝐶𝑏𝑜𝑥,𝑡𝑒 + 𝐶∆,𝑡𝑒 + 𝐶𝑝𝑒𝑎𝑘,𝑡𝑒  (1)   

When adding all the capacity units that operate in one part of the RLDC, e.g., for base load 

𝐶𝑏𝑜𝑥,𝑡𝑒 , this should equal the total capacity demand for this RLDC part, e.g., 𝐶𝑏𝑜𝑥. 

𝐶𝑏𝑜𝑥 =∑𝐶𝑏𝑜𝑥,𝑡𝑒
𝑡𝑒

 (2)   

There are two more analogous equations for 𝐶∆ and 𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑒. 𝐶𝑏𝑜𝑥, 𝐶∆ and 𝐶𝑟𝑒𝑠𝑒𝑟𝑣𝑒 also are 

endogenous variables determining the shape of the RLDC, which depends on the endogenous 

share and mix of VRE. The relation between share and mix of VRE and the shape of the RLDC 

is exogenously parameterized as described in Section 2.1. 
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There are two balancing equations for the generation in the base load 𝐺𝑏𝑜𝑥 and intermediate load 

part 𝐺∆.  

𝐺𝑏𝑜𝑥 = 𝐶𝑏𝑜𝑥𝜈𝑏𝑜𝑥 =∑𝐶𝑏𝑜𝑥,𝑡𝑒𝜈𝑏𝑜𝑥
𝑡𝑒

 (3)   

𝐺∆ =
1

2
𝐶∆𝜈𝑏𝑜𝑥 =∑𝐶∆,𝑡𝑒𝜈∆,𝑡𝑒

𝑡𝑒

 (4)   

The capacity factors 𝜈 for the different parts of the RLDC endogenously depend on the 

generation share and mix of VRE. As a consequence the RLDC approach is non-linear and 

cannot be applied in purely linear models. Planned outages of power plants are assumed to be 

conducted in the "1 − 𝜈" part of the year, i.e., while the plants are not needed. Unplanned 

outages are compensated by the additional reserve capacity margin. The capacity factor of units 

that operate in the base load part 𝜈𝑏𝑜𝑥, is independent of the specific technology 𝑡𝑒. By contrast 

the capacity factors in the intermediate load part 𝜈∆,𝑡𝑒  is different for different technologies 𝑡𝑒. 

This is because the capacities need to cover the triangle shape as illustrated in Figure 15 (right). 

Each capacity 𝐶∆,𝑡𝑒 has an average capacity factor 𝜈∆,𝑡𝑒  and covers a range of capacity factors 

from 𝜈∆,𝑡𝑒
𝑚𝑖𝑛  to 𝜈∆,𝑡𝑒

𝑚𝑎𝑥  as defined in the model equations 5 and 6. 

  

Figure 15: Four parameters describe the RLDC shape (left). The capacity units 𝑪∆,𝒕𝒆 that operate in the intermediate load 

triangle have different capacity factors 𝝂∆,𝒕𝒆 in order to cover the triangle shape (right). 
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𝜈∆,𝑡𝑒
𝑚𝑖𝑛 ∶= 𝜈∆,𝑡𝑒 −

1

2
𝐶∆,𝑡𝑒

𝜈𝑏𝑜𝑥
𝐶∆

 

𝜈∆,𝑡𝑒
𝑚𝑎𝑥 ∶= 𝜈∆,𝑡𝑒 +

1

2
𝐶∆,𝑡𝑒

𝜈𝑏𝑜𝑥
𝐶∆

 

(5)   
   

(6)  

Note that all these variables are endogenous. As a consequence, the order of the capacities in the 

intermediate load triangle is endogenously chosen in the optimization. It can change between 

different time steps of the scenario driven, e.g., by changing fuel costs and carbon prices. It 

needs a few more equations to ensure that the intermediate load capacities stack and their 

endogenous capacity factors behave such that their generation covers the triangular shape. If a 

modeler wants to avoid these additional equations there are two alternatives. One could 

exogenously determine the order of stacking within the intermediate load triangle, or use boxes 

instead of the triangular approximation (Figure 3). 

The additional equations for matching the triangle build on probability theory. An RLDC can be 

interpreted as a cumulative distribution function 𝐹(𝜐) of load
16

. 𝐹(𝜐) also represents the 

cumulative distribution of capacity over the range of capacity factors. The triangle part of the 

RLDC corresponds to the distribution of capacities 𝐶∆,𝑡𝑒  and can be described with a constant 

density function 𝑓(𝜐) =
𝑑

𝑑𝜈
𝐹(𝜈) =

𝐶∆
𝜈𝑏𝑜𝑥⁄ , i.e., capacity is distributed uniformly over the 

capacity factor range 0 to 𝜈𝑏𝑜𝑥. To realize this for the capacities 𝐶∆,𝑡𝑒  in the model, we make use 

of a law from probability theory: every density function is uniquely determined by all its 

moments, i.e., there is no other probability distribution with the same sequence of moments. In 

fact, already the first four low-order moments determine some fundamental properties of a 

distribution such as mean value, variance, skewness and kurtosis. Hence, we add model 

equations that make sure that a number of low-order moments of the distribution of 𝐶∆,𝑡𝑒  match 

those of a uniform density function. The resulting cumulative distribution of 𝐶∆,𝑡𝑒  would 

consequently converge to the triangular shape of the RLDC. 

The moments (𝑘 ∈ 𝑁) of any density function 𝑓(𝜐) can be defined with the expectation operator 

𝐸: 

                                                
16 Note that it would need to be flipped horizontally and indexed to peak load to be identical to the typical format 
of a cumulative distribution function. 
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𝐸(𝜐𝑘) ∶=
∫ 𝜐𝑘𝑓(𝜐)𝑑𝜐
∞

−∞

∫ 𝑓(𝜐)𝑑𝜐
∞

−∞

 (7)   

As discussed above, the objective is to derive equations that equal the moments of the ideal 

triangular distribution 𝐸∆(𝜐
𝑘) with the moments 𝐸𝑡𝑒(𝜐

𝑘) of the endogenous capacities 𝐶∆,𝑡𝑒 and 

capacity factor ranges 𝜈∆,𝑡𝑒
𝑚𝑖𝑛 and 𝜈∆,𝑡𝑒

𝑚𝑎𝑥: 

𝐸∆(𝜐
𝑘) = 𝐸𝑡𝑒(𝜐

𝑘) (8)   

We start with calculating the left side. For the intermediate load triangle, 𝑓(𝜐) is a uniform 

function 𝑓(𝜐) =
𝐶∆
𝜈𝑏𝑜𝑥⁄  in the limits of 𝜐 = 0 and 𝜐 = 𝜈𝑏𝑜𝑥  and the corresponding moments can 

be calculated directly: 

𝐸∆(𝜐
𝑘) =

∫ 𝜐𝑘
𝐶∆
𝜈𝑏𝑜𝑥

𝑑𝜐
𝜈𝑏𝑜𝑥
0

∫
𝐶∆
𝜈𝑏𝑜𝑥

𝑑𝜐
𝜈𝑏𝑜𝑥
0

 

=
1

𝑘 + 1
𝜈𝑏𝑜𝑥

𝑘  

 

(9)   

   

(10)  

For evaluating the right side of equation (8), the model-endogenous moments can be derived by 

decomposing the integrals in equation (7) into additive parts that correspond to technologies 𝑡𝑒 

and their capacity factors range, 𝜈∆,𝑡𝑒
𝑚𝑖𝑛 to 𝜈∆,𝑡𝑒

𝑚𝑎𝑥: 

𝐸𝑡𝑒(𝜐
𝑘) =

∑ ∫ 𝜐𝑘𝑓𝑡𝑒(𝜐)𝑑𝜐
𝜈∆,𝑡𝑒
𝑚𝑎𝑥

𝜈∆,𝑡𝑒
𝑚𝑖𝑛𝑡𝑒

∑ ∫ 𝑓𝑡𝑒(𝜐)𝑑𝜐
𝜈∆,𝑡𝑒
𝑚𝑎𝑥

𝜈∆,𝑡𝑒
𝑚𝑖𝑛𝑡𝑒

 (11)   

The density function 𝑓𝑡𝑒(𝜐) that describes the distribution of the capacity 𝐶∆,𝑡𝑒  of a technology is 

uniform (i.e. constant), because the capacity factors are equally spread around the average 

capacity factor 𝜈∆,𝑡𝑒  in a range from 𝜈∆,𝑡𝑒
𝑚𝑖𝑛  to 𝜈∆,𝑡𝑒

𝑚𝑎𝑥  (see equations 5 and 6 and Figure 15). 𝑓𝑡𝑒(𝜐) 

can therefore be eliminated from numerator and denominator, and the integrals can be solved: 

𝐸𝑡𝑒(𝜐
𝑘) =

1

𝑘 + 1

∑ (𝜈∆,𝑡𝑒
𝑚𝑎𝑥𝑘+1 − 𝜈∆,𝑡𝑒

𝑚𝑖𝑛𝑘+1)𝑡𝑒

∑ (𝜈∆,𝑡𝑒
𝑚𝑎𝑥 − 𝜈∆,𝑡𝑒

𝑚𝑖𝑛)𝑡𝑒

 (12)   

The denominator can be calculated based on equations 5, 6 and (2): 
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∑(𝜈∆,𝑡𝑒
𝑚𝑎𝑥 − 𝜈∆,𝑡𝑒

𝑚𝑖𝑛)

𝑡𝑒

(5),(6)
⇒   ∑(𝐶∆,𝑡𝑒

𝜈𝑏𝑜𝑥
𝐶∆
)

𝑡𝑒

(2)
⇒ 𝜈𝑏𝑜𝑥 (13)   

Based on this, equation (8) can be evaluated such that the model variables 𝜈∆,𝑡𝑒
𝑚𝑖𝑛 and 𝜈∆,𝑡𝑒

𝑚𝑎𝑥 behave 

such that the corresponding capacities 𝐶∆,𝑡𝑒 converge to a triangular distribution. 

𝜈𝑏𝑜𝑥
𝑘+1 =∑(𝜈∆,𝑡𝑒

𝑚𝑎𝑥𝑘+1 − 𝜈∆,𝑡𝑒
𝑚𝑖𝑛𝑘+1)

𝑡𝑒

 (14)   

Low-order moments already determine some fundamental properties of a distribution such as 

mean value, variance, skewness and kurtosis. In fact, it can be shown that equation (14) for 

𝑘 = 0 is already implicitly accounted for by the equations 5, 6 and (2), and 𝑘 = 1 is accounted 

for if equation (3) is given in addition. For the shown REMIND-D scenarios, it turned out to be 

sufficient to fix an additional 2 to 4 moments, i.e., implementing equation (14) for 𝑘 = 2 . . 5 into 

the model, to reach fairly well stacking of 𝐶∆,𝑡𝑒.  

A.3. Equation and parameterization of the operating reserve constraint 

In addition to the implementation of RLDCs, we implemented a balance equation for 

“flexibility” (equation (15)), which was developed and parameterized for the MESSAGE model 

[29]. Flexibility coefficients 𝛼 are attributed to each source of generation and load to 

approximate a level of flexibility that is either provided (positive coefficients for dispatchable 

generation) or required (negative coefficients for load and VRE generation). The coefficients 𝛼𝑡𝑒  

are multiplied with the respective annual generation from each technology 𝐺𝑡𝑒. The negative 

coefficient for load 𝛼𝑙𝑜𝑎𝑑 is multiplied with total annual load 𝐺𝑡𝑜𝑡𝑎𝑙. These terms are combined 

in a balance equation such that positive flexibility provisions cover negative flexibility 

requirements. 

0 ≤ ∑ 𝛼𝑡𝑒𝐺𝑡𝑒
𝑡𝑒(𝑑𝑖𝑠𝑝𝑎𝑡𝑐ℎ𝑎𝑏𝑙𝑒)

+ ∑ 𝛼𝑡𝑒𝐺𝑡𝑒
𝑡𝑒(𝑉𝑅𝐸)

+ 𝛼𝑙𝑜𝑎𝑑𝐺𝑡𝑜𝑡𝑎𝑙 

 

                             
 

                             flexibility contributions         flexibility requirements 

(15)   

 

Table 1 shows the flexibility coefficient parameterization used for the model runs in this paper. 

They are based on the estimates in Ref. [29], which have been derived with a generic unit-

commitment model. 
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Table 1: Flexibility coefficient 𝜶 per technology 

Technology Flexibility coefficient 

Natural gas CC 0.5 

Natural gas turbine 1 

Diesel turbine 1 

Lignite plant 0.15 

Coal plant 0.15 

Biogas CHP 0.3 

Biogas (Manure) CHP 0.3 

Biogas IGCC 0.3 

Nuclear 0 

Geothermal 0 

Hydro 0.5 

Solar PV -0.05 

Wind -0.08 

Wind offshore -0.08 

Load -0.1 

 


