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Abstract. When designing or extending electricity grids, both frequency
stability and resilience against cascading failures have to be considered
amongst other aspects of energy security and economics such as con-
struction costs due to total line length. Here, we compare an improved
simulation model for cascading failures with state-of-the-art simulation
models for short-term grid dynamics. Random ensembles of realistic
power grid topologies are generated using a recent model that allows
for a tuning of global vs local redundancy. The former can be measured
by the algebraic connectivity of the network, whereas the latter can be
measured by the networks transitivity. We show that, while frequency
stability of an electricity grid benefits from a global form of redun-
dancy, resilience against cascading failures rather requires a more local
form of redundancy and further analyse the corresponding trade-off.
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1 Introduction

The transformation of the electrical energy supply from large, centralised power plants
based on nuclear or fossil fuels to smaller, decentralised sources based on renewable
energies not only poses an enormous challenge for the design and stable operation of
the grid, but points to the crucial influence the weather and hence also climate change
has on the power grid. At the same time, the complex topology of interconnections
in the power grid makes it hard to foresee the consequences of single-element distur-
bances or failures. The following two rather recent events illustrate the necessity of
an systemic assessment of electrical power supply networks.

In November 2006 a large blackout occurred in the continental European power
grid, leading to power supply disruptions for more than 15 million households. On
this particular day, there were significant East-West power flows as a result of inter-
national power trading and an unusually large feed-in of wind power in North-West
Germany. After a manual disconnection of the 380 kV power line Conneforde-Diele
for the transit of the ship “Norwegian Pearl” via the Ems River to the North Sea, the
resulting physical power flow on the 380 kV Landesbergen-Wehrendorf line was very
close to the secure limit. Hence, a relatively small power flow fluctuation was able to
trigger a cascade of failure in several high-voltage lines. This split the European grid
into three separate components (West, North-East and South-East) with significant
power imbalances in each area. The power imbalance in the Western part in particu-
lar induced a severe frequency drop that caused an interruption of supply in several
European countries [33].

In July 2012 two severe blackouts affected the power grid in north and east India,
leaving more than 620 million people without electricity at certain times. The power
system of this country is divided into five regional grids (Northern, Western, Southern,
Eastern and North-Eastern) which are all interconnected. On both occasions, the
grid disturbance was initiated by tripping of the 400 kV Bina-Gwalior power line,
separating the Northern region from the rest of the grid. Already prior to the failure
of this line the grid was operating under difficult conditions due to a large number of
line outages. Effectively, the 400 kV Bina-Gwalior-Agra line was the only main AC
circuit available between the Western and the high-demand Northern regions. The
power deficit was worsened by a late arrival of the summer monsoon which lowered
hydroelectric power generation and increased the energy demand for air conditioning
because of high temperatures. The first grid disturbance led to a collapse of the
Northern region’s grid due to a critically low local grid frequency. The day after, while
the grid recovered from the prior black out, another major disturbance took place.
This time the cascaded line tripping caused a near-total blackout in the Northern,
North Eastern and Eastern systems [8].

These two examples reveal how a high share of variable renewable energy re-
sources in the power generation mix may, in combination with certain natural or
purely man-made extreme events (extreme weather conditions vis-à-vis intentional
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line interuptions), lower the resilience of the power supply. Under such critical con-
ditions, the failure of a single power line can cause large cascading failures with grid
blackouts as a consequence. Since electric power transmission systems are a key in-
frastructure, such blackouts have major consequences for the economy and national
security. At the same time, power outages affect medical services, emergency response
and public health efforts. Moreover, case studies indicate that large outages can have
significantly more severe consequences on public health than an equally sized combi-
nation of smaller ones, due to several complex interactions and feedbacks with other
infrastructure networks [2,13,19,24]. Considering the worldwide growth of renewable
energy capacity [26] as well as the increasing impact and frequency of extreme weather
events due to climate change [18], the stable operation of power grids will stay a ma-
jor challenge over the next decades. It is therefore an important task to study the
stability and resilience of power grids [5,12,32] in order to better address the threat
of large-scale blackouts in the future.

The aim of this article is to study in the framework of complex network theory
how the topological design of a power grid influences its resilience against cascades of
power line trippings like those described above and compare it to the grid’s frequency
stability. Power grids can be described as complex networks with nodes representing
generators and consumers, and links representing transmission lines [7,10,25,27]. Al-
though there has been a lot of research on network dynamics of cascading failures (for
instance [4,17,23]) in general complex networks without specific assumptions about
their internal dynamics, only few approaches are suitable to describe the dynamics of
cascading failures of transmission lines observed in real power grids [3,31].

In Sec. 2, we generalise the model of [3] by replacing its small-angle linearisation
by more detailed nonlinear equations for the alternating current power flow, which
we then apply in Sec. 3 to ensembles of synthetic power grid topologies generated
with the model of [29] to study the influence of the grid topology on resilience against
cascading failures. We find that one of the most influential topological characteristics
is local redundancy as measured by the network’s transitivity. This can be explained
by the requirement to reroute the power originally flowing through a tripped line
along a detour and the fact that the longer the detour, the more likely the increased
flow along it will cause another tripping. Since a high transitivity implies the existence
of many very short (length two) detours, it hence decreases the probability that an
initial tripping develops into a cascade.

In Sec. 4, we compare this finding to the influence of redundancy on another im-
portant aspect of energy security, frequency stability even under large perturbations,
for which we use the recently introduced non-linear measure of basin stability [21,22].
In contrast to cascading failures, we find that the grid’s overall frequency stability
does not benefit from local but rather from global redundancy as measured by the
network’s algebraic connectivity, although the individual frequency stability of cer-
tain nodes in detours also profits from local redundancy [30]. Since the total length of
all lines of the grid is typically limited due to economic and/or political restrictions,
this poses a trade-off problem between local and global redundancy that we sum-
marise in a trade-off diagram. Sec. 5 concludes with a recommendation for a heuristic
rule-of-thumb for placing additional grid lines and suggestions for future research.

2 Modelling cascading failures

As in any complex real-world system, failures and disruptions cannot be fully avoided
when operating power grids. If an element of the power system is damaged it has to
be disconnected immediately from the rest of the system in order to avoid further
damage to, or disturbance of, neighboring elements. The detection of a problem and
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subsequent disconnection of the faulty element is usually done automatically by pro-
tective relays and circuit-breakers, which operate according to a variety of physical
principles [20].

The most common failures of transmission lines are due to short circuits: although
overhead transmission lines are shielded from lightning by grounded wires, lightning
strikes remain the most common cause of line failure. The majority of these problems
are temporary and are mostly caused by flashovers. Lines which are affected can then
usually be reconnected to the system after a short time. However, in the case of
permanent damage the line is immediately tripped again by the protection system
[20].

In most cases, the rest of the power system is not affected by failures of single
transmission lines. Nevertheless, under certain extreme conditions like those described
in the introductory examples, the failure of a line can cause further failures. A large
amount of blackouts in power grids is caused by such cascades of line tripping. If a
generator or consumer is disconnected from the rest of the grid, the disconnection
causes a power imbalance in the system. This imbalance is immediately compensated
by a deceleration or acceleration of the generators, which causes changes in frequency.
Thus, in order to stabilise the system’s frequency within the narrow limits desired
for other stability reasons, there has to be a frequency control mechanism. When the
change in power demand is slow, this is done by switching some generating units on or
off for half-hour intervals. If there are faster changes of frequency, however, there has to
be a faster, automatic control of the generators. As a first step, some power generation
is immediately increased or decreased proportional to the frequency deviation in the
so-called primary control. There are also secondary and tertiary control mechanisms
taking place over longer time scales [20]. This complex reorganisation of the system
in order to alleviate effects of a perturbation can be considered a prime example of a
complex system’s resilience in the sense of Holling [16] (see also [11]).

In the case of a cascading failure blackout, large parts of the power grid can become
disconnected simultaneously. Usually, this is caused by large power imbalances within
those parts leading to a drop of frequency that is too large to be offset by the primary
control.

2.1 Existing models

A model for cascades of overload failures in a network was introduced by Motter
and Lai [23] in 2002. They assumed that in a given network one unit of the relevant
quantity is exchanged along the shortest path between every pair of nodes in the
network at each time step. Therefore, the load of a node j can be measured by its
shortest-path betweenness bj . The capacity of a node j is the maximum load it can
handle and is defined as

Cj = (1 + a) · bj(t0), (1)

where bj(t0) is the initial betweenness and a ≥ 0 is a tolerance parameter. When
a node i is removed from the network, the betweenness of node j may change. If
the load thus becomes larger than the capacity, the node j fails and is also removed
from the network. This process of redistribution of loads and node removals can then
lead to a cascade of failures. The damage caused by such a cascade is quantified in
terms of the relative size fLC of the largest component remaining. The first node to
be removed, triggering the cascade, is either the one with the highest initial load or
selected randomly from the network. For both cases the authors demonstrated that
the removal of only one key node can trigger a large-scale cascade causing the entire
network to collapse. However, this model is not suitable for modelling cascading failure
blackouts in power grids. On the one hand, it is a model for node failures whereas in
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power grids the failing devices are usually the lines. Moreover, for power flows it is
a wrong assumption that quantities are only exchanged along the shortest paths and
therefore, the shortest-path betweenness is no appropriate measure for the load.

A more realistic model for cascading failures in power grids was proposed by
Carreras et al. [3]. In this model each node is characterised by its input power Pi
which is positive for generators and negative for consumers. The generator power
is limited as 0 ≤ Pi ≤ Pmax

i and the consumer power as Pi ≤ 0. For any given
power demand the combination of generator powers is found via cost-optimisation.
The resulting distribution of input power values leads to power flows Fij on the links.
Each of those links is characterised by the impedance Zij and the maximum power
flow Fmax

ij it can carry. The power flows Fij are then calculated using the DC power
flow equations. In fact, the DC power flow model presented here is a linearisation
of an AC power flow model (cf. Sec. 2.2) with the approximation sin(θ) ≈ θ for the
voltage angles θ. If the power flow exceeds the link capacity, as defined by

Cij = (1− b) ·Fmax
ij , (2)

with a tolerance parameter b, the link fails and the power flow is redistributed. This
model was tested on idealised tree networks and the IEEE 118-bus network. The
authors identified two critical points that result from the limits of the links and
generators. Close to these critical points the model shows similar characteristics as
real blackout data.

2.2 AC power flow equations

Power-flow studies are an important engineering tool for the design of future power
systems as well as determining the best operational parameters for existing systems.
The AC power flow equations give the relations between the magnitude and phase
angle of the voltage at each node, and the real and reactive power flows in each
line. For realistic power grids, this system of nonlinear equations can only be solved
numerically [14].

The power grid network consists of N nodes connected via transmission lines..
Every line j–k connecting two nodes in the grid is characterised by its impedance
zjk = rjk + ixij , where rjk is the resistance and xjk the reactance. The inverse of the

impedance is called admittance yjk = z−1jk , a complex variable that can be written
as yjk = gjk + ibjk with the conductance gjk and the susceptance bjk. It is useful to
define a nodal admittance matrix Y as

Yjk = Gjk + iBjk =


∑
l

ajlyjl for j = k

−yjk for ajk = 1

0 otherwise,

(3)

where G and B are the nodal conductance and susceptance matrices and A = (ajk)
is the adjacency matrix. The matrix Y is a generalisation of the Laplacian matrix L
with the line admittances yjk as weights. Using this, the net current injected at node
j can be written as follows:

Ij =
∑
k

ajkyjk(Vj − Vk) = Vj
∑
k

ajkyjk −
∑
k

ajkVkyjk

= VjYjj −
∑
k

ajkVkyjk =
∑
k

(δjkYjk − ajkyjk)Vk

=
∑
k

YjkVk. (4)
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The complex voltage at node j is given in polar coordinates by

Vj = |Vj |(cos θj + i sin θj). (5)

As a consequence, the complex power can be written as

Pj + i ·Qj = Vj · I∗j = Vj
∑
k

Y ∗jkV
∗
k = |Vj |

∑
k

|Vk|(Gjk − iBjk)eiθjk , (6)

with the real and reactive powers

Pj = |Vj |
∑
k

|Vk|(Gjk cos θjk +Bjk sin θjk), (7)

Qj = |Vj |
∑
k

|Vk|(Gjk sin θjk −Bjk cos θjk), (8)

and the voltage angle differences θjk = θj − θk. In this study only real power will be
considered. For high-voltage transmission lines, the line resistances can be neglected
(rjk ≈ 0) and the expression for real power simplifies to

Pj =
∑
k

ajk
|Vj ||Vk|
xjk

sin θjk. (9)

The reactance is approximately proportional to the spatial line length, hence approx-
imately equal to xjk = x′ · d(j, k), where d(j, k) is the Euclidean distance and x′ the
specific reactance per length [20]. If all input powers Pj and voltages Vj at the nodes
as well as the line reactances are given, the nonlinear system of equations (Eqn. 9) is

then solved numerically in order to get the stationary voltage angle differences θ̃jk.
With these, the power flow in the transmission lines is

Fjk =
|Vj ||Vk|
xjk

sin θ̃jk. (10)

Generally, we will assume that |Vj | = |Vk| = 380 kV. The specific reactance is chosen
to x′ = 0.265 Ω/km [20] such that the average reactance corresponds to a 200 km
transmission line, where the line length distribution is controlled by the network
model described in Sec. 3.1.

2.3 Improved model of cascading failures

We can now construct an improved model based on actual power flow calculations
instead of topological network measures. In addition to the dynamics of line trippings,
it contains an algorithm modelling the power regulation at the node level. The model
has some similarities with the one proposed by [3], but it differs in a few important
assumptions. In the model proposed here, the AC power flow equations are not lin-
earised in the small-angle approximation. Second, all initial input powers have the
same absolute value and are distributed randomly over the network instead of follow-
ing cost-optimisation processes (Fig. 2). The latter assumption may be less realistic,
but it allows generating a variety of scenarios with different power flow dynamics for
one single network topology. Finally, we assume that for each such scenario lines are
built with a flow capacity that only depends on a global tolerance parameter and the
expected power flow on that specific link in the undisturbed network state.
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2.3.1 Initialisation

Every node of the graph is either a power consumer or a power generator and every
link is a transmission line. We assume that exactly one half of the nodes are consumers
having a negative power input and the other half are generators with positive power
input. The assignment of nodes to one of these groups is random. In the beginning,
the absolute value of power input of all nodes are equal |P0| = 1. The reactance of
all links is xij = x′ · d(i, j), where d(i, j) is the Euclidean distance and x′ the specific
reactance per length.

With the given network topology and power inputs, the power flow Fij can be
calculated using the AC power flow model in Sec. 2.2. The secure limit for the power
flow is given by the capacity

Cij = (1 + a)Fij(t0) (11)

with the tolerance parameter a and the initial power flow Fij(t0). Finally, a single
link is randomly chosen and removed from the network. The resulting redistribution
of power flow may lead to overloads in other links and hereby trigger a cascading
failure.

2.3.2 Power Regulation

When a cascading failure of links occurs, the network might become disconnected into
isolated components. Since the sum of all power inputs into every single component
of the network has to be zero, the power input at every node is regulated using the
following equation:

P ′i = Pi −
1

N(C)
∑
j∈C

Pj , (12)

where N(C) is the number of nodes in the component C. In other words, we assume
that excess supply or demand is compensated equally by all nodes in a component.
If a node is disconnected from the rest of the grid it becomes inactive, i.e. the power
input is set to zero (Eqn. 12). The same applies to components with only one kind
of nodes, either generators or consumers. In order to keep the algorithm as simple
as possible without making further assumptions about the generators or consumers,
we assume an ideal controllability of the nodes, i.e. Pi is not constrained and can be
varied instantly in every time step.

2.3.3 Cascading Failure

The model for cascading failures of links is based on an iterative solution of the AC
power flow equations (Eqn. 9, 10) and the removal of overloaded links in each time
step. The flow capacity of a link is given by (Eqn. 11). Hence, the algorithm for the
propagation of a cascading failure after the initial removal of a randomly chosen link
is as follows:

1. Regulate the power input in every component of the network with (Eqn. 12).
2. Calculate the power flow Fij .
3. If Fij > Cij , remove link from the network.
4. Repeat steps 1–3 until no more links are removed in step 3.

The damage caused by a cascade is then quantified in terms of the relative size fLC
of the largest component remaining. A step by step visualisation of single cascading
failure process is shown in Fig. 1.
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t = 0 t = 1

t = 2 t = 3

t = 4 t = 5

t = 6 t = 7

Fig. 1: Time steps of a cascading failure. The model’s tolerance parameter was
set to a = 0.5. The network is a random power grid generated by the model [29] with
the parameters {N,N0, p, q, r, s} = {100, 1, 0.3, 0.1, 1, 0.2}. Failed links and inactive
nodes (P = 0) are colored red.
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3 Influence of grid topology on cascading failures: local redundancy

For real-world applications, the influence of network topology on cascading failures
is very important since improving it in an intelligent way may sometimes be cheaper
than simply adding capacity on existing lines. Since the exact topological data of real
world power grids is mostly unavailable or confidential, the simplest approach is to
model them with randomly generated networks. However, most of these models are
not appropriately reproducing the topological properties of real power grids. A net-
work model which was designed to reproduce these properties was proposed recently
[29] and is therefore used here.

3.1 Generating synthetic ensembles of realistic power grid topologies

The model of [29] is a random growth model with the topological properties of real
power grids and other spatially embedded infrastructure networks. It uses the follow-
ing heuristic redundancy/cost optimisation function when adding links:

fr(i, j) =
(dG(i, j) + 1)r

d(i, j)
, (13)

where dG(i, j) is the length of a shortest path (i.e. the minimal number of traversed
links) between nodes i, j in network G, d(i, j) is the spatial Euclidean distance and
r ≥ 0 is a redundancy trade-off parameter. The network construction consists of an
initialisation and a growth phase. The network is initialised at some size N0 > 0 as
follows, where p, q ∈ [0, 1] are two further parameters of the model:

1. Distribute N0 nodes at random positions.
2. Initialise a minimum spanning tree using the spatial distance d(i, j).
3. Set m = N0(1 − s)(p + q). For a = 1...m add a link between those two unlinked

nodes for which fr(i, j) is maximal.

Then the network is extended node by node up to some size N ≥ N0 as follows,
using another model parameter s ∈ [0, 1]. For each new node i = N0 + 1 . . . N , either
perform step 5 (with probability s) or steps 1-4 (with probability 1 − s), where s is
another parameter of the model:

1. Set a node i at a random position.
2. Find the node j for which d(i, j) is minimal and add the link i− j.
3. Find another node k for which fr(i, k) is maximal and add the link i − k with

probability p.
4. Select an existing node i′ at random, find the node k′ for which fr(i

′, k′) is maxi-
mal, and add the link i′ − k′ with probability q.

5. Remove an existing link a−b at random, set a node at the position xi = (xa+xb)/2
and add the links a− i and i− b.

3.2 Choice of parameters

In [29], the parameters p, q, s ∈ [0, 1] have been roughly estimated by fitting the model
to data on real-world power grids, resulting in p = 0.3, q = 0.1, s = 0.2, see Fig. 2. Due
to the computational effort we use relatively small networks of N = 100 nodes. An
example for such small and isolated networks are power grids on islands [9]. Because
a reliable estimate of N0 would require historical data, we choose to put N0 = 1 here,
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Generators
Consumers

Fig. 2: Network generated with the random power grid model. The param-
eters used are {N,N0, p, q, r, s} = {100, 1, 0.3, 0.1, 1, 0.2}.

which should not have a significant impact on the dependency on r, since r is used
in the initialisation and growth phases in equivalent ways. Since our focus here is on
the influence of redundancy, which is mainly governed by the parameter r, we use the
above fixed values of p, q, s, a typical network size of N = 100 and vary r. Random
power grids with small values of r minimise the line length and are hence extremely
localised, increasing the probability for the existence of triangles (see Fig. 3a), that is,
of local redundancy. A good standard measure of local redundancy is the transitivity,
defined as the relative fraction of 3-loops in the network

T =

∑
i,j,k aijajkaki∑
i,j,k
i 6=j

ajkaki
, (14)

where A = (aij) is the adjacency matrix. Transitivity is a global measure for clustering
in a network, however it is different from the average local clustering coefficient. We
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avoid using the term global clustering coefficient which has been used inconsistently
for both definitions.

In contrast, in random power graphs with large values of r, global redundancy
is maximised instead, i.e., distant nodes are interconnected more frequently. A good
standard measure of global redundancy is the algebraic connectivity λ2, defined as
the second-smallest eigenvalue of the Laplacian matrix of the network.

As a consequence, the probability for the occurrence of triangles decreases (see
Fig. 3b) when the total number of links, which is governed by the parameters p, q, is
kept constant.

The local and global redundancies of random power grids with different r, as
measured by the transitivity and the algebraic connectivity, are given in Fig. 5. The
main region of r in which T and λ2 vary considerably is the interval [0.01, 10], hence
we vary r over this interval.

For the underlying rationale and exact meaning of the other parameters p, q, s, we
refer to [29].

Since loads between 50% and 70% seem to be realistic values for power flows on
transmission lines [1], we choose the global excess capacity parameter of the links to
a = 0.5.

3.3 Results from Monte-Carlo simulations

As explained above, redundancy is an important property to ensure the stability of
power grids. In order to study this property, the tuning parameter r in the cost/redundancy
optimisation function (Eqn. 13) was varied. For r = 0 the function minimises the total
spatial length of links in the network, which leads to local redundancy, whereas for
r →∞ the amount of global redundancy is maximised.

(a) r = 0 (b) r = 10

Fig. 3: Random power grids with different cost/redundancy optimisations.
The varied parameter r is the tuning parameter in the cost/redundancy optimisation
function (Eqn. 13). The other parameters of the network model are {N,N0, p, q, s} =
{100, 1, 0.3, 0.1, 0.2}.
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For every value of r in the interval [0.01, 10] we generated ensembles of 100 dif-
ferent network realisations with N = 100 nodes using following the set of param-
eters {N0, p, q, s} = {1, 0.3, 0.1, 0.2}. The global excess capacity parameter was set
to a = 0.5, thus the load of of every link is approximately 67% in the unperturbed
state. For each value of r, cascading failures were triggered for 100 randomly chosen
initial line removals each on 100 different initial network topologies. The damage was
measured in terms of the relative size fLC of the largest component remaining. The
result is given in Fig. 4.
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Fig. 4: Size of largest remaining component after cascading failures in ran-
dom power grids with different cost/redundancy optimisations. The varied
parameter r is the tuning parameter in the cost/redundancy optimisation function
(Eqn. 13). The solid red line gives the mean value and the shaded regions correspond
to the 5-th, 25-th, 75-th and 95-th percentiles of the distribution for each r-value. A
linear regression of the mean gives a negative slope of −0.033 (p-value = 1.1 · 10−7).

Perhaps surprisingly, networks are more affected by cascading failures as r in-
creases, i.e. networks with a more global redundant topology are more vulnerable.
The average number of remaining connected nodes decreases by ca. 20% when r is
increased in the considered parameter range. Thus, global redundancy is clearly not
the only topological property that determines the resilience of a network. Looking at
Fig. 5 reveals why: as the global redundancy as measured by the algebraic connectivity
increases with increasing r, the local redundancy as measured by the transitivity de-
creases drastically, resulting in significantly fewer short detours around tripping lines
and hence a higher probability that another line will trip and the grid will separate
into more components, lowering the size of the largest component.
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Fig. 5: Algebraic connectivity and transitivity of networks generated with
the random power grid model. The parameters used are {N,N0, p, q, s} =
{100, 1, 0.3, 0.1, 0.2}. The solid red line gives the mean value and the shaded regions
correspond to the 5-th, 25-th, 75-th and 95-th percentiles of the distribution for each
r-value.
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4 Trade-off with frequency stability: global redundancy

4.1 Single-node basin stability estimation

In the following, we give a brief description of single-node basin stability and the
frequency stability estimation procedure that we apply. Each generator in the net-
work, be it a net producer or net consumer, is modelled using the swing equation [10,
20]. This model is a good approximation for the short-term post-fault behaviour of a
generator, i.e. the so-called first swing:

Mφ̈i = Pi − αφ̇i −
N∑
j=1

aij
|Vi||Vj |
xij

sin (φi − φj) , (15)

where the dissipation α and the inertia M are constants that we assume to be
equal for all nodes. We have chosen the line impedances xij to be proportional to the
spatial distance of nodes i and j such that the mean value corresponds to a 200 km
transmission line.

This system has a stable operating state with fixed rotor angles φ∗ := (φ∗1, . . . , φ
∗
N )

and vanishing frequency deviations at each generator, i.e. ω∗ := (0, . . . , 0). Further-
more, there are also stationary states that need to be avoided, corresponding to peri-
odic frequency oscillations in the power grid. Note that the fixed point of the system
also leads to Eqn. 9 respectively 10. More precisely, for each step in a cascade, the
stationary power flows are calculated, giving rise to a quasistationary process that
acts on a much slower timescale than the transient dynamics described by the swing
equation.

To estimate the single-node basin stability Sn of the stable operating state for a
given node n, we create our initial conditions ensemble of size Ω by taking φ∗ and
ω∗ and replacing their n-th entries with uniformly distributed random perturbations
from the intervals [−π;π] respectively [−100; 100]. This corresponds to a disturbance
of the stationary operating state at a single generator in the power grid. Then, Sn
can be estimated as the number s of sampled initial conditions from which the system
asymptotically converged to the fixed point, i.e.

Sn =
s

Ω
. (16)

At each sampled initial condition, the system either converges to the fixed point
or not, hence we can regard the sampling as a sequence of independent identically
distributed Bernoulli trials with a standard error of the mean given by

SEM =

√
Sn (1− Sn)

Ω
. (17)

As reported in [22,30], the single-node basin stability distribution shows three
distinct groups of nodes with critical, fair and high stability. Due to the relatively
small ensemble sizes we focus our analysis on the number of critical nodes with low
Sn < 1/3 which allows a more reliable analysis instead of using the average single-
node basin stability.

4.2 Results from Monte-Carlo simulations

For each value of the redundancy parameter r, we use an ensemble of 100 net-
work realisations (cf. Sec. 3.3) with N = 100 nodes and the set of parameters
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{N0, p, q, s} = {1, 0.3, 0.1, 0.2}. For each network, we estimated the single-node basin
stability distribution and from that the fraction of uncritical nodes Nu using an initial
conditions ensemble of size Ω = 10. Nu is the number of nodes n for which Sn ≥ 1/3,
i.e., all nodes with fair or high single-node basin stability.

Note that this choice of Ω leads to a comparatively large standard error of 16%
in the worst case. However, it turned out that this choice results in a better trade-
off (Sec. 4.3) than a larger number of trials but smaller number of networks, given
constraints on the total computation time.

The dependence on r is shown in Fig. 6. Regarding the expected value of Nu,
averaged over 100 network realisations at each value of r, we observe an increase
from about 0.8 at r = 0.01 to about 0.95 at r = 10. Looking at the percentiles,
we further observe that the distribution becomes very narrow for large values of the
redundancy parameter, especially r > 1. This effect coincides with a strong increase
of the algebraic connectivity (cf. Fig. 5). Hence, this increase of global redundancy
drastically reduces the number of critical nodes Ncrit = N −Nu by more than 50%
when r is increased in the considered parameter range. Further, 5% of the networks
have up to 80% critical nodes for r � 1 while this low percentile of the network
ensemble has only about 20% of critical nodes for r � 1.
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Fig. 6: Fraction of nodes with high or fair single node basin stability.
The varied parameter r is the tuning parameter in the cost/redundancy optimisation
function (Eqn. 13). The solid red line gives the mean value and the shaded regions
correspond to the 5-th, 25-th, 75-th and 95-th percentiles of the distribution for each
r-value. A linear regression of the mean gives a positive slope of 0.053 (p-value =
1.7 · 10−9).
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4.3 Trade-off

The parameter r (Eqn. 13) of the random power grid model [29] allows to tune between
network topologies with local redundancy (high transitivity) and network topologies
with global redundancy (high algebraic connectivity) without changing the average
link density. Our simulations revealed that local redundancy reduces the vulnerability
against cascading failures, whereas global redundancy reduces the number of critical
nodes (poor single-node basin stability). These results are summarised in the overview
Fig. 7. If the number of links or the total line length is limited, this poses a trade-off
problem which is visualised in Fig. 8.
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Fig. 7: Overview. Shown are the mean values of largest component remaining after
cascading failure fLC , the fraction of uncritical nodes Nu, the algebraic connectivity
λ2 and the transitivity T . The varied parameter r is the tuning parameter in the
cost/redundancy optimisation function (Eqn. 13).

5 Conclusion

When studying the emergence of large-scale blackouts in power grids, frequency sta-
bility and resilience against cascading failures cannot be treated independently from
each other. Frequency deviations may induce failures of single lines, leading to large-
scale cascades of line trippings. At the same time, disconnection of generators or
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Fig. 8: Trade-off between average fraction of nodes with high and fair single
node basin stability and the final largest component size after cascading
failure. The arrow points to the recommended value of r = 1/3.

consumers causes power imbalances leading to frequency drops. For the stable opera-
tion of a grid it is therefore important to minimise the risk of frequency instabilities as
well as cascading failures simultaneously. This fact has to be considered when building
or extending power grids, since the topology of the grid has an important influence
on the frequency stability and resilience against line failures.

We have found that the redundancy of lines is an important topological property in
this context. Certainly, such redundancy of lines can be achieved in two different ways,
either by adding long-range connections between distant nodes (global redundancy)
or by connecting nodes which are close to each other (local redundancy). We have
motivated that the global redundancy can be measured in terms of the algebraic
connectivity but the local redundancy by the transitivity (Fig. 5).

It was shown that large transitivity leads to higher resilience against cascading
failures (Fig. 4) whereas the number of critical nodes with poor frequency stability
can be reduced by enhancing the global redundancy of the grid (Fig. 6). Since the
total line length in a power grid is usually limited, mostly due to cost reasons and
the spatial embedding, this leads to a trade-off problem (Fig. 8) which has to be
addressed by finding an ideal balance between local and global redundancy in order
to maximise the resilience against cascading failures as well as the frequency stability
of the grid simultaneously.

Based on our insights, we recommend a heuristic rule-of-thumb for placing ad-
ditional grid lines. One can choose a good r from the diagram (e.g. r = 1/3), and
then add the additional line between those two nodes (or the new node and one of
the old nodes) for which fr(i, j) is maximal. In other words, connect that pair of
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nodes for which the quotient between the current network distance (plus one) and
the cube of the spatial distance of the two nodes is maximal. Alternatively, one can
calculate the algebraic connectivity and the transitivity for each possible placement
of the additional line and choose the one where the improvement seems to be the best
compromise.

Certainly, a more precise quantification of the trade-off is needed when these
results should be applied to real power grids. Due to the computational effort of a
single-node basin stability estimation, the simulations were done for networks of 100
nodes and relatively small ensemble sizes. In order to reduce the computational burden
for simulations, further investigations should study the possibility of using fast, purely
topology-based statistical estimators of basin stability [30] in this context. Further
investigations could study the dependence of single-node basin stability estimators on
r and use these instead of performing costly time-domain simulations. Furthermore,
the cascading failure model could be improved by using a different excess capacity
a for each node or by further investigating the parameter space of different uniform
excess capacities. Also, a more detailed damage function for quantifying the damage
of a cascading failure (e.g. size of lost demand or number of people affected) might
be used.

The relationship between resilience against cascading failures and the existence of
short detours around tripping lines should be investigated in more detail by including
measures of higher-order transitivity that involve more than three nodes, i.e., detect
short detours of length three or more [6].

Note that in this study we only considered transmission grids. It would also be
interesting to apply the methods on distribution grids. These usually have a more
tree-like topology, making them more vulnerable for cascading failures [3].

When the swing equation is extended by allowing variable voltages, also the volt-
age stability plays an important role in power grid dynamics [12,28]. This should be
a next step for analysing cascading failures and comparing the different measures of
power grid stability.

Since the increasing use of renewable energy resources requires structural changes
and expansions of today’s power grids it is important to develop strategies for connect-
ing new generators and consumers to an existing grid without weakening its topology,
especially since additional lines may actually worsen the situation in some cases [34].
However, we demonstrated that the usage of a single stability measure may not be
sufficient to describe the dynamical complexity of a power grid. Hence, the compar-
ison between cascading failure dynamics and basin stability is only a first attempt
and we suggest to include other stability measures (e.g. survivability [15]) into the
discussion as well.

We acknowledge gratefully the support of BMBF, CoNDyNet, FK. 03SF0472A (P.S., J.K.)
and from the EIT Climate-KIC project SWIPO (J.H.).
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