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Abstract: 26 
A large body of transport sector-focused research recognizes the complexity of human behavior in 27 

relation to mobility. Yet, global integrated assessment models (IAMs), which are widely used to 28 

evaluate the costs, potentials, and consequences of different greenhouse gas emission trajectories 29 

over the medium-to-long term, typically represent behavior and the end use of energy as a simple 30 

rational choice between available alternatives, even though abundant empirical evidence shows that 31 

real-world decision making is more complex and less routinely rational. This paper demonstrates the 32 

value of incorporating certain features of consumer behavior in IAMs, focusing on light-duty vehicle 33 

(LDV) purchase decisions. An innovative model formulation is developed to represent 34 

heterogeneous consumer groups with varying preferences for vehicle novelty, range, 35 

refueling/recharging availability, and variety. The formulation is then implemented in the transport 36 

module of MESSAGE-Transport, a global IAM, although it also has the generic flexibility to be applied 37 

in energy-economy models with varying set-ups. Comparison of conventional and ‘behaviorally-38 

realistic’ model runs with respect to vehicle purchase decisions shows that consumer preferences 39 

may slow down the transition to alternative fuel (low-carbon) vehicles. Consequently, stronger price-40 

based incentives and/or non-price based measures may be needed to transform the global fleet of 41 

passenger vehicles, at least in the initial market phases of novel alternatives. Otherwise, the 42 

mitigation burden borne by other transport sub-sectors and other energy sectors could be higher 43 

than previously estimated. More generally, capturing behavioral features of energy consumers in 44 

global IAMs increases their usefulness to policy makers by allowing a more realistic assessment of a 45 

more diverse suite of policies. 46 
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 1 

1 INTRODUCTION & MOTIVATION 2 

The future direction of the world’s energy and transport systems, and in particular society’s ability to 3 

mitigate climate change and overcome a variety of other sustainable development challenges, 4 

hinges critically on both technological and socio-behavioral factors. These factors, many of which are 5 

associated with large uncertainties, have been studied in detail by diverse research communities 6 

employing a variety of methodological approaches: from engineers to natural scientists to social 7 

scientists. Somewhere in the middle of these communities sit modelers, drawing, in an 8 

interdisciplinary way, on the thinking of individual disciplines. Models come in all shapes and sizes: 9 

some, for instance, focus only on the transport sector in a particular country whereas others cover 10 

the energy-economic system of the entire world. Many models are forward-looking and therefore 11 

are used for medium-to-long-term scenario analyses, with an eye toward informing energy, 12 

transport, and sustainable development policy; some of these models consider both technological 13 

and socio-behavioral elements in developing their scenarios. Bridging the gap between these 14 

dimensions has historically presented a challenge (Turnheim et al., 2015, Avineri, 2012). This paper 15 

attempts to make progress by using transport sector-focused behavioral research to enhance the 16 

state-of-the-art of energy-economic and integrated assessment models. 17 

1.1 Global integrated assessment and energy-economy models in brief 18 

Models of the global energy-economy are widely used to evaluate the costs, potentials, and 19 

consequences of different greenhouse gas emission trajectories over the medium-to-long term. 20 

These models are increasingly coupled to atmospheric, land use, agricultural, forestry and other 21 

sectoral models: hence, ‘integrated assessment models’ (IAMs). Representation of the global energy-22 

economy within IAMs is inevitably – and often intentionally – stylized, simplified, and selective. Their 23 

purpose is to derive robust insights – qualitative and quantitative – on the systemic consequences of 24 

socio-economic development and technology and policy choices (Krey, 2014). 25 

Krey (2014) distinguishes IAMs along three main dimensions: (i) the ‘mathematical solution 26 

concepts’ - optimization or simulation, partial or general equilibrium, limited or perfect foresight; (ii) 27 

system boundaries - sectoral, regional, temporal; and (iii) the level of detail or heterogeneity - 28 

technological, spatial (urban/rural), income. Meanwhile, Sathaye and Shukla (2013) summarize the 29 

eight main sources of variation across model structures and assumptions that yield differences in 30 

results. These include energy demand drivers, resource costs and technology performance 31 

parameters, endogenous technological change, and solution algorithms (e.g., intertemporal 32 

optimization, myopic with recursive dynamics). (Details for a sample of global IAMs are provided in 33 

the Supplementary Material). 34 

IAMs also differ in their representation of energy end-user or consumer behavior. This ‘behavioral 35 

realism’ of models has not, heretofore, been meaningfully discussed in the literature. The objectives 36 

of this paper are: (i) to review relevant empirical literature on the behavioral characteristics of 37 

energy end-use; (ii) to assess the ways in which IAMs currently endogenize or reproduce key 38 

features of human behavior; and (iii) to develop and test a novel IAM formulation for representing 39 

heterogeneous consumer groups with varying preferences. Throughout, the focus is on light-duty 40 

vehicles and consumers’ purchase decisions. 41 
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1.2 Why behavioral realism in IAMs is important 1 

Climate change mitigation scenarios and the IAMs that generate them are increasingly being 2 

designed to be more ‘realistic’ by incorporating features observed in the real world. Such real-world 3 

features include delays in concerted global mitigation action (e.g., Riahi et al. (2015)), fragmented 4 

policy approaches (e.g., Tavoni et al. (2013)), and the absence from mitigation portfolios (either for 5 

political or social reasons) of specific low-carbon technologies or resources, such as nuclear power or 6 

biofuels (Riahi et al., 2012, Kriegler et al., 2014, Krey et al., 2014). Such features are for the most part 7 

modeled using exogenous assumptions that are consistent with the overarching scenario narrative. 8 

Another important feature of the ‘real world’ relates to human behavior. IAMs generally represent 9 

the behavior of consumers or energy end-users in a stylized way through simplified economic 10 

relationships: energy demand as a function of price, technology investments to minimize levelized 11 

costs, and so on. (The same basic arguments apply equally to producers or firms (e.g., Laitner et al. 12 

(2003)), but the emphasis in this paper is on energy consumers.)  13 

With their necessary levels of aggregation, IAMs do not represent individual interacting decision 14 

makers, but rather ‘representative agents’ that describe aggregate behavior at the mean (Conlisk, 15 

1996, Laitner et al., 2000). Representative agents act ‘as if’ they were perfectly rational. Rational 16 

choice implies: (i) decision makers with known and fixed preferences; (ii) utility-maximizing 17 

decisions; and (iii) perfect information about all decision alternatives and their attributes. As Laitner 18 

et al. (2000) argue: “the crucial question is whether the behavior that is actually carried out by the 19 

economic agents has different consequences for economic modeling of climate policy than the ‘as if’ 20 

presumption of maximisation” (p. 19). 21 

A cursory review of the evidence suggests this is indeed the case. Behaviorally-realistic models of 22 

many different forms show the important influence of behavioral assumptions on policy-relevant 23 

outcomes in the energy economy (e.g., Rivers and Jaccard (2006); Sun and Tesfatsion (2007)). In 24 

addition, a mass of empirical evidence has accumulated on behavioral influences on energy use, 25 

end-use technology adoption, and resulting emissions (e.g., Lutzenhiser (1993); Ayres et al. (2009)). 26 

Rivers and Jaccard (2006) argue that because characteristic ‘real world’ features of human behavior 27 

are notably absent from IAMs, the models have inherent limits for informing policy making. In 28 

addition, IAMs are largely unable to explore the detailed consequences of explicit behavior change 29 

policies. 30 

In sum, there are various reasons for trying to improve how IAMs represent end-user behavior and 31 

decision-making: 32 

 Empirical evidence clearly shows that end-user behavior has many features that are not 33 
captured by representations of unbounded rationality (Gillingham et al., 2009, Lutzenhiser, 34 
1993, Stern, 1992). 35 

 Theories and concepts of behavior and decision-making across the social sciences variously 36 
emphasize the many influences on end-user behavior beyond costs and prices (Wilson and 37 
Dowlatabadi, 2007). 38 

 Models lacking behavioral realism are limited in their ability to evaluate energy efficiency 39 
policies and other influences on end-user demand (Rivers and Jaccard, 2006). 40 

 Improving the behavioral realism of models substantially affects policy-relevant model analysis 41 
of climate change mitigation (Mattauch et al., 2015). 42 
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1.3 Behaviorally realistic energy end-users 1 

There is extensive microeconomic evidence for features of real-world decision making that deviate 2 

from the axioms of rational choice (Camerer et al., 2004, Kahneman and Tversky, 2000, Avineri, 3 

2012). Gillingham et al. (2009) review these behavioral features in relation to energy end-users and 4 

find that: (i) consumers are loss-averse and so respond asymmetrically to expected losses and gains 5 

(e.g., upfront costs and future cost savings) (Greene, 2011); (ii) decisions are boundedly rational in 6 

the sense that finding and processing information is costly and imperfect; (iii) decision making uses 7 

heuristic (short-cut) rules which are non-optimizing (e.g., a habit heuristic - do what you did last 8 

time) (Shogren and Taylor, 2008). Investments into energy efficiency, in which an upfront cost is 9 

traded off against uncertain expectations for future cost savings, are particularly susceptible to such 10 

behavioral features. 11 

Empirical research on the ‘energy efficiency gap’ has shown that end-users do not adopt energy-12 

efficient technologies based solely on a cost-effectiveness criterion (using levelized costs at market 13 

discount rates) (Gillingham et al., 2009, Jaffe and Stavins, 1994). Explanations and perspectives vary, 14 

but most tend to invoke ‘barriers’ to otherwise cost-effective technology adoption decisions: 15 

“Certain characteristics of markets, technologies and end-users can inhibit rational, energy-saving 16 

choices …” (p. 148, Levine et al. (2007)). 17 

The complexities of energy end-user behavior are illustrated by Mundaca et al. (2010) who review 18 

the empirical literature and find that preferences for energy-efficient technologies are expressed 19 

over a wide range of non-monetary attributes and that decisions are non-optimizing and based on 20 

imperfect information. They conclude “the literature shows that … capital and operating costs … 21 

represent only a part of a great variety of determinants that drive consumers’ energy-related 22 

decisions regarding technology choices … even in the presence of perfect information, a larger set of 23 

determinants can still lead to irrational ... decisions” (p. 317, Mundaca et al. (2010)). Other research 24 

shows the importance of decision makers’ attitudes and socio-demographic characteristics (Guerin 25 

et al., 2000). The status and position of decision makers within social networks is also influential as 26 

technology adoption signals status and prompts social recognition (Axsen and Kurani, 2012). 27 

Table 1 describes behavioral features associated with energy end-use, and specifically vehicle choice. 28 

The table provides an initial bridge from diverse theoretical and empirical literatures on behavior 29 

and decision making to the more specific challenge of modeling behavioral influences on vehicle 30 

choice. It uses a simple typology that distinguishes behavioral features related to (i) individual 31 

decision making, (ii) social influences, and (iii) contextual conditions within which decisions are 32 

made. Each of these is illustrated for vehicle choice drawing on examples from empirical studies (see 33 

also Avineri (2012). 34 

This typology is analogous to the approach of Mattauch et al. (2015), who apply behavioral 35 

economic evidence reviewed by DellaVigna (2009) to mobility-related behavior, with a particular 36 

emphasis on modal choices and mode-shifting. They distinguish behavioral features relating to 37 

choice mechanisms (preferences, beliefs, decision-making), physical environment, and social 38 

context. 39 

The typology of behavioral features in Table 1 also includes heterogeneity, i.e., variation or 40 

differences between end-users. Heterogeneity cuts across the three other types of behavioral 41 
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features. Allowing for heterogeneity in decision preferences or influences enables other types of 1 

behavioral features to be considered (Element Energy, 2013, Axsen et al., 2015). As an example, 2 

heterogeneous adoption propensities among end-users are an enabling feature for social influence 3 

effects (Rogers, 2003). Introducing heterogeneity among consumers is also important for addressing 4 

the problems with mean representative-agent assumptions (Kirman, 1992). Avineri (2012) find that 5 

“specific attention should be given to the notion of heterogeneity in travel choice making and in 6 

travellers’ responses to interventions”. With reference to general equilibrium IAMs, Laitner et al. 7 

(2000) argue that “… the device of the representative agent is highly questionable … even if one 8 

accepts the utility-maximizing consumer as a model for individual decision making, it is not valid for 9 

aggregate decision making … [unless] one makes the explicit assumption that consumers are virtually 10 

identical. But this is clearly at odds with reality” (p. 26, our emphasis). Mercure et al. (2016) draw a 11 

similar conclusion in relation to global IAMs more generally. Heterogeneous end users are therefore 12 

central to the behavioral realism of IAMs. The potential downside of modeling heterogeneity is that 13 

it can significantly increase computational requirements, though previous experience has shown this 14 

to be tractable (Rausch and Rutherford, 2010).  15 

TABLE 1. BEHAVIORAL FEATURES OF ENERGY END-USERS, EXAMPLES RELATED TO VEHICLE CHOICE, AND EXISTING 16 
IAM REPRESENTATIONS (SEE TEXT FOR DETAILS). 17 

Behavioral 
Feature 

Description of Behavioral Feature of 
Energy End-Users 

Examples of Behavioral 
Features Related to Vehicle 
Choice 

Examples of Current 
Methods Used to 
Represent Behavioral 
Features in IAMs 

Heterogeneity Differences in decision maker 
characteristics and responses to external 
influences, including socio-demographics 
and propensity for technology adoption. 
 

e.g., early adopters are 
attracted by new vehicle types. 
e.g., younger, female drivers 
are more likely to purchase 
alternative fuel vehicles (Baltas 
and Saridakis, 2013, Beggs and 
Cardell, 1980, Belgiawan et al., 
2013, Choo and Mokhtarian, 
2004, Axsen et al., 2015) 

logit function 
parameters calibrated 
to ensure 
heterogeneous market 
share of technologies 
 
+ see under non-market 
discount rates 

In
d

iv
id

u
al

 

Bounded 
rationality 

Costs of searching for and acquiring 
information on decision alternatives. 

e.g., myopia, limited search 
(Baltas and Saridakis, 2013, 
Hocherman et al., 1983, 
Jansson et al., 2010) 

not modeled 

Non-
optimizing 
heuristics 

Decisions in familiar, repeated contexts 
influenced by past experience (habit, 
inertia, loyalty). 

e.g., current vehicle ownership 
and use patterns determine 
future vehicle type (Baltas and 
Saridakis, 2013, Hocherman et 
al., 1983, Mannering and 
Winston, 1985, Mannering et 
al., 2002)  

not modeled 

Non-
monetary 
preferences 

‘Intangible’ non-monetary costs and 
benefits specific to particular decision 
contexts. 

e.g., influence on vehicle 
purchase decisions of 
aesthetics, brand, status, 
functionality, performance, 
refueling (Baltas and Saridakis, 
2013, Darzianazizi et al., 2013, 
Wu et al., 2014) 

value of time or time 
budgets included in 
preference function 
 
+ see under 
heterogeneity 
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Non-market 
discount 
rates 

Implicit discount rates estimated from 
market behavior are significantly higher 
than interest rates. 

e.g., strong immediacy effects 
in preferring lower capital costs 
to lower discounted fuel costs 
(Beggs and Cardell, 1980, 
Allcott and Wozny, 2014) 
e.g., loss aversion in relation to 
uncertainty about net value of 
future fuel savings weakens 
preferences for fuel efficient 
vehicles (Greene, 2011) 

varying discount rates 
per consumer segment 
as a function of income, 
location (e.g., urban-
rural) 

So
ci

al
 

Social 
influence 

Imitation (herding, bandwagon) effects, 
distinction (status-seeking), or 
neighborhood effects linked to visibility 
of others’ behavior. 

e.g., social influences have an 
important effect on purchase 
decisions relative to purchase 
price (Gaker et al., 2010) or fuel 
economy (Peters et al., 2015) 

not modeled 

C
o

n
te

xt
u

al
 Contextual 

conditions 

Behavior is influenced, constrained, or 
determined by infrastructure, the 
physical environment, or other 
contextual factors. 

e.g., influence of refueling 
infrastructure on alternative 
fuel vehicle adoption 
(van Bree et al. 2010; Tran et al. 
2010) 
e.g., transit accessibility linked 
to residency and residential 
density predict vehicle type 
(Kitamura et al., 2000, 
McCarthy and Tay, 1998)  

exogenous constraints 
linked to infrastructure 
availability 

Political 
and social 
institutions 

Institutions and culture shape decisions 
and behavior through social norms, 
availability and type of choices. 

e.g., marked cultural variation 
in preferred vehicle attributes 
(size, speed, designs) (Dijk et 
al., 2013) 

not modeled 

 1 

1.4 Behavioral realism in current energy-economy models and IAMs 2 

Current modeling of behavioral features in energy-economy and integrated assessment models is 3 

relatively limited. Mundaca et al. (2010) review 20 modelling studies evaluating energy-efficiency 4 

policy in households using 12 different bottom-up models at either global or national scales. They 5 

find that all the models represent homogeneous end-users making unboundedly rational investment 6 

decisions. In some cases, high (above-market) discount rates are used as a means of reproducing 7 

sub-optimal adoption rates of cost-effective energy-efficient technologies. The CIMS model of the 8 

Canadian energy-economy is different in that it draws on empirical studies of either observed 9 

market behavior or stated preferences in discrete choice surveys in order to estimate non-monetary 10 

preferences, end-user heterogeneity, and non-market discount rates (Jaccard and Dennis, 2006, 11 

Rivers and Jaccard, 2006). The heterogeneity of end-user decisions is simulated by multinomial logit 12 

functions allocating market shares to competing technologies. Non-market discount rates capture 13 

end-users’ strong aversion to delayed financial benefits. The parameters describing these behavioral 14 

features are context-specific to different decision nodes in the model (e.g., vehicle purchase, 15 

commuting mode, and so on) (Rivers and Jaccard, 2006). Other models making an explicit attempt to 16 

better represent behavioral realism include (i) BLUE (Behaviour Lifestyles and Uncertainty Energy 17 

model for the UK), which considers features such as market heterogeneity, intangible costs and 18 

benefits, hurdle rates, replacement and refurbishment rates and demand elasticities (Strachan and 19 

Warren, 2011, UCL, 2015); and (ii) Res-IRF, which assesses future household energy demands in 20 

France, considering barriers to energy efficiency in the form of intangible costs, consumer 21 

heterogeneity, and learning-by-doing (Giraudet et al., 2011). The UK Transport Carbon Model 22 

provides an example of how a transport sector-focused, logit-based discrete choice framework can 23 
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be linked to an optimization-based energy systems model at the country level, in order to model 1 

vehicle choice and service demand projections across all modes of transport (Brand et al., 2012, 2 

Anable et al., 2012). 3 

Laitner et al. (2000) examine top-down, general equilibrium models, which similarly characterize 4 

decision making in the aggregate as consistent with rational choice. These models generally exclude 5 

the behavioral features summarized in Table 1, although to some extent, social and contextual 6 

influences are implicit in the econometric estimation of parameters such as income and price 7 

elasticities, or the elasticities of substitution between capital, labor and energy. Mercure et al. 8 

(2016) provide a more recent critique of global IAMs for their lack of behavioral realism, emphasizing 9 

the importance of consumer heterogeneity. 10 

Table 1 summarizes the approaches to behaviorally-realistic modeling in a group of ten widely-used 11 

global IAMs (see Supplementary Material, SM, for details). General, model-wide approaches for 12 

incorporating behavioral realism are substantially different between model set ups (see also IRGC 13 

(2015)). Technology-rich bottom-up IAMs using inter-temporal optimization (e.g., DNE21+, TIAM-14 

UCL, MESSAGE) commonly vary discount rates as a general approach to modeling heterogeneous 15 

end-user behavior as a function of income, technology characteristics, or adoption context (e.g., 16 

country or region). For example, Ekholm et al. (2010) introduce heterogeneous discount rates for 17 

cooking appliances in less-developed economies to improve the modeling of energy access. Discount 18 

rates are thus used as a proxy measure of many different behavioral features and should not be 19 

interpreted solely in terms of time preference. In contrast, simulation models with limited temporal 20 

foresight and a recursive-dynamic modeling approach (e.g., GCAM, IMAGE) use multinomial logit 21 

functions to model heterogeneous end-user preferences and resulting market shares of competing 22 

technologies. These logit functions are calibrated to empirical data (when available), and the 23 

calibration parameters are used as a proxy for all the non-monetary preferences and other 24 

behavioral features influencing observed adoption behavior during the historical calibration period. 25 

Modeling approaches specific to vehicle choices are also summarized in Table 1. These include, for 26 

instance, incorporating time budgets or the value of time in transit (linked to the wage rate) within 27 

the consumer preference functions; technology-specific discount rates have also been used in some 28 

models. 29 

In sum, current modeling of behavioral features in global IAMs is relatively limited and quite varied, 30 

both between models and across a single model’s different sectors. It is also dominated by model-31 

wide formulations that aggregate behavioral influences, masking the specific underlying behavioral 32 

features. Furthermore, as is the case with future-oriented modeling more generally, there is the 33 

issue is that the uptake of new technologies is commonly based on historically calibrated parameters 34 

derived from consumer experiences with established technologies, even if those new technologies 35 

may be wholly different from the status quo in numerous ways. 36 

2 BEHAVIORAL FEATURES OF VEHICLE CHOICE 37 

2.1 The importance of vehicle choice to energy use and emissions 38 

Our principal aim in this paper is to explore how the behavioral realism of IAMs can be improved, 39 

given their current structure and function. We use the specific case of new vehicle choice (vehicle 40 

adoption) to illustrate our argument. End-user choices of vehicles are important for many reasons. In 41 
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IAMs in particular, vehicle purchase is a technology adoption decision that strongly influences 1 

energy and emission outcomes (Girod et al., 2013). The global transport sector already comprises 2 

~20% of total energy use and carbon dioxide emissions, with light-duty vehicles (LDVs; passenger 3 

cars and trucks/SUVs) accounting for just under half of energy and emissions within the sector (IEA, 4 

2015). Moreover, transportation is arguably the hardest end-use sector to decarbonize, making end-5 

user vehicle choices a critical determinant of low-emission futures (Riahi et al., 2012). Mobility is an 6 

energy service that is written into the fabric of social and economic activity, is strongly associated 7 

with development and modernity (Urry, 2008), and involves a wide range of socio-economic actors 8 

(Marletto, 2014). Vehicle preferences are highly heterogeneous, and vehicles are socially-visible 9 

technologies with many non-financial attributes. The behavioral features identified in Table 1 are 10 

therefore quite relevant for vehicle choice, as highlighted by examples in the table. 11 

Previous integrated assessment modeling studies exploring the role of transport in low-carbon 12 

worlds (Bosetti and Longden, 2013, Gül et al., 2009, Hedenus et al., 2010, Kyle and Kim, 2011, Rösler 13 

et al., 2014, McCollum et al., 2014, Pietzcker et al., 2014, Girod et al., 2013) have not explicitly taken 14 

heterogeneity- and/or behavior-related considerations into account when developing their 15 

scenarios, or have only done so in a limited way (e.g., by using empirics to parameterize logit 16 

formulations, but still for mean representative-agents). The work described here intends to fill this 17 

gap in the literature.  18 

2.2 Evidence for behavioral features relevant to vehicle choice 19 

There is a mass of empirical studies examining vehicle choices using a range of methodologies, data 20 

and theoretical approaches. Wilson et al. (2014) review over 80 such studies focusing on alternative 21 

fuel vehicles (AFVs). They find evidence across the typology of behavioral features set out above. 22 

Table 1 includes specific examples and illustrative studies. The strength of the evidence base is 23 

summarized below in Table 2. 24 

Social and contextual influences on vehicle choice are consistently found to be important (see also 25 

Mattauch et al. (2015)). As examples, the availability and proximity of refueling/recharging 26 

infrastructure for alternative fuels (hydrogen, electricity) as well as the social signaling and early 27 

experiences communicated by the visible use of novel vehicles by early adopters mean that diffusion 28 

has spatial, neighborhood characteristics. 29 

Vehicle attributes in addition to price and operating cost (fuel efficiency) are also influential on 30 

choices. Non-monetary attributes of vehicles include range, carbon dioxide emissions, engine power, 31 

model availability, and so on. Discrete choice experiments using stated preferences are particularly 32 

useful for identifying important attributes of novel vehicle types not yet available in the mass 33 

market. Discrete choice studies also model revealed preferences to estimate the relative weighting 34 

of observable non-monetary attributes in relation to price. In this way, non-monetary preferences 35 

can be expressed in monetary equivalents in an overall utility function describing vehicle choice.  36 

2.3 Vehicle choice representations in current IAMs 37 

Vehicle choices in IAMs depend on a variety of assumptions, ranging from demand projections to 38 

technology-specific characteristics. (See SM for full details in one particular IAM, MESSAGE). Total 39 

service demand for mobility is typically exogenous and/or linked to GDP or prices through 40 

parameterized price and income elasticities. Optimization-based models then find least-cost vehicle 41 
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fleets to meet these demands, often subject to constraints on vehicle shares and growth. Available 1 

vehicle types (fuel, drive-train) vary in complexity, but most models distinguish at least the main fuel 2 

types (fossil liquid fuels, biofuels, electricity, hydrogen, natural gas). At each time step, the model 3 

deploys a certain number of vehicles of a particular type (or in the more aggregated models, a 4 

certain quantity of fuel), in an effort to minimize the lifecycle costs (amortized capital + fuel + 5 

operation and maintenance) of meeting the service demand requirements. Capital costs and fuel 6 

efficiency per vehicle type are exogenously specified, while fuel costs are calculated endogenously. 7 

(Some models may use cost per unit of service as alternative inputs; or they may endogenize capital 8 

cost declines over time through learning.) Average operating lifetimes define capital stock turnover 9 

and vehicle replacement rates. Models additionally use diffusion constraints (or in the case of 10 

simulation models, market heterogeneity parameters) to ensure that transitions away from 11 

previously cost-competitive vehicle types are not overly abrupt. 12 

From a behavioral perspective, models therefore have representative decision makers with perfect 13 

(global) knowledge of all technologies’ capital and operating costs, conversion efficiencies, and other 14 

technical parameters. Although this example is specific to optimization-based models, Laitner et al. 15 

(2000) discuss very similar issues with general equilibrium-type IAMs. 16 

2.4 Modelling behavioral features of vehicle choice in IAMs 17 

Laitner et al. (2000) note the difficulty of behaviorally-realistic modeling, particularly given the time 18 

and resource investments in design, construction and parameterization of IAMs. Focusing on top-19 

down, general equilibrium-type IAMs, they suggest various improvements that are more or less 20 

compatible with model designs, including: (i) sector or technology-specific discount (i.e., investment 21 

hurdle) rates, which can be reduced by non-price policies and programs, (ii) co-benefits of energy 22 

technologies in decision functions, (iii) heterogeneity among agents and their interactions. 23 

This is in broad agreement with our review of the evidence base, as summarized in Table 2 (for 24 

further details, see Wilson et al. (2014)). Sector- and technology-specific discount rates correspond 25 

with heterogeneous preferences and contextual conditions. (Some models already differentiate 26 

discount rates by technology, but not for different types of consumers.) Co-benefits correspond with 27 

non-monetary preferences. Heterogeneous agents distinguished by adoption propensity, location, or 28 

driving patterns are a necessary enabling feature of the other behavioral features.  29 

TABLE 2. REPRESENTING BEHAVIORAL FEATURES OF VEHICLE CHOICE IN GLOBAL IAMS. EACH FEATURE IDENTIFIED IN 30 
THE LITERATURE IS SUBJECTIVELY ASSESSED (YES-MAYBE-NO) IN TERMS OF WHETHER IT WOULD BE POSSIBLE 31 
(TRACTABLE TO MODEL), USEFUL (IMPROVING POLICY-RELEVANT ANALYSIS), AND CONSEQUENTIAL (IMPACTING 32 
RESULTS) TO BE REPRESENTED IN GLOBAL IAMS. 33 

Behavioral 
Feature 

Description 
strength of 
evidence 

tractable 
policy 
lever 

impact 

Heterogeneous 
socio-economic 
characteristics  

Age medium maybe no maybe 

Gender medium-low maybe no no 

Number of children low maybe no maybe 

Education medium-low maybe no maybe 

Heterogeneous 
preferences 

Adoption propensity high-medium maybe maybe yes 

Driving practices low no no maybe 

Environmental concern medium maybe no yes 
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Attitudes to vehicles high-medium maybe no less 

Non-monetary 
preferences 

Refueling network high yes yes yes 

CO2 emissions high-medium yes yes yes 

Range, battery time, 
warranties 

high yes maybe yes 

Vehicle range high-medium yes no yes 

Social influences 
Neighborhood effects high maybe yes yes 

Information transmission high maybe maybe yes 

Contextual 
conditions 

Refueling availability high maybe yes yes 

Refueling location medium maybe yes yes 

Incentives high yes yes yes 

 1 

For each type of behavioral feature evidenced empirically in relation to vehicle choice, Table 2 also 2 

summarizes – based on the authors’ qualitative judgement – whether it would be possible 3 

(tractable), useful (policy-relevant), and consequential (affects outcomes) to be represented in 4 

global IAMs. 5 

If the inclusion of heterogeneous decision agents within modeling frameworks is a necessary 6 

condition for representing behavior, then modelers must decide what is possible to represent and 7 

how best to do this. Table 2 evaluates whether including such features in IAMs would be tractable; 8 

in many cases the answer is not clear. It is neither appropriate nor reasonable to propose a single, 9 

standardized approach for incorporating behavioral realism into IAMs, as no two IAMs are exactly 10 

alike, and IAM research groups have distinct research interests, focusing on different sets of 11 

research questions. While the disaggregation of end-users is clearly important, whether this is done 12 

directly within the core part of the IAM or simply reserved for an external model to deal with 13 

depends on the particular modeling arrangement. Logit and other types of discrete choice models 14 

are a common means of representing vehicle purchase decisions in the empirical literature. Hence, 15 

simulation-based IAMs, which already make use of logit functions, may be able to endogenize such 16 

heterogeneous information more directly within their solution frameworks. Optimization-based 17 

IAMs, on the other hand, may find this task more difficult and therefore may instead prefer to soft-18 

link with an external model. Under that arrangement, an IAM would continue to represent average, 19 

per-capita characteristics of end-users within its core, while the external, more detailed model 20 

would contain all of the heterogeneity and a range of non-optimal characteristics of real-world 21 

vehicle choices. Hybrid approaches are also possible, as demonstrated by a model application later 22 

in this paper. 23 

The question of how much heterogeneity and how many behavioral features to include in a 24 

modeling framework (whether endogenized or soft-linked) is also an important one. As a simple 25 

heuristic, IAMs should only explicitly represent what is needed to address the relevant research 26 

questions under study. This is why ‘policy lever’ and ‘impact’ are included in Table 2 as key criteria 27 

for selecting which behavioral features to prioritize: would inclusion of these features allow IAMs to 28 

examine a range of policy instruments, and which features would impact key energy and emission 29 

outcomes? In the case of vehicle purchase decisions, models should, if possible, disaggregate the 30 

consumers of their light-duty vehicle sectors (passenger cars and trucks/SUVs) in ways that allow for 31 

explicit representation of the most influential behavioral features: non-monetary preferences (e.g., 32 
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vehicle range), social influence (e.g., risk aversion), and contextual conditions (e.g., refueling 1 

infrastructure). 2 

The remainder of this paper explores how consumer heterogeneity and non-monetary preferences 3 

can be introduced into IAMs, using one such model, MESSAGE, to demonstrate and test the 4 

approach. More specifically, we detail a novel model formulation that is flexible and simple enough 5 

to be applied to global IAMs with different structures and solution algorithms, yet richly detailed 6 

enough to capture the most influential behavioral features that have been identified in the empirical 7 

evidence base, as summarized above. First, we briefly describe the concept and methodological 8 

approach in a way that should be accessible to other transport-energy analysts and modelers. Then 9 

we present scenario results both before and after the new model implementation to illustrate the 10 

usefulness of the method. Finally we reflect on ways to improve the modeling further as well as new 11 

areas of research that future work could explore. We consider a variety of alternative fuel vehicles in 12 

our analysis: biofuel and natural gas internal combustion engine (ICE) and hybrid-electric vehicles 13 

(HEVs), plug-in hybrid-electric vehicles (PHEVs), hydrogen fuel cell vehicles (FCVs), and battery-14 

electric vehicles (BEVs). 15 

 16 

3 CONCEPT AND METHODOLOGICAL APPROACH 17 

The MESSAGE integrated assessment modeling framework2 provides a suitable platform for 18 

demonstrating our proof-of-concept approach, given its sufficient level of detail within the transport 19 

sector and considering that the model is able to capture the complex interplay between this sector 20 

and all other energy producing and consuming sectors of the global economy. MESSAGE combines a 21 

global (multi-region, multi-sector) systems engineering, inter-temporal optimization model (Riahi et 22 

al., 2007, van Vliet et al., 2012), an aggregated macro-economic model, and a simple climate model, 23 

all within a consistent, inter-linked framework. MESSAGE is rich in technological detail on the supply 24 

side of the energy system (e.g., resource extraction, secondary fuel conversion, and fuel delivery and 25 

transport). In contrast to previous versions described elsewhere in the literature (Riahi et al., 2012, 26 

McCollum et al., 2014), the version of MESSAGE we employ here also includes a considerable 27 

amount of end-use detail in the transport sector. We distinguish this model version by referring to it 28 

as ‘MESSAGE-Transport’ in this paper. The detailed transport module in MESSAGE-Transport 29 

represents individual transport modes and the various technologies that can be used to satisfy 30 

demands therein. Passenger mode-shifting is also modeled, considering the relative costs (in terms 31 

of time and money) of traveling by the different modes. Such demand-side detail is necessary for 32 

improving the representation of heterogeneity and behavior in the light-duty vehicle sub-sector, 33 

which is the focus of the current work. (Detailed information on the standard version of MESSAGE, 34 

the novel features of MESSAGE-Transport, and the extended representation of vehicle choice are all 35 

provided in the SM.)  36 

3.1 Including heterogeneity and behavior in the MESSAGE-Transport model 37 

Representing behavioral features of vehicle choice in an IAM requires the mean representative 38 

decision-agent to be divided into distinct consumer segments characterized by different preferences 39 

                                                             
2
 The acronym ‘MESSAGE’ stands for: Model for Energy Supply Strategy Alternatives and their General 

Environmental Impact. 
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and vehicle use characteristics. This implies a two-step methodology, as first illustrated in Bunch et 1 

al. (2015) using the TIMES bottom-up modeling framework. The first step is to disaggregate the 2 

single, homogenous light-duty vehicle mode (both technologies and demands) along several 3 

different dimensions. The second step is to add extra cost terms (so-called “disutility costs”, 4 

“intangible costs”, or “non-monetary costs”) on top of the vehicle capital costs already assumed in 5 

the model. These disutility costs link to the non-monetary preferences found to be influential in 6 

empirical studies (e.g., range anxiety, lack of refueling station availability, risk aversion; see Table 2), 7 

and are specific to particular consumer groups and technologies. They also vary by region and can 8 

decline over time, depending on the overarching scenario storyline. Further details about this 9 

methodology, as we have applied it in MESSAGE-Transport, are given below. For an extended 10 

discussion of the theoretical underpinnings of this integrated approach, see Bunch et al. (2015). 11 

Step 1: introduce heterogeneity 12 

In the most detailed formulation, LDV drivers within one of the eleven MESSAGE-Transport regions 13 

are divided along three separate dimensions. These dimensions are chosen because the empirical 14 

evidence base suggests they (or their derivatives) are important behavioral features of vehicle 15 

choice (see Table 2).  16 

1. Settlement pattern:  Urban – Suburban – Rural 17 

2. Attitude toward technology adoption:  Early Adopter – Early Majority – Late Majority 18 

3. Vehicle usage intensity:  Modest Driver – Average Driver – Frequent Driver 19 

The combinations possible in this 3x3x3 arrangement lead to 27 unique consumer groups (Figure 1). 20 

All members of the entire driving population (within a particular model region) fall into one of these 21 

27 groups. Apportionment of current and future vehicle demands by consumer group is determined 22 

using base-year transport statistics (for vehicle usage intensity), population projections (for 23 

settlement pattern), and diffusion theory (for technology adoption propensity). For making such 24 

calculations, we relied on, for example, US National Household Travel Survey (NHTS) data compiled 25 

and programmed into the MA3T model (Lin and Greene, 2011) (see below for further details, as well 26 

as the SM), Rogers’s classification of technology adopter types (Rogers, 2003), and the urban-rural 27 

population projections developed in the Shared Socio-economic Pathways exercise (namely the 28 

median-level SSP2 scenario (KC and Lutz, 2015, Jiang and O’Neill, 2015, O’Neill et al., 2015, IIASA, 29 

2015)).  30 

Introducing heterogeneity into the LDV sub-sector requires that the relative shares among the 27 31 

consumer groups be projected over time and by model region.3 We then multiplied the time-varying 32 

                                                             
3 We have estimated these shares as best as possible for each region. They are calculated as multiplicative 
combinations of the share splits for settlement pattern, attitude toward technology adoption, and vehicle 
usage intensity (see Excel workbook as part of SM). For settlement pattern, urban-rural population projections 
from the Shared Socio-economics Pathways (SSP) exercise are used. Suburban share splits are then carved out 
of the urban portion based on modeler judgement; these splits are uncertain since the distinction between 
urban and suburban is not always clear-cut in many parts of the world. For technology attitude, we hold all 
shares the same over time and do not differentiate by region. For vehicle usage intensity, share splits for 
certain US sub-regions (i.e., the 9 Census regions) are pulled directly from MA

3
T and then used as proxies for 

other countries/regions. (One method for guiding the choice of proxies has been, for example, to identify 
similarities in population density between US sub-regions and other countries/regions.) These uncertainties 
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%-share estimates for each consumer group within each region by the previously existing single LDV 1 

passenger-km demand trajectories in order to generate a heterogeneous set of service demand 2 

projections. In other words, the LDV sub-sector becomes characterized by 27 separate demands, 3 

each being serviced by the same suite of vehicle technologies as before (e.g., gasoline/diesel/biofuel 4 

ICEs and HEVs, H2 FCVs, BEVs, PHEVs). At this point, one could choose to clone these technologies 5 

across the 27 consumer groups (i.e., making exactly the same assumptions for capital and O&M 6 

costs, fuel economies, vehicle lifetimes, occupancy rates, etc.), or the group-specific technologies 7 

could be differentiated slightly. For instance, in MESSAGE-Transport we have opted to keep all the 8 

cost and efficiency assumptions the same but have varied the capacity factors (veh-km/vehicle/yr) 9 

and vehicle lifetimes depending on the (regionally-specific) driving intensities of the different 10 

consumer groups (Modest/Average/Frequent).  11 

 12 
FIGURE 1. SCHEMATIC ILLUSTRATION OF HETEROGENEOUS CONSUMER GROUPS WITHIN THE LIGHT-DUTY VEHICLE 13 
SECTOR. 14 

Step 2: add disutility costs 15 

Once a disaggregated set of heterogeneous agents has been programmed into the model, the 16 

second important step is to assign disutility costs to each of the vehicle technologies that can 17 

potentially be purchased by a consumer within a given group. These disutility costs are added as 18 

extra cost terms to the vehicle capital costs already assumed, and they vary by technology, by 19 

consumer group, by country/region, and over time. The costs have been calculated using a 20 

                                                                                                                                                                                             
and simplifications should be recognized at the outset, though they are not thought to be any larger than 
those surrounding the disutility cost estimates themselves. 
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specialized version of the MA3T vehicle choice model (Market Acceptance of Advanced Automotive 1 

Technologies) (see http://cta.ornl.gov/ma3t/ or Lin et al. (2013b) and Lin et al. (2014) for details), 2 

which was made available, upon special request, by the original model developers. MA3T, which 3 

utilizes a Nested Multi-Nomial Logit (NMNL) discrete choice approach, has for several years been 4 

developed by researchers at Oak Ridge National Laboratory (Lin and Greene, 2009, Lin and Greene, 5 

2011, Greene et al., 2013, Lin et al., 2013a, Lin et al., 2014) in order to study vehicle transitions in the 6 

US light-duty vehicle sub-sector out to 2050. Under standard operation, MA3T estimates choice 7 

probabilities for a suite of vehicle technologies within each consumer group (hundreds of groups). In 8 

carrying out this calculation, the model calculates a “generalized cost” for each technology within a 9 

given group; this cost aggregates both real costs (e.g., capital, fuel and O&M costs) and perceived 10 

costs (e.g., range anxiety, technology risk, etc.). By strategically breaking the MA3T simulation at the 11 

point where these generalized costs are tallied, we are able to report the perceived costs (i.e., 12 

disutility costs) from the model.  13 

As described more fully below, the disutility cost estimates we take from MA3T are comprised of five 14 

distinct sub-components, and they come in the form of equations and assumptions that either (i) 15 

have been pulled directly from the model (for the risk premium, model availability, and EV charger 16 

installation sub-components), or (ii) were estimated based on running an ensemble of scenarios 17 

using it (for the range anxiety and refueling station availability sub-components). In the latter case, a 18 

structured sensitivity analysis was performed with MA3T wherein assumptions regarding refueling 19 

station and recharging infrastructure availability were varied from 0% to 100% of network coverage 20 

in the US context (with finer gradation at the lower-end below 10% coverage). This allowed us to 21 

develop reduced-form relationships for these two disutility cost sub-components as a function of 22 

refueling/recharging coverage within a given region and for each of the 27 consumer groups 23 

separately. The relationships have either power-law (refueling availability) or piece-wise linear 24 

(range anxiety) functional forms. In all cases (whether for electric charger coverage or availability of 25 

hydrogen or natural gas refueling), as infrastructure becomes more widespread, the associated 26 

disutility costs for a given fuel-vehicle type come down. (See SM for further details.) 27 

Although the standard version of MA3T considers a number of non-cost vehicle purchase attributes, 28 

we focus on five of these for implementation in MESSAGE-Transport (i.e., those comprising nearly 29 

the entirety of the total summed disutility costs; see SM for an illustrative comparison of all eight 30 

attributes considered in the original MA3T formulation).4 These disutility cost sub-components are 31 

listed below, with more detailed descriptions being given in Table 3. Most of these attributes have 32 

                                                             
4 The version of MA3T we employ also considers vehicle acceleration, cargo space, and towing capability as 
additional non-monetary attributes that may affect consumers’ preferences when making vehicle purchase 
decisions. These three disutility cost sub-components, however, are all estimated to be relatively small by 
MA3T (based on earlier empirical work); thus, we ignore them for the purposes of our model implementation. 
This is not to say they are not important though, especially for certain types of consumers. One could actually 
argue that at an aggregate, non-explicit level the negative disutility costs in our MESSAGE-Transport 
implementation, which are associated with risk premium among early adopters, do actually capture the 
improved acceleration attribute for electric-drive vehicles, as well as considerations of status/symbolism 
within peer networks and the potential for quieter driving during vehicle operation. In truth, though, when 
some of these vehicle platform- and brand-dependent attributes really become important is when different 
LDV size classes, makes, and models are modeled individually (e.g., sports car, small/midsize/large car, 
small/large SUV, minivan, pickup truck), and at the moment we do not distinguish between separate vehicle 
types in MESSAGE-Transport. 
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been found in previous studies to be important determinants of AFV adoption (see Table 2). While 1 

there is inherent uncertainty in the magnitude of any single cost component, of the five used here 2 

range anxiety, refueling station availability, and model availability tend to dominate, depending on 3 

the particular vehicle technology, consumer group and region under consideration (see Table 3). 4 

Figure 2 provides an illustration of present-day disutility costs of several technologies for two 5 

different consumer groups in North America (the underlying calculations assume extremely low AFV 6 

sales/stock and very limited refueling/recharging infrastructure availability). Particularly noteworthy 7 

for modeling is the fact that the sum of the five disutility cost sub-components may be as little as 8 

~15% or as much as ~165% of the actual vehicle investment cost. We also note that risk premiums 9 

are estimated to be relatively small on their own5; however, according to our methodology a 10 

consumer’s attitude toward technology risk also affects her valuation of range anxiety as well, so 11 

there is an indirect effect. Bunch et al. (2015) discusses each of these attributes in detail, including a 12 

step-by-step analysis of what happens when each is considered in succession. 13 

1. Range anxiety (limited electric vehicle driving range) 14 

2. Refueling station availability, or lack thereof (for non-electric vehicles) 15 

3. Risk premium (attitude toward new technologies) 16 

4. Model availability (diversity of vehicles on offer) 17 

5. Electric vehicle charger installation (home/work/public) 18 

 19 

TABLE 3. SUB-COMPONENTS OF THE DISUTILITY COSTS DERIVING FROM THE MA3T MODEL. COST RANGES APPLYING 20 
TO NORTH AMERICA (NAM) ARE SHOWN FOR ILLUSTRATION; OTHER REGIONS WOULD DIFFER. 21 

Disutility 
Cost Sub-
component 

Description of 
attribute 

Monetization approach 
Regionalization 
approach 

Range anxiety  This attribute 
monetizes the 
perceived anxiety felt 
by a consumer when 
depending on a 
limited-range, all-
electric vehicle for all 
of his/her daily driving 
needs. Hence, this sub-
component is only 
relevant for all-electric 
vehicles. 

The cost is proxied based on the estimated amount a 
consumer would be willing to spend on rental cars 
over the course of a year in order to satisfy driving 
needs on those days when the vehicle’s all-electric 
range is insufficient. (Gamma distributions in MA3T 
depict daily driving requirements over the course of 
the year.) Costs depend on the charge-sustaining 
capacities of vehicles (i.e., driving ranges), vehicle 
efficiencies, daily driving distances, the availability of 
home/work/public recharging stations, and the 
attitudes of consumers toward technology risk. In 
NAM, initial costs (@ 0% recharging coverage) range 
from 0 to 40k $/vehicle for BEVs, depending on 
consumer group. 

Regional multipliers 
(calculated based on 
differences in WTPs 
between countries 
from discrete choice 
studies focusing on 
range anxiety) are used 
to adjust costs 
between the US and 
other 
countries/regions. 

Refueling 
station 
availability  

This attribute 
monetizes the 
perceived 
inconvenience and 
hassle felt by a 
consumer when 

The cost is proxied based on the estimated amount of 
time a driver would need during each refueling event 
in order to reach a station supplying the fuel s/he 
needs. (Gamma distributions in MA

3
T depict daily 

driving requirements over the course of the year.) 
Aggregating those time demands and converting them 

Regional multipliers 
(calculated based on 
differences in WTPs 
between countries 
from discrete choice 
studies focusing on 

                                                             
5
  At least according to the framework employed here, which estimates risk premiums individually as part of a 

larger set of non-monetary attributes. If components like range anxiety, refuelling station availability and 
model availability were not separated out on their own but were instead lumped into a more generic risk 
premium component, then the latter would be far larger in magnitude. In other words, this is a definitional 
issue. 
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assessing his/her ease 
of access to refueling 
stations. Hence, this 
sub-component is only 
relevant for liquid fuel, 
natural gas, and 
hydrogen vehicles.  

into a monetary values (also considering, according to 
other studies, that consumers put more value on the 
time associated with refueling) results in a disutility 
cost. Costs depend on vehicle ranges and efficiencies, 
daily driving distances, and the availability of refueling 
stations within the transport network. In NAM, initial 
costs (@ 0% refueling availability) range from 30k to 
100k $/vehicle for H2FCVs and 4k to 14k $/vehicle for 
NGVs, depending on consumer group. 

refueling 
infrastructure) are 
used to adjust costs 
between the US and 
other 
countries/regions. 

Risk premium  This attribute 
monetizes the 
willingness of a 
consumer to adopt, or 
avoid, new 
technologies. It is a 
measure of perceived 
technology risk on the 
part of the consumer; 
hence, it relates to all 
alternative fuel vehicle 
technologies.  

Costs depend on the stock of a particular vehicle type 
within a given region, as this affects a consumer’s 
perception of the technology’s novelty or unfamiliarity 
at any point in time. Costs start out at either -2.4k 
$/vehicle (early adopters), +0.7k $/vehicle (early 
majority), or +3.8$/vehicle (late majority) when the 
respective vehicle stock is nil; they then approach zero 
as the stock grows, following an exponential function. 
Initial costs are the same across all regions, but the 
rate of decline to zero differs. 

Regional multipliers 
(calculated based on 
differences in cultural 
values between 
countries using World 
Values Survey data) are 
used to adjust risk 
premia between the 
US and other 
countries/regions; in 
particular, the 
multipliers are applied 
to the exponential 
parameters governing 
the rate of the 
disutility sub-
component decline as 
the respective vehicle 
market share grows. 

Model 
availability 

This attribute 
monetizes the 
propensity of a 
consumer to avoid 
new technologies 
simply because their 
desired vehicle type 
may only be available 
in a limited number of 
makes and models (by 
different automakers, 
for different vehicle 
platforms).  

The costs, which relate to all alternative vehicle 
technologies, depend on the sales of a particular 
vehicle type within a given region at a given point in 
time, as this affects the diversity of vehicle models on 
offer. Costs start out at +7.5k $/vehicle when sales of 
the respective vehicle type are nil (i.e., when the 
models on offer are limited); they then approach zero 
as sales grow (and numerous models become 
available), following a logarithmic function. Initial costs 
are the same across all consumer groups and regions, 
and the rate of decline to zero is the same in all cases. 

[No differentiation by 
region] 

EV charger The unit cost of 
installing a charger for 
a single electric 
vehicle. Only relevant 
for all-electric vehicles 
and plug-in hybrid-
electric vehicles. 

Represents either the full cost of installing a dedicated 
Level-II charger at home or work or the partial cost of 
a shared Level-III public fast-charger within the 
transport network (where costs are divided up 
between the many vehicles that use them).6 Across all 
regions and over time, costs are 1k $/vehicle. 

[No differentiation by 
region] 

 1 

                                                             
6
 This is a deviation from the original MA

3
T paradigm. Normally, MA

3
T only considers the installation cost for a 

home charger, not the costs borne by individual consumers for public chargers. 
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Suburban
Late Majority
Frequent Driver 

Urban
Early Adopter
Modest Driver 

$/vehicle =>

$/vehicle =>

 1 
FIGURE 2. DISUTILITY COST ASSUMPTIONS FOR THE YEAR 2020, BY TECHNOLOGY AND FOR TWO DIFFERENT 2 
CONSUMER GROUPS. ESTIMATES FOR NORTH AMERICA SHOWN: $/VEHICLE. THE UNDERLYING CALCULATIONS 3 
ASSUME EXTREMELY LOW AFV SALES/STOCK AND VERY LIMITED REFUELING/RECHARGING INFRASTRUCTURE 4 
AVAILABILITY. 5 

While MA3T was originally developed with the US light-duty vehicle market in mind, we have 6 

determined through our analysis that the disutility costs generated by the model for the US can be 7 

extended to other countries and regions by applying simple “regional multipliers.” These multipliers 8 

are based on relationships between the different disutility costs and selected predictor variables 9 

that are globally available. Specifically, we found that: (i) cultural values predict differences in social 10 

influence effect sizes between countries and that these can be applied to risk premium decline rates; 11 

(ii) average driving distances reasonably predict differences in willingness-to-pay estimates (WTPs) 12 

for increased vehicle range and refueling infrastructure availability. Once these country-level 13 

estimates have been made, multipliers can be calculated that are based on the ratio between each 14 

regionally aggregated value and the USA value. (Further details are provided in the SM.) The regional 15 

multipliers are then applied to three of the five disutility cost sub-components (risk premium, range 16 

anxiety, and refueling station availability) in different ways. For range anxiety and refueling station 17 

availability, the multipliers act on the sub-component cost terms themselves, whereas for risk 18 
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premium they act on the exponential parameters governing the rate of the disutility sub-component 1 

decline as the respective vehicle market share grows.  2 

Note that as part of the Supplementary Material made available with this paper, we include 3 

spreadsheets with calculations for the consumer group splits, the disutility costs, and the regional 4 

multipliers. This information will be useful for other modelers who would like to build upon our 5 

approach within other energy-economy and integrated assessment model frameworks. 6 

3.2 Scenario design for illustrating the novel model formulation 7 

To demonstrate the aforementioned approach to improving behavioral realism in the transport 8 

modules of IAMs, this paper primarily relies on four scenarios that sequentially incorporate an 9 

increasingly greater level of detail in the light-duty vehicle sub-sector. The scenarios move from a 10 

model implementation where light-duty vehicle choices are made by a single representative 11 

consumer (highly homogeneous) to one where non-monetary considerations are captured uniquely 12 

for a diverse array of consumers (highly heterogeneous). Table 4 summarizes the major 13 

characteristics of these four scenarios, focusing in particular on the dimensions where they differ. 14 

These differences reflect alternative model implementations of heterogeneity and behavior within 15 

the MESSAGE-Transport framework.  16 

In two of these cases, disutility costs deriving from the MA3T model are brought into MESSAGE-17 

Transport, in order to capture non-monetary behavioral preferences through monetization. The 18 

empirical evidence suggests that the disutility costs should approach zero over time (i.e., the levels 19 

of conventional gasoline/diesel vehicles) as AFVs become more commonplace and their requisite 20 

refueling/recharging availability expands (see Table 2 and Table 3). How rapidly these costs might fall 21 

is uncertain, however. Hence, for a simple, stylized illustration of our proof-of-concept methodology, 22 

we have opted in this paper to hold the disutility costs constant at today’s levels throughout the 23 

time horizon of the model. The embedded assumption here is that even if AFVs and their 24 

refueling/recharging infrastructure make inroads going forward, the disutility costs fail to come 25 

down over time (or come up to zero from negative values in the case of early adopters). This leads to 26 

future levels of AFV deployment in our scenarios that are on the conservative end of the spectrum; 27 

indeed, some auto markets (e.g., California, Norway) have already seen non-trivial levels of 28 

deployment of BEV/PHEVs and recharging infrastructure. We recognize that the stylized nature of 29 

our illustrative scenarios presented here misses some of these recent market developments, but 30 

again we stress that the focus of this paper is on detailing the theoretical and empirical basis for 31 

including behavioral realism in global IAMs and then highlighting the utility of doing so through a 32 

proof-of-concept implementation. Results for a modified version of our highly heterogeneous 33 

scenario that assumes non-frozen disutility costs can be found in the SM; future work could build on 34 

such scenario storylines. 35 

TABLE 4. CHARACTERISTICS OF THE FOUR SCENARIOS USED TO ILLUSTRATE THE USEFULNESS OF CAPTURING 36 
HETEROGENEITY AND BEHAVIOR IN TRANSPORT.  37 

Scenario name, 
ordering 

Consumer group diversity 
Representation of  

behavior 

Homog_NoBeh 
Homogeneous 
Single LDV service demand projection for each region. 
Vehicle technologies in this single group are 

None 
Disutility costs are set at zero in all 
years. 
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characterized by default model assumptions (e.g., for 
efficiencies, costs, driving intensities, lifetimes, etc.). 

Heterog_NoBeh 

Heterogeneous 
LDV service demand projection for each region is 
disaggregated into 27 separate consumer groups, each 
with a differing market share. Vehicle technologies in 
different consumer groups are characterized 
differently (e.g., driving intensities, lifetimes, etc.). 

None 
Disutility costs are set at zero in all 
years. 

Homog_LimBeh 

Homogeneous 
Single LDV service demand projection for each region. 
Vehicle technologies in this single group are 
characterized by default model assumptions (e.g., for 
efficiencies, costs, driving intensities, lifetimes, etc.). 

Limited 
Disutility costs are frozen at today’s 
levels throughout time. Costs for a 
single, representative group (UREMA) 
are applied. Costs vary regionally. 

Heterog_DivBeh 

Heterogeneous 
LDV service demand projection for each region is 
disaggregated into 27 separate consumer groups, each 
with a differing market share. Vehicle technologies in 
different consumer groups are characterized 
differently (e.g., driving intensities, lifetimes, etc.). 

Diverse 
Disutility costs are frozen at today’s 
levels throughout time. They vary 
across, and are unique for, each 
consumer group. Costs vary regionally. 

 1 

All four scenarios are consistent with a global climate policy framework of moderate stringency. 2 

More specifically, a uniform carbon price (applying to all regions and economic sectors 3 

simultaneously) is implemented in 2020 and grows at an interest rate of 5%/yr until the end of the 4 

century, reaching 30 $/tCO2eq (in US$2010) in the year 2040. Prior to 2020, a baseline path for 5 

energy use, vehicle deployment and emissions is followed (i.e., no major climate policies are 6 

assumed). The greenhouse gas emission trajectories resulting from these policies lead to 7 

atmospheric concentrations of CO2 that are approximately 600 ppm CO2eq in 2100 across the four 8 

scenarios; meanwhile, global mean surface temperature increase (relative to the pre-industrial level) 9 

amounts to 2.7 °C by the same year. Such a storyline for international climate policy is not meant to 10 

be entirely representative of how events are likely to play out in reality; rather, the simple narrative 11 

is used here for diagnostic purposes. Importantly, at this level of policy stringency, both oil products 12 

and alternative fuels are attractive in the standard model formulation, scenario Homog_NoBeh, i.e., 13 

neither completely dominates the market; and this is useful for gauging the impact of sequentially 14 

incorporating heterogeneity and behavior in the modeling. 15 

 16 

4 RESULTS & DISCUSSION 17 

4.1 Impacts on light-duty vehicles 18 

Light-duty vehicle deployment portfolios over the century are shown in Figure 3 for each of the four 19 

scenarios described above. Significant differences in the portfolios are evident when moving 20 

sequentially from the highly homogeneous, single representative consumer implementation 21 

(Homog_NoBeh) to the highly heterogeneous implementation where various non-monetary 22 

considerations are captured uniquely for a diverse array of consumers (Heterog_DivBeh). The 23 

differences result from the compound effects of (i) making light-duty vehicle drivers more 24 

heterogeneous, and (ii) adding disutility costs to better represent non-monetary considerations. The 25 

magnitude of these two effects is by no means balanced, however: incorporating greater consumer 26 

detail has only a small impact (Heterog_NoBeh), whereas adding the disutility costs is seen to lead to 27 

large differences in the model results (Homog_LimBeh). Such outcomes are mainly driven by the 28 



 

21 

scenario design, but are nevertheless informative, as they evidence the greater influence of 1 

adjustments to vehicle investment costs in the model solution than simply vehicle usage intensities 2 

and lifetimes (see below). The results can also be viewed in Table 5, which compiles a range of LDV-3 

related metrics for the scenarios. 4 

TABLE 5. SELECTED RESULTS FOR THE LIGHT-DUTY VEHICLE SUB-SECTOR IN EACH OF THE FOUR SCENARIOS. GLOBAL 5 
RESULTS ARE SHOWN ACROSS A RANGE OF METRICS; CUMULATIVE FROM 2010 TO EITHER 2050 OR 2100.  6 

Metric of comparison Scenario name, ordering 

 2010-2050 2010-2100 
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Oil products (gas./diesel) use (EJ) 1827 1771 1853 1805 3428 3252 4155 4039 
Fossil synfuels use (EJ) 0.7 0.8 5.1 4.4 21 28 580 528 
Biofuels use (EJ) 12 12 16 17 454 591 1523 1541 
Natural gas use (EJ) 0 2.8 0 0 32 96 0 0 
Electricity use (EJ) 15 16 0 0 1009 917 31 19 
Hydrogen use (EJ) 0 0 0 0 0 0 0 0 
Sales of BEV/PHEVs (mill. vehicles) 112 104 0 0 7443 6783 131 94 
Carbon dioxide emissions, direct (GtCO2) 134 130 136 133 255 246 342 330 

 7 

Heterogeneity alone (Heterog_NoBeh) – without any consideration of non-monetary preferences– 8 

has an effect because of the varied driving intensities (vehicle-km/veh/yr; and, hence, vehicle 9 

lifetimes and fixed O&M costs) that are assumed for the different consumer groups. This means that 10 

certain vehicle types, such as natural gas ICEs, become more economically attractive for those 11 

drivers that travel substantial distances per year. Put another way, the fuel savings over the lifetimes 12 

of these vehicles – thanks to efficiency gains relative to gasoline/diesel ICEs, and also considering the 13 

lower fuel prices seen in the model for natural gas compared to gasoline/diesel – are large enough 14 

to compensate for their incrementally higher capital costs. This is only the case when driving 15 

intensities are higher, however; the opposite is the case for lower driving intensities.  16 

Scenario Homog_LimBeh remedies this situation by adding disutility costs to the capital costs of all 17 

vehicle technologies, but doing so in a rather generic way by retaining the single representative 18 

consumer implementation. Yet, even without a detailed representation of heterogeneity, one sees 19 

an enormous difference in the model results, particularly from 2050 onward (Table 5 and Figure 3). 20 

(Note that none of the scenarios sees particularly large AFV deployment prior to 2050. This has to do 21 

with the moderate stringency of the assumed climate policy and the fact that near-to-medium term 22 

mitigation can be more cost-effectively carried out in other sectors of the energy system.) In 23 

particular, electric vehicles become far less attractive as a mitigation option, owing to the 24 

monetization of range anxiety concerns and those related to technology risk and limited model 25 

availability. ICEs running on gasoline/diesel, biofuels, and fossil synfuels (from coal or natural gas 26 

synthesis with carbon capture and storage) fill the gap left by the large reduction in BEV deployment. 27 

This happens because the disutility costs associated with these vehicle types are all assumed to be 28 
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quite low, given widespread consumer familiarity at present with liquid fuels, namely 1 

gasoline/diesel, and their ubiquitous refueling infrastructure. 2 
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 1 
FIGURE 3. LIGHT-DUTY VEHICLE DEPLOYMENT FROM 2005 TO 2100, BY TECHNOLOGY, IN EACH OF THE FOUR 2 
SCENARIOS. GLOBAL RESULTS SHOWN: VEHICLE-KM/YR.  3 

Scenario Heterog_DivBeh aggregates the combined, inter-related dynamics evident in scenarios 4 

Heterog_NoBeh and Homog_LimBeh, and for this reason it is the scenario with the lowest levels of 5 
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electric vehicle deployment over the century. More specifically, compared to scenario 1 

Homog_NoBeh, the timing of BEV penetration is delayed by several decades, and combined sales of 2 

BEVs and PHEVs by 2100 are an order of magnitude smaller, as summarized in Table 5. Meanwhile, 3 

cumulative hydrogen and natural gas use by 2100, while not terribly large (or even zero) to begin 4 

with, drops even further. Increased numbers of fossil (gasoline/diesel and synfuels) and biofuel ICEs 5 

make up for the bulk of the shortfall in the low-carbon vehicle alternatives. As a result of these 6 

dynamics, and more generally because mitigating LDV CO2 emissions becomes marginally more 7 

expensive from the perspective of the model, this scenario combining heterogeneity and behavioral 8 

considerations (Heterog_DivBeh) sees a much greater quantity of cumulative (direct) CO2 emissions 9 

from LDVs than in scenario Homog_NoBeh. (The upscaling of low-carbon biofuels partly 10 

compensates for the drop in the other low-carbon fuels, but not entirely, due to the lower 11 

efficiencies of combustion engines relative to electric drivetrains.)  12 

Underlying the aggregate results shown in Figure 3 are heterogeneous consumers having different 13 

preferences for vehicles. Figure 4 illustrates this by showing LDV deployment in scenario 14 

Heterog_DivBeh along alternative consumer group dimensions. Furthermore, the vehicle adoption 15 

decisions are found to vary quite markedly by world region, due, at least partly, to differences in 16 

non-monetary preferences for consumers in different countries (as evidenced by the empirical base 17 

and implemented in the modeling through the regionally differentiated disutility costs). This is 18 

shown in the SM for two regions with quite different characteristics: North America and South Asia. 19 

Note that when viewed from the aggregate level, the differences between scenarios Homog_LimBeh 20 

and Heterog_DivBeh do not immediately appear to be great. However, at higher carbon prices, 21 

which further induce electric and hydrogen vehicles into the vehicle mix, more divergent behavior is 22 

observed, particularly between the consumer groups, and this leads to bigger differences between 23 

the scenarios that either do or do not include heterogeneity explicitly. To illustrate this point, the SM 24 

presents detailed consumer group results for a modified version of scenario Heterog_DivBeh that 25 

assumes higher carbon prices; these can be directly compared to the results shown in Figure 4. 26 

Furthermore, the similarities seen in Figure 3 between scenarios Homog_LimBeh and 27 

Heterog_DivBeh are partly driven by our experimental design, in particular the choice to illustrate 28 

our proof-of-concept methodology using disutility costs that are held constant at today’s levels 29 

throughout the time horizon of the model. Were these costs to approach zero over time in response 30 

to increased AFV market share and refueling/recharging infrastructure availability, the differences 31 

brought about by including heterogeneity would be considerably more pronounced. This is because 32 

the disutility costs would vary in magnitude and decline rates across consumer groups. To illustrate 33 

this point, the SM also presents results for modified versions of scenarios Homog_LimBeh and 34 

Heterog_DivBeh that assume non-frozen disutility costs. 35 
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 1 
FIGURE 4. LIGHT-DUTY VEHICLE DEPLOYMENT FROM 2005 TO 2100, BY TECHNOLOGY AND ALONG ALTERNATIVE 2 
CONSUMER GROUP DIMENSIONS (SUM ACROSS EACH DIMENSION EQUALS THE TOTAL VEHICLE MARKET). GLOBAL 3 
RESULTS SHOWN: VEHICLE-KM/YR.  4 

4.2 System-wide impacts 5 

The added value of capturing heterogeneity and non-monetary preferences of light-duty vehicle 6 

adoption (or any other energy end-use decisions) in an IAM, on top of an enhanced ability to 7 

generate more realistic scenario results, is that impacts can be assessed across the different parts of 8 

the inter-connected energy system. Multiple sectors compete, in a sense, for constrained energy 9 

supplies, or they may respond differently to changes in fuel prices. Similarly, because energy 10 

resources are not evenly distributed throughout the world, fuels must be traded, meaning that fuel-11 
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technology decisions in one place can have an effect elsewhere. While highlighting every system-1 

wide impact brought about by our improved behavioral realism of vehicle adoption in MESSAGE-2 

Transport is beyond the scope of this paper, a couple illustrative examples are highlighted below. 3 

As presented in the SM, in scenario Heterog_DivBeh BEVs make inroads in the North American 4 

context post-2050 but never penetrate the market in South Asia. Instead, fossil synfuels (principally 5 

gas-to-liquids with CCS) and, to a lesser extent, biofuels come to dominate in South Asia after 2050. 6 

Given that the disutility costs for BEVs are lower in South Asia than North America (owing to regional 7 

multipliers below 1.0, as derived from the empirical analysis described previously), it is somewhat 8 

counter-intuitive that electric vehicle deployment would be less in the former than in the latter. Part 9 

of this can be explained by differences in driving intensity levels between the regions (see SM for 10 

further elaboration). Another part can be explained by differences in electricity prices, and this is 11 

where system-wide considerations become important. Although not shown here, electricity prices in 12 

scenario Heterog_DivBeh are calculated (endogenously by MESSAGE-Transport) to be considerably 13 

higher in South Asia than in North America over the coming decades, which makes BEVs much less 14 

attractive in the former region. If MESSAGE-Transport were to not also have a detailed 15 

representation of upstream processes like electricity generation within its framework, then systemic 16 

effects of this type would not be possible to identify. In the same vein, the ability to simultaneously 17 

account for supply- and demand-side dynamics explains why biofuels deployment is found to be 18 

relatively small in South Asia (see SM): because of strict supply-side constraints on sustainable 19 

biomass feedstock availability in the region. 20 

Another example of a systemic impact we are able to capture in MESSAGE-Transport relates to the 21 

estimation of climate policy costs. The inclusion of heterogeneous disutility costs into the cost 22 

accounting of the model leads to higher total costs for low-carbon mitigation options in the light-23 

duty vehicle sub-sector. The corollary is that LDV CO2 abatement becomes more expensive in the 24 

aggregate, shifting some of the mitigation burden to other sectors of the energy system where it can 25 

be more cost-effectively achieved. It also means a given carbon price has a lower impact on spurring 26 

LDV-related emissions reductions (direct emissions), relative to the single representative consumer 27 

implementation with no regard for non-monetary preferences. Table 5 already highlighted this 28 

insight for a single carbon price trajectory; Figure 5 goes further by presenting results for a range of 29 

carbon price trajectories across two distinct scenario groups. This allows for the estimation of two 30 

separate marginal abatement cost (MAC) curves for CO2 mitigation in the LDV sub-sector globally: 31 

one for the highly homogeneous model formulation with limited behavioral realism (in the same 32 

family as scenario Homog_NoBeh) and another for the highly heterogeneous implementation 33 

including non-monetary preferences (in the same family as scenario Heterog_DivBeh). Emissions 34 

reductions are cumulative (2010-2100) and relative to the single representative consumer 35 

formulation. The individual points on the curves represent scenarios with different climate policy 36 

assumptions (i.e., alternative carbon price trajectories, in all cases rising at 5%/yr interest). 37 

Comparison of the curves reveals, for a given carbon price, systematically lower LDV CO2 abatement 38 

in the scenarios capturing non-monetary preferences, as characterized by the leftward shift of the 39 

MAC curve exhibited in Figure 5. Put another way – viewing this effect as an upward shift of the MAC 40 

curve – when incorporating heterogeneity and behavior into the model, a higher carbon price is 41 

needed to achieve a similar level of CO2 abatement. Such a finding has obvious implications for real-42 

world policy making: namely that climate policies geared toward mitigation in the LDV sub-sector 43 

are likely to require stronger price-based policy incentives than has previously been suggested by 44 
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integrated assessment and energy-economic model-derived scenarios, or alternatively that non-1 

price-based policies in the LDV sub-sector (on both the vehicle and fuels side) will need to 2 

complement price-based regulations. 3 

 4 
FIGURE 5. MARGINAL ABATEMENT COST (MAC) CURVES FOR CO2 MITIGATION IN THE LIGHT-DUTY VEHICLE SUB-5 
SECTOR GLOBALLY. TWO SEPARATE CURVES DENOTE CONTRASTING MODEL FORMULATIONS FOR REPRESENTING 6 
CONSUMER HETEROGENEITY AND NON-MONETARY PREFERENCES. INDIVIDUAL POINTS ON CURVES REPRESENT 7 
SCENARIOS WITH DIFFERENT CLIMATE POLICY ASSUMPTIONS. CO2 REDUCTIONS ARE CUMULATIVE (2010-2100) AND 8 
RELATIVE TO THE SINGLE REPRESENTATIVE CONSUMER FORMULATION WITH LIMITED BEHAVIORAL REALISM 9 
(HOMOG_NOBEH). THIS EXPLAINS THE “NEGATIVE ABATEMENT” (I.E., INCREASED EMISSIONS) SEEN AT ZERO 10 
CARBON PRICES IN THE HETERO_DIVBEH SCENARIO. CARBON PRICES IN THE YEAR 2030 ARE SHOWN IN US$2005. 11 
SEE TEXT FOR FURTHER DETAILS. 12 

 13 

5 CONCLUSIONS 14 

Global integrated assessment models (IAMs) are widely used to evaluate the costs, potentials, and 15 

consequences of different greenhouse gas emission trajectories over the medium-to-long term. 16 

Representations of the social, technological and physical systems in IAMs are necessarily stylized and 17 

simplified. Yet, IAMs are increasingly being designed to be more ‘realistic’ by incorporating features 18 

observed in the real world. An improved representation of human behavior is at the frontier of 19 

research for IAMs, particularly in the area of non-monetary preferences of heterogeneous energy 20 

consumers and technology adopters. Capturing these behavioral features increases the usefulness of 21 

IAMs to policy makers by allowing the models to (more realistically) assess a wider range of policy 22 
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measures. This paper demonstrates the value of incorporating behavioral features relevant to 1 

vehicle choice in the MESSAGE-Transport IAM framework. The model formulation developed is 2 

flexible and simple enough to be applied to a diverse array of IAMs, yet is detailed enough to 3 

capture the most influential behavioral features that have previously been identified in the empirical 4 

evidence base.  5 

Several insights emerge from the scenarios that employ our new approach for capturing non-6 

monetary considerations in the transport sector. We find representing heterogeneity and behavior 7 

significantly alters the model-estimated portfolio of light-duty vehicles deployed over the coming 8 

decades to meet climate mitigation targets: the timing of electric vehicle penetration is delayed by 9 

up to several decades, and hydrogen and natural gas use decrease significantly. Because mitigating 10 

LDV CO2 emissions becomes marginally more expensive from the perspective of the model, the 11 

scenarios combining heterogeneity and behavioral considerations see a much greater quantity of 12 

cumulative (direct) CO2 emissions from LDVs out to 2100 (i.e., less CO2 abatement), for a given 13 

carbon price.  14 

More generally, compared to what has been previously suggested by IAM-derived scenario analyses 15 

focusing on passenger transport, our findings indicate that: 16 

 For climate change mitigation efforts driven solely by price-based incentives, a higher carbon 17 

price would be needed for achieving a specified level of LDV emissions abatement. 18 

 In the absence of more stringent price-based incentives for low-carbon LDVs, emissions 19 

abatement in other transport sub-sectors (e.g., aviation, rail, freight trucks, shipping) and 20 

other energy sectors (electricity generation, industry, buildings) would have to increase for a 21 

given overall emissions budget. 22 

 Non-price-based policies targeting the deployment hurdles for AFVs could counteract the 23 

reduced effectiveness of price-based incentives, particularly in the early-market phase of 24 

AFVs. Examples include vehicle or fuel emissions standards, mandates and subsidies, and 25 

refueling/recharging infrastructure support.  26 

These insights highlight the unique value of bringing heterogeneity and non-monetary preferences 27 

into IAMs (for any energy end-use sector, but particularly transport), given that the strength of such 28 

models lies in their ability to capture systemic effects related to, for example, resource consumption, 29 

fuel prices, and emissions abatement across different sectors and regions. Moreover, IAMs with 30 

improved behavioral realism are able to assess a much wider suite of policies than before (i.e., not 31 

only price-based instruments), which will likely be crucial for future climate policy analyses utilizing 32 

these models. Specifically, IAMs could eventually weigh in on the debate over the effectiveness of 33 

price- vs. non-price-based policy instruments to incentivize transformational change in the transport 34 

sector (Mock and Yang, 2014, Creutzig et al., 2011, Heinrichs et al., 2014). This is particularly 35 

important in light of the fact that real-world climate policies are often implemented via instruments 36 

other than carbon pricing; in fact, many make use of a mix of instruments (Bertram et al., 2015, 37 

Jenkins, 2014).  38 

We do, however, recognize certain limitations of our current approach to modeling heterogeneity 39 

and non-monetary preferences. For instance, we make exogenous assumptions for the disutility 40 

costs in the scenarios where they are active and in this paper have opted to hold the disutility costs 41 
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constant at today’s levels throughout the time horizon of the model. Future work (either with 1 

MESSAGE-Transport or other models) could explore scenarios where the disutility costs approach 2 

zero over time (i.e., converging to the levels of conventional gasoline/diesel vehicles), as AFVs 3 

become more commonplace and their requisite refueling/recharging availability expands. Such 4 

‘endogenous behavioral change’ (EBC) would be akin to the commonly applied modeling technique 5 

of ‘endogenous technological learning’ (ETL) for energy supply and demand devices. The trade-off 6 

with endogenization is that it might require more complex model algorithms and greater 7 

computational requirements. Whether such implementations are justified, in terms of improved 8 

model insights, remains an open question. Additionally, or perhaps as an alternative, soft-linking 9 

stylized IAMs (without behavioral realism) to detailed, sector-specific models (with behavioral 10 

realism) could offer a promising path forward in this space. This would have the side-benefit of 11 

permitting an even deeper diver into the considerable technological and consumer heterogeneity 12 

characterizing the light-duty vehicle sector specifically, and the transportation sector more generally. 13 

For instance, an improved representation of different LDV size classes (e.g., sports car, 14 

small/midsize/large car, small/large SUV, minivan, pickup truck) could be useful for capturing 15 

consumer preferences for interior/cargo space and acceleration, attributes that may be more tied to 16 

age, gender, and family size than the consumer characteristics we represent in this study. What is 17 

more, the current paradigm of private vehicle ownership could eventually shift toward a more 18 

shared, public vehicle culture (perhaps utilizing autonomous, self-driving vehicles). This could affect 19 

consumer perceptions towards alternative fuel vehicles in major ways, as the disutility costs would 20 

be borne, at least in part, by the vehicle providers, who would benefit from economies of scale. 21 

Whichever direction is pursued, a recognized bottleneck for behavioral modeling is the lack of 22 

existing empirical data packaged in a form that is amenable to global analysis. The empirical research 23 

community – in particular the social sciences – has an important role to play here. Through advances 24 

in both theoretical and applied research, the major behavioral features driving future energy 25 

consumption patterns can be better understood (IRGC, 2015). 26 
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