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Natural and man–made networks often possess locally tree-like sub-structures. Taking such tree
networks as our starting point, we show how the addition of links changes the synchronization
properties of the network. We focus on two different methods of link addition. The first method
adds single links that create cycles of a well-defined length. Following a topological approach we
introduce cycles of varying length and analyze how this feature, as well as the position in the
network, alters the synchronous behaviour. We show that in particular short cycles can lead to a
maximum change of the Laplacian’s eigenvalue spectrum, dictating the synchronization properties
of such networks. The second method connects a certain proportion of the initially unconnected
nodes. We simulate dynamical systems on these network topologies, with the nodes’ local dynamics
being either a discrete or continuous. Here our main result is that a certain amount of additional
links, with the relative position in the network being crucial, can be beneficial to ensure stable
synchronization.

I. INTRODUCTION

The study of dynamical processes on complex networks
has been one of the most active fields within network sci-
ence, where the ultimate goal is the precise evaluation
of how network topology affects dynamics [1]. First nu-
merical and analytical approaches to this problem were
mainly concerned with the pure effect of the heterogene-
ity of the degree distribution on the overall network dy-
namics [1]. Great part of the interest in this subject has
been due to the detailed description of the topology of
real systems that the network representation offers, a fact
that motivates the search for a better understanding of
their dynamical behavior as well. Early analytical de-
velopments were then mostly based on the configuration
model [2], which is able to construct networks with a
given degree distribution. Whilst offering a benchmark
to study dynamical processes in networks with any kind
of degree distribution, the networks constructed by such
a model are generally locally tree-like, i.e. with a van-
ishing density of cycles [3]. On the other hand, it is
known that real networks in turn exhibit a much more so-
phisticated topology, which encompasses features such as
clustering, high-order loops, degree-degree correlations,
community organization etc. [3]. Thus, it is evident that
studies based solely on the configuration model oversee
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topological characteristics that are essential for a thor-
ough analysis of the function of real networks.

In order to overcome this limitation and take into ac-
count higher-order topological features, two strategies are
commonly used, namely the adoption of networks con-
structed through stochastic rewiring algorithms [4–6] or
variations of the traditional configuration model that al-
low the creation of networks with tunable clustering or
other kinds of subgraphs [7–9]. In the former, one starts
with a random tree-like network and switches the edges
according to some heuristics in order to obtain a de-
sirable network configuration, which is then used as a
substrate for the dynamics under study. Although this
approach enables a precise control of a given network
property, as a function of which the dynamics can be an-
alyzed, other properties are dramatically changed [4–6].
The latter makes the assessment of the isolated contribu-
tion of a particular topological property to the network
dynamics unfeasible, since the results can be potentially
influenced by spurious effects generated by the method.
This limitation can be surpassed by extensions of the
configuration model. However, depending on the sub-
graph structure modelled, the computational complex-
ity quickly escalates, imposing further constraints on the
analysis [8, 9].

In this paper, we address the effect of particular struc-
tural patterns found in real networks, namely cycles of
different lengths, by adopting a different approach. In
order to control their occurrence, and therefore evalu-
ate their contribution to the network dynamics, here we
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consider tree networks with minimal link addition in a
way that the number and the length of the cycles are
precisely varied. Besides the thorough control of net-
work structures being created, the minimal link addition
adopted here opens the path for new strategies intended
to enhance the stability of real networks. The reason for
that resides in the fact that the creation and rewiring of
links are usually costly tasks to be performed in these
systems [10].

A prominent example is that of power grids, whose
proper functioning is vital for modern society. Since the
connectivity pattern of the surroundings of a given dy-
namical unit strongly influences its stability [11–14], it
is crucial that the inclusion of new transmission lines
is done in a way to ensure, or even enhance, the local
and global stability of the network, while spending min-
imal amounts of resources. Otherwise, counterintuitive
dynamical effects like Braess’ paradox lead to certain
new links destabilizing synchronization by increasing the
largest Lyapunov exponent, eventually changing it’s sign
[11, 13]. This is deeply related to the appearance of cy-
cles in the network. Similar arguments also hold for other
spatially embedded man-made, or natural networks with
constrained connectivity, for instance transportation or
neuronal networks.

This paper contributes in this direction by quantifying
the impact of cycles created under minimal link addition
on the global network behaviour with a focus on stabil-
ity. In general, however, we expect that our approach
translates to a broad class of problems ranging from syn-
chronization to percolation, spreading processes [15, 16]
or control theory [17]. Regarding the network dynamics,
we consider the nodes as identical oscillators operating
in periodic or chaotic regimes in the paradigmatic cases
of logistic maps and Rössler oscillators. We evaluate the
stability of the synchronous regimes depending on the
variation of the length of cycles in the network topology.
By employing the Master Stability Function (MSF) for-
malism [18], we map the problem into a spectral analysis
of the Laplacian matrix. This spectral approach has also
been successfully applied to reveal network-dependent co-
herence [19]. Recently, Pade and Pereira showed that
link additions in directed networks can destabilize the
synchronous regime [20]. Furthermore, in the case of a
removal of links or altered link weights, changes to the
synchronous state and it’s stability are also found to re-
late to the Laplacian spectrum [14], in leading order to
the Fiedler eigenvector. In this paper we study undi-
rected networks and link addition, considering the whole
stability interval of coupling values instead of only the
lower boundary.

Our results suggest that cycles of length four play a
special role in network dynamics. More precisely, we
find that the inclusion of links that create these motifs
yields networks with higher synchronizability in compar-
ison with cycles of different lengths. Furthermore, cy-
cles of length three are found to have a weak effect on
the Laplacian spectrum and, consequently, on the sta-
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FIG. 1: (Color online) Sketch of a balanced tree
network G(m, 3). In the single link addition procedure,
we distinguish two cases, namely connecting nodes in

the same fundamental branch (”in”, ) or in different
(”out”, ), i.e. every path between the nodes before

the addition contains the root node.

bility of the synchronized state. Interestingly, this pe-
culiar innocuous effect of triadic connections on critical
dynamical properties has also been reported in other con-
texts [21–25].

This paper is organized as follows: In the next section
we explain how we create different network topologies
starting from a tree. We present two different methods
(1) introducing only one cycle of a given length and (2)
adding several random links. Moreover, we show in detail
how different cycle lengths change the properties of the
network that control the synchronizability. Thereafter,
we study how the number of random links added to the
starting tree impacts the synchronization of the network
using two numerical models, namely the time discrete
logistic map and the continuous Rössler system. Finally,
we state the conclusions and perspectives.

II. NETWORK TOPOLOGIES

A. Network Manipulation

The procedure of the network generation is as follows.
As a starting point we consider an undirected balanced
tree graph G(m,n) where m is the number of levels and
n is the branching number at each level. Therefore, the
total number of nodes is given by N = (n(m+1)−1)/(n−
1) and the total number of edges is N−1. Due to the fact
that the total number of edges in a complete undirected
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graph is N(N−1)/2, the remaining unconnected number
of pairs for the tree structure is given by r = (N−2)(N−
1)/2. Notice that our starting network does not have any
cycles.

Having a highly structured – tree-like – network with
known statistical characteristics allows us to control the
network topology in two different ways. One is target-
ing the network topology directly by introducing cycles
of a chosen length. The other way lets us to evaluate
what happens if we control the sparseness of the network
by randomly introducing a certain amount of additional
edges. We are going to refer to the introduction of cycles
as the single link addition. Here the length of the cycle is
the control parameter. The other method will be referred
to as random link addition and, in this case, the control
parameter is the probability p multiplying the number
of unconnected pairs r. We want to point out that this
network generation method is very similar to the ones
used to generate small-world structures [26]. However,
the substantial difference is that our initial network is a
balanced tree structure instead of a regular lattice.

What we aim to evaluate is how the different lengths of
cycles respectively the choice of p- values change the syn-
chronization features of the networks. We consider the
resulting network structure of our two methods as the
adjacency matrix Aij , with Aij = 1 if nodes i and j are
connected, and Aij = 0 otherwise. The number of con-
nections, the degree, of node i is given by ki =

∑
j Aij .

Further, we define the Laplacian L, Lij = δijki − Aij .
Its eigenvalues λi (λ1 = 0 ≤ λ2 ≤ · · · ≤ λmax) play an
important role in characterizing the synchronizability of
the system and therefore measure comprehensively what
we want to determine [18], i.e. changes in the eigenvalue
spectrum of our designed networks. In particular, we are
interested in the minimal changes or best cycle lengths
that have maximum impact on the value of λ2 or λmax
(λ1 = 0 if the network is connected). The magnitude of
the first non-trivial eigenvalue λ2 is related to the onset
of synchronization while the magnitude of the maximum
eigenvalue λmax is connected to the end of the synchro-
nization interval [3, 27].

B. Impact of Cycle Length

While we are going to study the random link addition
later when focusing on network dynamics, we start by
studying just the eigenvalue pair λ2 and λmax as a func-
tion of the cycle length after single link addition. Avoid-
ing self-loops, the first cycle is a 3–cycle, i.e. a node’s
neighbours in the network are themselves connected. Us-
ing the illustration in Fig. 1 of a balanced tree network
G(m, 3) (only m = 3 levels are shown) we see that intro-
ducing a 3–cycle in this network means connecting two
nodes i and j that lie on one of the circles highlighting the
level number (see the dashed blue highlighted line in Fig.
1). In addition, note that the branching on level m = 1 of
the original network is highlighted as the shading of the

FIG. 2: (Color online) (a) Minimal and (b) maximal
increase ∆λmax of the largest Laplacian eigenvalue λmax

for various wiring choices. For reference, the integers
denominate the length of the (a) shortest and (b)

longest cycle possible for each configuration. For the
link classification ”in” vs. ”out” see Fig. 1.

three areas. Ignoring the trivial level m = 1, all of the 3–
cycles that we can create lie within the same shaded area
and do not break the symmetry of the network. This also
means that they are linking two nodes within the same
branch of the tree network (shaded areas with the same
color in Fig. 1) and we call these links in-links. On the
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FIG. 3: (Color online) Increase of the maximum
Laplacian eigenvalue λmax for connections (a) on the
same level creating cycles of length 3 and (b) between

different levels creating cycles of length 4.

other hand, if a link connects nodes belonging to differ-
ent branches (e.g. the dashdotted red line in Fig. 1), we
denominate it as an out-link. In this case, the shortest
cycle created by an out-link is a 4–cycle.

In Fig. 2a we can see how distinguishing between in-
and out-links can be used as a tool to generate cycles
of different lengths (shown for G(5, 3)). Starting from
the centre of the network, we number all nodes and their
levels based on their distance. In this matrix-like plot
we find that, for example, linking two nodes in the first
level (1-out) creates a 3–cycle. Similarly, a 3–cycle can be
created by linking from the second level (2-out) back to
the centre (0-out). As we can see in G(5, 3), 11–cycles are
the longest possible cycles in this network. Note also that
the average path length is changed by the introduction
of different cycles. Especially short cycles will impact
the average shortest path length while long cycles, e.g.
out-links connecting leaf nodes, are likely to only have a
small effect.

Since we are focusing on changes of the Laplacian’s
eigenvalues, it is worth pointing out that adding links in
any undirected network always positively increases the
magnitude of these eigenvalues. From a synchronization

point of view we are, for instance, interested in the max-
imum possible change ∆λmax of the maximum Laplacian
eigenvalue. In Fig. 2 we show how much the different cy-
cles change the magnitude of λ2 and λmax. Again we give
these changes in terms of in and out level connections.
We want to highlight some of these changes. Firstly,
we note that of the possible 3–cycles the one with the
strongest impact on the eigenvalues is on m = 1, while
m ≥ 2 has less impact. In particular, connecting to
neighbouring leaf nodes in level five does not change the
upper limit of the spectrum while the largest sensitivity
to topological changes is observed close to the root node.
This tendency is repeated again in the 4–cycles where the
strongest impact is found when 2–out is connected to a
note on m = 1 while already connections from 3–out to
m = 2 do not lead to such a large change. For the 3 and
4–cycle we summarize this topological effect in Fig. 3.

If we ignore the additional information on where the
cycle is within the network, it is a valid question to ask for
the general impact of the cycle’s length on changes in the
eigenvalues. This information can be found in Fig. 4 for
the distribution of changes in the largest Laplacian eigen-
value of G(5, 3). It is not surprising that long cycles play
almost no role in small-sized networks, while 4–cycles are
dominating the change. Furthermore, 3–cycles induce
changes in the spectrum comparable to long cycles, sug-
gesting that such topological patterns have weak impact
on network dynamics as well. This is somewhat remark-
able, given how pervasive 3–cycles are in real-world net-
works [3]. Noteworthy, it was verified (not shown here)
that changes in ∆λmax due to the share of long cycles
increase with the system size, but still 4–cycles are dom-
inating. 3–cycles were consistently found to be respon-
sible for lower changes in the spectrum than 4–cycles.
This has also been addressed by Lodato et al. compar-
ing the synchronizability of 4-node subgraphs, quantified
by the ratio λmax/λ2 of the Laplacian eigenvalues [28].
Their analysis showed that 4-node motifs containing a
single 3-cycle have lower synchronizability than motifs
with the same number of nodes and links containing a
4-cycle. Interestingly, a single link addition that creates
two 3-cycles in a 4-node motif does not increase its syn-
chronizability. Therefore, their result suggests that net-
works with a higher number of 4-cycles are more prone
to exhibit a synchronized state.

Concerning the random link addition, it is of great in-
terest to estimate the probability for cycles of a particular
length being created. As we can see from the relative oc-
currence of cycle lengths plotted in Fig. 5 it is more likely
that we choose longer cycles, i.e. on average a randomly
chosen link would create a 9–cycle. Therefore we can
expect that large changes associated, for example, with
some of the 4–cycles will be less likely to dominate the
eigenvalue spectrum, while the sum of changes resulting
from several longer cycles will make up the main effect
that changes the eigenvalue spectrum.
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FIG. 4: (Color online) The average change of the
maximum Laplacian eigenvalue is given as bullets while
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FIG. 5: (Color online) Relative occurrence of cycle
lengths when randomly connecting two nodes in a

G(5, 3) balanced tree.

III. MASTER STABILITY FUNCTION

By means of the above mentioned methods, we ob-
tain the adjacency matrices of the networks containing
our prototypical dynamic systems. We investigate two
paragons of dynamical systems theory, namely Rössler
oscillators, as an example for an autonomous continuous
system, and the well-established logistic map as a dis-
crete one. Our main tool allowing us to find relationships
between the network spectral properties and the stabil-
ity of synchronous regimes of the considered dynamical
systems is the master stability function (MSF) approach
[29].

To illustrate the method, we first assume a continuous
(autonomous) dynamical system of, for instance, coupled
oscillators described by a state vector xi at site i in a

network:

ẋi = F(xi) + σ

N∑
j=1

AijH(xi,xj) , (1)

where F is the individual oscillator’s dynamics, H the
coupling function between coupled elements, Aij an ele-
ment of the network’s adjacency matrix and σ the overall
coupling strength. To assess whether our networks al-
low for stable solutions of complete synchronization, i.e.
xi ≡ s ∀i = 1 . . . N , we need to obtain the MSF. For
identical oscillators this function is given by [29]:

MSFF,H(αi) = DF(s)− αiDH(s) , (2)

where αi = σλi with Laplacian eigenvalues λi and DF
and DH are the Jacobian of the system and of the cou-
pling function. If we assume for a moment that the argu-
ment α is a continuous (in general complex) variable, the
real roots of the maximum Lyapunov exponent Λmax of
MSFF,H(α) determine the boundaries αl and αu of the
stability interval. Note that for periodic systems, there
is only one root αu as αl = 0. In order to have a sta-
ble solution,the coupling σ needs to be chosen in a way
that αl < αi < αu ∀i = 1 . . . N , for Λmax to be negative
and hence to have an asymptotically stable synchronous
regime (cf. Fig. 6).

As discussed in the section before, the most crucial
non-trivial Laplacian eigenvalues to be fit in the stability
interval are the second minimum λ2 and the largest λmax
ones, since the rest of the eigenvalues are distributed be-
tween them.

In the following, we apply this approach to the Rössler
system as oscillatory units that are coupled through their
x–coordinates:

ẋi = −yi − zi + σ

N∑
j=1

Aij(xj − xi) (3)

ẏi = xi + ayi

żi = b+ zi(xi − c) .

Computing MSFF,H(α), we find that DF and DH are
given by

DF =

 0 −1 −1
1 a 0
z∗ 0 x∗ − c

 DH =

1 0 0
0 0 0
0 0 0

 . (4)

For our investigations we choose the parameters such
that we have one set in the periodic regime (a = 0.1,
b = 0.2, c = 5.7) and one in the chaotic regime (a = 0.2,
b = 0.2, c = 5.7, [30]). Notice that the MSF in gen-
eral only yields a valid linearization in a neighbourhood
around a point (x∗, y∗, z∗)T from the synchronization
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manifold which we determine from numerical simulations
of the system. We obtain αu = 9.99884 and (αl, αu) =
(0.198769, 4.99878) for the periodic and chaotic cases, re-
spectively.

As a second application we use the time-discrete logis-
tic map as an oscillator given by:

xi
t+1 = (1− σ)f(xi

t) + σ

ki

∑
j

Aij(f(xi
t)− f(xj

t )) (5)

f(xi
t) = rxi

t(1− xi
t) , (6)

where the local node dynamics f(xi
t) is the logistic map

(r ∈ [0, 4]) , σ ∈ [0; 1] is the coupling strength between
the units and A an adjacency matrix.

The logistic map is one-dimensional, therefore the Ja-
cobian of Eq. (5) is the derivative of f with respect to xi

and the associated MSF is given by

MSFf (αi) = (1− αi)f ′(xi
t), (7)

where αi = σλi, λi are the eigenvalues of the Laplacian
as stated above.

For our research we choose the control parameter of the
logistic map, r, such that we have one periodic (r = 3.83,
period 3) and one chaotic case (r = 4.0). For the periodic
case, Λmax again has only one root which is found as
αu = 2.45157 (Fig. 6). The roots for the chaotic local
dynamics are found to be αl = 0.50038 and αu = 1.49962.

We demonstrate the stability of the coupled oscillators
representing the nodes of our networks. We study the
synchronization behaviour of two different node types, ei-
ther the nodes’ dynamics are given by logistic map or the
continuous Rössler system. Both systems are analyzed
for two different dynamical regimes, periodic and chaotic.
As we can see in Fig. 7 the eigenvalues λ2 and λmax
change with a different rate depending on the parame-
ter p which controls the random link addition. While
the initial growth of λmax dominates for low p-values, it
seems to saturate for high values where we observe most
of the change for λ2.

Hence, if just a few links are added at random loca-
tions, the initial growth of λmax leads to a spreading of
the Laplacian spectrum, with the potential to cross the
upper limit αu of the synchronization interval. This can
be counteracted by lowering the coupling σ, i.e. small
changes in the network should be accommodated by re-
ducing σ to safely pertain in the synchronous interval.

In summary, Fig. 6 depicts the qualitative results for
MSFs of the two test systems, the shaded areas denote
the synchronous region. In the white regions the syn-
chronous regime is unstable. As mentioned above, in-
creasing p-values leads to an increase in edges and simi-
larly the Laplacian’s eigenvalues increase as well.

i) The lower boundary for the periodic cases is αl = 0
(cf. Fig. 6a,c), so that one only needs to consider the
upper limit to ensure stable synchronization.
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FIG. 6: (Color online) Coupled logistic map in (a)
periodic and (b) chaotic regimes; and Rössler oscillators
in (c) periodic and (d) chaotic regimes. The upper plots
depict the non-zero eigenvalues of the Laplacian L for

different probability p of link addition (see text for
details). The shaded area denotes the existence of

stable synchronous solutions. In all panels, the initial
topology was G(3, 3).

ii) The lower boundary of the chaotic case is positive.
Therefore both limits are needed to be considered (cf.
Fig. 6b,d).

As we can see in all four cases, there is a maximum
amount of links that we can add before the system
reaches the upper threshold of the synchronization re-
gion. Clearly if we choose p = 0.8, some α values are
no longer within the shaded synchronization regions in
all panels of Fig. 6 (see the highlighted pentagons above
each graph). More interesting is the situation for the
oscillators being chaotic (cf. Fig. 6b,d). We can see
that without adding any links (p = 0), the network does
not support synchronization. Increasing the number of
links leads to networks that can support synchronization,
but again too many links will increase the eigenvalues by
too much and we cannot find synchronization anymore.
Comparing these results with the previous Fig. 7 we see
that p needs to be big enough to increase λ2 above the
level where the lower bound is already in the synchroniza-
tion region, while λmax is still below the upper threshold
of the band.

IV. CONCLUSION

Since large natural or man-made networks are locally
tree-like, we have focused on small trees as the starting
point of constructing our network. We have seen that
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even including one edge can substantially alter the syn-
chronization behaviour of the system and that short cy-
cles connecting different levels of the tree have the largest
impact on the eigenvalues of the Laplacian, especially if
they are created close to the root node. We have high-

lighted a way to add cycles of defined length in our trees
and therefore give the option to design networks having
a particular synchronization behaviour.

Using the master stability framework we were able to
analyze how random link addition alters the synchroniza-
tion phenomenon using the logistic map as well as the
Rössler oscillator. The most striking example, that we
studied, is the synchronization behaviour of nodes hav-
ing chaotic dynamics. While without additional links
the networks are unable to synchronize the dynamics of
the nodes, adding some links to the networks alters the
global dynamics essentially and the systems can synchro-
nize. Moreover we have found that adding too many links
causes desynchronization.

In conclusion our work provides a method on how to
optimize networks in such a way, that they can become
synchronized in an improved manner. Given that syn-
chronization is of outermost importance in many net-
works, e.g. power grids [12, 25, 31, 32], neuronal [25, 33,
34] and communication networks [34], our findings may
be used to increase the stability of the synchronization
regime by adding short cycles.
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[9] V. Zlatić, D. Garlaschelli, and G. Caldarelli, EPL 97,

28005 (2012).
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