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Abstract
Damage due to tropical cyclones accounts formore than 50%of allmeteorologically-induced
economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed
population grows, per capita income increases, and anthropogenic climate changemanifests. So far,
historical losses due to tropical cyclones have been found to increase less than linearly with a nation’s
affected gross domestic product (GDP). Herewe show that for theUnited States this scaling is caused
by a sub-linear increase with affected populationwhile relative losses scale super-linearly with per
capita income. Thefinding is robust across amultitude of empirically derived damagemodels that link
the storm’s wind speed, exposed population, and per capita GDP to reported losses. The separation of
both socio-economic predictors strongly affects the projection of potential future hurricane losses.
Separating the effects of growth in population and per-capita income, per hurricane losseswith respect
to national GDP are projected to triple by the end of the century under unmitigated climate change,
while they are estimated to decrease slightly without the separation.

Introduction

In the United States hurricanes have caused estimated
losses of $400 billion between 1980 and 2014 repre-
sentingmore than half of all meteorologically-induced
damage [1]. While absolute losses have clearly
increased over time there is an ongoing debatewhether
this rise is mainly caused by increasing wealth or
potential changes in hurricanes’ frequency and inten-
sity [2, 3] (see figure 1 for a mapping of historical
wealth changes and the historical hurricane threat to
theUnited States). This question is not only relevant in
terms of the attribution of observed historical trends
but also critical for the projections of future losses
under coeval development of the socio-economic
situation and climate change. So far, the majority
of studies has focused on the characterization of
the relationship between the physical hazard and
economic losses (and here mostly on the choice of the
best wind-speed exponent [4–6], but also on other
physical predictors like storm size [7, 8]). The role of
socio-economic development on hurricane losses has

mainly been treated either qualitatively or by assuming
a linear relationship between the overall affected GDP
and observed losses [4, 9–11]. Allowing for other
functional relationships, hurricane damages in the
United States have been found to scale sub-linearly
with affected capital stock [12]. Here, we revisit
the relationship between hurricane intensity and
socio-economic drivers explicitly comparing models
using total GDP as a predictor (model type 1:

µ ´b( ) ( ))fLoss GDP wind speedGDP to models
that separate the effects of affected population
(POP) and average per capita income (GDPpc)
on US hurricane losses (model type 2:

µ ´b b( ) ( ) ( ) )fLoss GDPpc POP wind speed .GDPpc POP

We particularly assess the implications for future
projections of losses based on projections of popula-
tion growth and GDP under the Shared Socio-
Economic Pathways (SSPs) [13, 14] and changes of
hurricane intensity and frequency under the high
emission Representative Concentration Pathway
RCP8.5 [15]. We find that despite the fact that both
basic model types reproduce historic hurricane losses
almost equally well, the separation of GDP into per
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capita income and population leads to a major
divergence of projected future losses.

Methods

We relate reported loss data with socio-economic and
hazard-related predictors to test different functional
relationships. For an assessment of the sensitivity of
the results we consider different commonly used
functional wind-speed relationships ( )f and two
historical loss data sets. In total, we evaluate eight
different damage functions for each of both basic
model types for all storms that make landfall with at
least hurricane force winds, i.e. wind speed above land
�64 knts, in the EasternUnited States.

Data

We use a newly-constructed gridded data set (with
0.1°×0.1° grid resolution) for the physical and
socio-economic predictors that spans the period
1963–2100. Historical hurricane tracks (size and
locally-resolved maximum wind-speeds) are based on
the National Hurricane Center’s best track archive
(HURDAT) [16] using 6 h track coordinates, max-
imum wind-speed (Vmax), and wind-speed radii for
the wind-speed thresholds 64 knts and Vmax. The data
is interpolated to hourly data and transferred to a grid
with spatial resolution of 0.1°×0.1°. Where wind-
speed radii are unavailable (from 1963 to 1987), the
wind-field is a best estimate based on the full record
from 1988 to 2012, see supplementary table S1 and
figure S1 for details regarding the assumed spatial
distribution of wind speeds along the reported tracks.

The future hurricane climatology is based on six
Global Circulation Models (GCMs). Despite sig-
nificant model improvements in recent years, GCMs

do not explicitly resolve the dynamics of hurricanes
[17]. Here we use projections of future cyclone tracks
based on an artificial ‘seeding’ of a large number of
tropical cyclones that develop into hurricanes accord-
ing to a high-resolution dynamical hurricane model
[18]. The hurricane model is forced by winds derived
from the different GCMs under RCP8.5 [18, 19] gen-
erated within the Coupled Model Intercomparison
Project Phase 5 (CMIP5) for the period 2006–2100
plus equivalent simulations for the historical period
1950–2005 [15]. Overall, our study is based on 4578
storm tracks that develop into hurricanes and affect
the Eastern United States with hurricane force winds
between 1981 and 2100. Simulated tracks are equiva-
lently interpolated to hourly data, each storm’s wind-
field is estimated using the HURDAT-based
1988–2012 wind radii record, and projected to a grid
with 0.1° resolution.

Reported hurricane losses are taken from two
different data sources (ICAT, 1963–2012, www.
icatdamageestimator.com; NATCAT, 1980–2012,
MunichRE’s NatCatSERVICE [20]) as full (i.e. insur-
ed+uninsured) historic losses and inflation-adjusted
to 2005$.

High-resolution gridded population data [21, 22]
is used in order to track local increases in US popula-
tion but also the inner-country migration towards the
coast. Gridded population density is based on the 2000
Gridded Population of theWorld (GWPv3, resolution
0.0083°) data [22] normalized according to US county
population. Population time-series from 1963–2012
are generated using county population changes [21]
and a subsequent upscaling to 0.1° grid resolution.
Projected future population (2013–2100) according to
five different SSP scenarios [13] is downscaled from its
original 0.125° resolution to match our grid
resolution.

Figure 1.Historical trends inGDP and historical hurricane tracks. Shading over land indicates the percent change of gridded
inflation-adjustedGDP from1963 to 2012. Shading over water shows the absolute number of observed stormswith at least hurricane
strength for the same period.

2

Environ. Res. Lett. 11 (2016) 084012

http://www.icatdamageestimator.com
http://www.icatdamageestimator.com


Income data is based on US States real per
capita GDP (in 2005$) time series [23] from 1963 to
2012 and projected onto a 0.1° resolution grid accord-
ing to population density. Future GDP estimates
(2013–2100) are based on national per capita GDP
evolution according to different SSPs [24] and the
gridded future population time series. In order to con-
serve local inhomogeneities in the GDP per capita dis-
tribution national per capita GDP is rescaled
according to the historic mean (2008–2012) of US
States GDPper capita.

Affected GDP (and affected population) by storm j
is defined as the sum at all grid points i up to the total
number j ,v where the storm j’s wind-field reaches the
threshold value of =v 64 knts, i.e.:

å å= ´ =
= =

( )GDP POP GDPpc , POP POP .j
i

j

ij ij j
i

j

ij
1 1

v v

Additionally, we also define the population-weighted
affected per capitaGDP:

å= ´
=

( )GDPpc POP GDPpc POP .j
i

j

ij ij j
1

v

Statistical damagemodels

The analyzed damage functions rely on socio-eco-
nomic variables and storm properties as predictors. As
stated above, the introduction of two basic model
types (model type 1 and model type 2) reflects the
separation of damage functions according to their
socio-economic predictors. For each damage function
maximum wind speed and storm size are used as
physical predictors. The damage functions differ with
respect to their different functional scaling of losses
with wind-speed (exponential, power-law), their
separation between functional forms that attribute
losses solely to maximum wind-speed at landfall
(global) or account for local characteristics of the full
wind-speed distribution (local), and to the different
loss data sets (ICAT, NATCAT). The basic models of
type 1 describe damages of storm j using total GDP as a
single predictor
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while models of type 2 separate between per capita
GDP and population:
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Damage functions (1) and (3) are of global form as they
use maximum wind-speed at landfall ( )V jmax , as a
single wind-speed predictor. Conversely, damage
functions (2) and (4) are of local form and use local
estimates of maximum wind-speed, i.e. they deter-
mine losses for each grid point i separately. The
respective power-law and exponential wind-speed
dependence is obtained by replacing  g( ) ( )f x x
and g ´( ) ( )f x xexp in equations (1)–(4).

The log-transformation of all variables in
equations (1)–(4) results in normally-distributed resi-
duals when conducting regression analysis. All fit
parameters and associated standard errors are repor-
ted in supplementary tables S4–S7, S10 and S11.

Future hurricane loss estimation

By analyzing a multiple of naturally occurring hurri-
canes we are able to sample the potential future
hurricane impact statistically. To estimate the aggre-
gated future losses the simulated losses are scaled to
match the historically observed average storm inten-
sity and annual frequency. Intensity is normalized
such that the observed and simulated 1983–2012
median loss per hurricane is equal. To do so, the
median loss per hurricane is determined for each
damage function and each GCM separately and then
normalized according to observed median losses per
storm, see figure S2 for details regarding the intensity
normalization. Three of the considered models (MPI,
CCSM4, MRI-CGSM3) reproduce the median inten-
sities quite well while it is underestimated byMIROC5
and GFDL-CM3 and overestimated by HadGEM2-ES
(see figure S2). To estimate annual aggregated losses
the simulated annual losses are first rescaled by a
GCM- and year-dependent factor that is providedwith
the data in [15] and ensures that global hurricane
counts match observations (see [15] for details). In
order to match simulated hurricane counts with
observations for the United States locally, simulated
annual losses are additionally scaled by a constant
factor c=observed average landfall frequency over
1993–2012/simulated average landfall frequency over
the same period (see figure S3 for details regarding the
local frequency normalization). Upon global rescaling
twoGCMs (HADGEM-ES,MPI-ESM-MR) reproduce
the historic landfall frequency very well, while the
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remaining GCMs underestimate the landfall fre-
quency and require a local rescaling (see figure S3).

Future loss estimates are averages over the projec-
tions by all six GCMs and eight damage functions, but
separately for both basic model types. The averaging
procedure for per hurricane damages is the following:
for each GCM and each damage function losses are
simulated and intensity-normalized according to the
normalization procedure described above. Across the
distribution of all simulated hurricane losses in a 10
year bin the desired loss percentile is determined. For
each considered percentile, the median across all
GCMs yields the median loss per damage function. A
subsequent median across all damage functions then
yields a single number: the average simulated loss per
storm for the desired percentile and 10 year interval.
Percentiles of average annual losses are determined
similarly: Single-event losses are aggregated to annual
losses and additionally frequency-normalized accord-
ing to the underlying GCM. Then, the desired percen-
tile is obtained across the 10 year distribution of
annual losses, followed by the subsequent medians
across GCMs and damage functions as described
above.

Results

First, we summarize the results of the regression
analysis conducted for the different damage functions
based on observational data between 1963 and 2012.
In a second step, we apply the different damage
functions to project future losses based on the
simulated track repository.

Historical loss analysis

In general, the explained variances of all considered
statistical models exceed 50% (see table 1, figure 2 and
supplementary tables S2 and S3). The scaling of the

socio-economic predictors as caused by the two
different model approaches is of particular interest.
Using total affected GDP as a single socio-economic
predictor we find that hurricane losses scale sub-
linearly with GDP across all considered sub-models
(i.e. b < 1,GDP see table 2 and figure 3). In contrast,
models of the second type robustly show that the sub-
linear increase with overall GDP is actually caused by a
sub-linear increase with affected population while
losses scale super-linearly with per capital income
(b b b< < >1, 1,Pop GDP GDPpc see table 2, figure 3,
and supplementary figures S4–S6). The same non-
linear scaling-behavior is found if the affected region
defined by the extension of each hurricane’swind-field
is limited to coastal counties only, i.e. effectively
changing the number of affected people and the value
of average affected income (see supplementary tables
S6 and S7). This result improves on findings in a
previous study estimating separate but insignificant
elasticities for per capital GDP and population [25]
and is in line with a study that observes an increasing
vulnerability to hurricane impacts with rising income
for theUnited States [26].

Reported losses from the NATCAT database are
better reproduced than the reported losses from the
ICAT loss archive, especially when applying damage
functions that require local wind-speed estimates.
This discrepancy seems to be related to a varying data
quality over time and vanishes when analyzing both
loss datasets from 1980 to 2012 only (explained var-
iances increase to above 67% across all model approa-
ches, see table 1 and supplementary tables S8–S11).
The predictive skill for those models that separate
income and population effects is slightly higher than
for all models that only consider overall GDP. Based
on the Akaike Information Criterion [27], the gain in
predictive quality does not only result from inclusion
of an additional parameter (see supplementary tables
S2 and S3). This difference might not be sufficient to
reject basic models of type 1 in favor of models of type
2. However, the separation has immediate con-
sequences for the projection of future hurricane losses.

Future loss projections

Hurricane losses are expected to increase as the
intensity of the meteorological hazard due to climatic
changes [15, 28, 29], affected population, and per
capita income are projected to increase. Projections of
average per hurricane damages from the two basic
model types systematically differ for all considered
damage functions and GCMs (see figure 4). Except for
figure 4(d), future projections of GDP and population
are based on the ‘middle of the road’ SSP2 scenario
[14]. The median loss difference between both basic
model types per GCM (figure 4(b)) and per damage
model (figure 4(c)) are very comparable, predicting
respectively an average loss difference of 321% [268%,

Table 1.Variation of explained variances across different damage
models. The variation in predictive quality across different damage
models strongly depends on the analyzed time-period. If analyzed
from1980 to 2012 only, the explained variances for allmodels are
higher than 67%and very similar acrossmodels. All damagemodels
of basicmodel type 2 consistently showhigher explained variances,
as additionally verified using theAkaike Information criterion. Dif-
ferent loss data sets are displayed separately asNATCAT loss data is
only available from1980 onwards.

Basic damage

model type

Loss data/time

period

Explained variances

(%) (4model-range)

ICAT/1963–2012 54–61

Type 1 ICAT/1980–2012 67–68

NATCAT/

1980–2012

66–68

ICAT/1963–2012 56–64

Type 2 ICAT/1980–2012 68–70

NATCAT/

1980–2012

69–71
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483%] (model range in parentheses) and 373% [335%,
437%] by 2100. The underlying variability in loss
difference is mainly caused by the different loss data
sets and, in particular, by the different time periods
covered (figure 4(a)). When analyzing the ICAT data
set from 1980 (ICAT 1980) onwards only, the large
difference between ICAT 1963 and NATCAT reduces
considerably.

In addition to the different model realizations, the
projected loss difference strongly depends on the rela-
tive changes in population and income as summarized
by the various SSP scenarios (figure 4(d)). Under SSP5
(rapid development) the loss difference becomes max-
imal due to large prognosed gains in per capita GDP,
while SSP3 (sustainable development) projects the

smallest rise in loss difference. In the following, we
quantify the individual driver of losses and therefore
confine our analysis to the ‘middle of the road’ SSP2
scenario and to models of basic model type 2, that due
to their design are very susceptible to relative changes
in population and income. We project loss changes
with respect to 2010 values (1) under fixed present-day
socio-economic conditions, (2) changing population
and fixed per capita income, (3) changing per capita
income and fixed population, and (4) the combination
of both drivers. Projections for the other SSPs are
shown in the supplement.

For constant present-day socio-economy, i.e. cli-
mate change effects only, the total number of hurri-
canes with projected losses above the GCM-specific
1983–2012 median loss increases for all considered
GCMs towards the end of this century (see figure 5).
The response of MIROC5 to changes in Global Mean
Temperature (GMT) is greatest as the expected num-
ber of destructive hurricanes will more than triple for
5 °C of warming (with respect to the 1961–1990 mean
GMT) while both HADGEM-ES and MPI-ESM-MR
predict increases by roughly 30% at the lower end of
the spectrum. Dependent on the GCM the increase in
hurricane counts is to a varying degree driven by an
increase in intensity and/or frequency as both stron-
ger and more frequent events contribute to counts
above the loss threshold (see supplementary figure S11
for details regarding the loss impact of single GCMs).
As we are not in the position to judge on the quality of

Figure 2.Correlation between reported andmodeled losses for each damage function for socio-economic scaling proportional to total
GDP (basicmodel type 1) (a) and separated for population and per capita GDP (basicmodel type 2) (b). The predictive quality for
different socio-economic scaling varies only slightly, see additionally supplementary tables S2 and S3. The nomenclature of damage
functions is the following: icat/natcat denotes loss data sets, power (exp) denotes power-law (exponential)wind-speed dependence;
local (global) denotes the specific damage function type (seemethods section for details). The solid linemarks the bisectrix, the dashed
lines deviations by a factor of ten.

Table 2.Deviation from linear scaling of historical hurricane losses
with socio-economic development. The b‐values are the empiri-
cally obtained exponents of the socio-economic drivers considered
in themodels of type 1 only accounting for the total GDP affected
(line 1) andmodels of type 2 separating the effects of the total popu-
lation affected and per capita income (lines 2 and 3). Projected losses
scale sub-linearly (i.e.β < 1) if affectedGDP (with exponent b )GDP

is used as a single predictor for socio-economic development. Separ-
ating the predictor into the product of GDPper capita (with expo-
nent b )GDPpc and population values (with exponent b )Pop reveals
super-linear scaling (i.e.β > 1) of losses withGDPper capita and
sub-linear scalingwith population.

8model-mean 8model-median 8model-range

bGDP 0.50 0.57 0.20–0.67

bGDPpc 2.29 2.26 1.48–3.13

bPop 0.41 0.47 0.12–0.59
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Figure 3.Nonlinear scaling of historic hurricane losses with socio-economic development. The scaling of hurricane losses with each
socio-economic parameter differs from a linear relationshipwith statistical significance (see one-sided p-values in each panel).
Negative (positive) slopes indicate sub- (super-) linear scaling of hurricane losses with (a)GDP, (b)GDPper capita, and (c)population.
Lines are the best-fit through the empirical data based on 81 reported hurricanes from the ICAT archive. The b‐values are the
empirically obtained power-law exponents of the damagemodels of type 1 and type 2, described in themethods section.Y-coordinates

represent a ´ -g[ ( )] ( )Vlog Loss log GDPj j j10 max , 10 in panel (a); a ´ ´b g[ ( )]Vlog Loss POPj j j10 max ,
Pop - ( )log GDPpcj10 in

panel (b); and a ´ ´b g[ ( )]Vlog Loss GDPpcj j j10 max ,GDPpc - ( )log POPj10 in panel (c).

Figure 4.Difference in projectedmedian per hurricane losses caused by two different socio-economic scalings. Consistent increase in
relative loss difference betweenmedian losses per hurricane projected by allmodels of basicmodel type 2 and type 1, broken down by
individual drivers: loss data sets (a), GCMs (b), damagemodels (c), and SSPs (d). Thin lines in (a)denote all individual damage
projections (identical for panels (b) and (c)), colored thick lines aremedians acrossmodel ensembles, and black thick lines aremedians
acrossmodel ensembles. Sub-figures (a)–(c) showprojections based on SSP2 only. The nomenclature of damagemodels in (c) is the
following: power (exp) denotes power-law (exponential)wind-speed dependence of losses; local (global) denotes the specific damage
function type (seemethods section for details). The contribution called ‘ICAT 1980’ in (a) is only shown for comparison and not used
to derive averages in the remaining sub-figures.
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each GCM, we will in the following consider the med-
ian loss impact by all GCMs for future loss projections.

The losses of individual hurricanes per national
GDP are estimated to increase substantially assuming
population changes and GDP per capita development
following SSP2 (see figure 6). Hereby all losses are nor-
malized according to the national GDP in the year of
landfall. All percentiles calculated across the distribu-
tions of 10 year bins see a rise in losses over time, with
largest increases of the highest percentiles. Whereas
median losses by 2100 increase by a factor 2.91 [1.62,
6.40] (10%–90% uncertainty range in parentheses),
the 90% (95%) percentile rise by a factor of 4.75 [2.06,
9.57] (4.73 [2.02, 8.77]), corresponding to the expec-
ted increase in major hurricane intensity of category 4
and 5 [15, 29, 30]. The increase in losses due to indivi-
dual hurricanes is primarily forced by the increase in
per capita GDP (figure 6(b)). Assuming fixed present-
day per capita GDP strongly reduces the projected
damage increase. If both, the different effects of
increasing per capita GDP and population, are not
separated in the derivation of the damage function
(corresponding to the basic model of type 1 in the
methods section) projected losses are significantly
lower and decrease by a factor 0.62 [0.58, 0.85]
towards the end of the century (figure 6(c)).

Despite their similar performance in the historical
period the separation of the socio-economic pre-
dictors turns out to be the major driver of projected
losses. Other variations in the damage models such as
(1) the different functional representations of the phy-
sical hazard as captured by the individual sub-models
(shaded regions in figure 6(c) and supplementary
figure S9) and (2) the different loss data sets (supple-
mentaryfigure S10) contribute less to the overall varia-
bility of projected losses than the separation of the

socio-economic predictors. The spread in projected
losses as caused by the individual sub-models can be in
large part traced back to their different integration of
wind-field data (see figure 6(c), dashed lines: max-
imum wind-speed at landfall only, dotted lines: local
distribution of maximum wind-speed, see also the
methods section for details regarding how the wind-
field data is integrated by different models). As men-
tioned above, the contribution of the different loss
data sets to overall loss variability is mainly caused by
the different time periods covered (see figure 4(a) and
supplementary figure S10). When analyzed for iden-
tical intervals the spread of projected losses is reduced
with an increase of average projected future losses due
to a stronger super-linear scaling of losses with per
capita income for the period since 1980 in contrast to
1963 (see figure 4(a), supplementary tables S10, S11,
andfigure S10).

Discussion

All findings presented here are robust across all
percentiles and also across different SSP-scenarios (see
supplement for details). The observed decrease in
losses with increasing population may be explained by
the fact that urban areas with higher population
density can be more (cost-) effectively shielded against
hurricane impacts, e.g. by building levees. The increase
in losses with rising income may be caused by an
interplay of several reasons: irrational behavior and
false risk perception might trigger a non-sustainable
investment in high-risk regions, additionally
enhanced by the expectation that insurance companies
or governmental bodies will share the burden in case
of a disaster [31]. Also, conscious investment into
high-risk areas because of higher productivity might

Figure 5.Change in future number of destructive hurricanes due to increases in hurricane frequency and intensity. Projected rise of
hurricane counts with losses above theGCM-specific 1983–2012median loss per hurricane forfixed socio-economic development as
a function of (a) globalmean temperature (with respect to the 1961–1990mean) and (b) time for damagemodels of basicmodel type 2
(seemethods section). Under unmitigated climate change all GCMs consistently show an increase in destructiveness butwith varying
magnitude. Each data point results as an annualmedian over 8 separate lossmodel projections and a subsequentmean over all years
within a (a) 1 °C temperature-interval or (b) 20 year period. Temperature bins that contain less than three data points are not shown.
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contribute to our observed finding [32]. It could be
investigated further if high-resolution capital stock
data were available that more accurately captures local

wealth characteristics. In this context, it might also be
advantageous to analyze the impact of other hazards,
e.g. floods or earthquakes, in order to identify the

Figure 6.Amplification of relative future losses per hurricane by rising per capita income. Panel (a): Trends of average losses per
hurricane for damagemodels of basicmodel type 2 (seemethods section) under future socio-economic development according to
SSP2. Blue shading indicates the 5%–95% inter-percentile range, lines highlight selected percentiles (median: thick solid line), and
black stars show inflation-adjusted historical hurricane losses per national GDP for the period 1991–2012. Panel (b):Magnification of
themedian loss per hurricane (solid blue line) frompanel a together with the separate contribution ofGDP per capita and population
change on projected losses.While population increase by itself (green line) leads to lower relative losses than projectedwith present-
day socio-economic values (black line), growingGDPper capita (red line) results in substantially higher losses. Panel (c): Loss
projections differ significantly whether the socio-economic predictors GDP per capita and population are treated separately (basic
model type 2, blue solid line, same as in panel (a), (b) or combined as total GDP (basicmodel type 1, orange solid line). This difference
is larger than the inter-model variability caused by the projections of individual damagemodels (dashed/dotted lines that span the
shaded regions). Each data point in all panels is the decade-median of all simulated hurricane losses based on 8 different damage
projections (except for the dashed/dotted lines in panel (c) and 6GCMs. Loss changes are givenwith respect to 2010 values.
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drivers of the super-linear scaling of losses with rising
income.

None of the considered approaches explicitly
accounts for storm surges and other hurricane-related
hazards (e.g. precipitation). Their importance is, how-
ever, implicitly taken into account as e.g. precipitation
and storm surges are correlated with storm size and
wind-speed. Likewise, the fact that we consistently
obtain similar fit results across all our models restrict-
ing the wind-speed affected region to coastal counties
seems to underline the high loss share of the coastal
regions potentially exposed to storm surges (see sup-
plementary tables S6 and S7).

Local changes in vulnerability as may arise due to
improved prevention measures (e.g. increased levees
or improved building codes) are only indirectly and
partially captured usingGDP as a socio-economic pre-
dictor and may vary across space and time. However,
more homogenous efforts of nation-wide adaptation,
as e.g. introduced by the National Flood Insurance
Program initiated in the late 1960ies [31], might par-
tially account for the increase in explained variances
across all our damage functions for more recent
periods.

Effects of sea-level rise are not included in our ana-
lysis but are expected to lead to higher average losses
per hurricane than the here reported tripling by the
end of this century [33]. Beyond the intensity change
of a single hurricane, frequency changes will con-
tribute to overall annual losses. Whereas some studies
expect rather small changes in hurricane frequency for
theNorth Atlantic [28, 34], the downscaling technique
applied here projects substantial increases [15] that
translate into large increases in annual losses for the

Eastern United States, see figures 7 and S12. By 2100
and under SSP2, median annual losses are projected to
increase by a factor of 8.4 [3.5, 15.5] for separated
socio-economic predictors and by a factor of 1.5 [1.3,
2.5] for unseparated predictors (figure 7(b)). It is thus
the interplay of both intensity and frequency changes
that determines the total future losses caused in the
United States. But as demonstrated here, the income-
related vulnerability with respect to a single event
remains the crucial handle when adapting to future
hurricane impacts.

Conclusion

We have demonstrated that the predictive skill across
commonly used damage functions in reproducing
historical hurricane losses is consistently high when
analyzed with our newly-designed data set for socio-
economic and hazard-related predictors. We also
find that a restriction of the analyzed period to more
recent years improves the explained variances across
all damage functions, potentially caused by higher
data quality since 1980. In particular, we distin-
guished between two sub-classes of statistical models
that either separate per capita GDP and population as
socio-economic predictors or treat GDP as a single
predictor. While the latter predicts losses to scale
sub-linearly with rising GDP, the former shows a
super-linear scaling of losses with rising income that
opposes the current view of higher protection
through higher income. Despite their similar perfor-
mance in reproducing historical hurricane impacts,
the opposing nonlinear scaling leads to a divergence

Figure 7.Projection ofmedian annual hurricane losses under SSP2. Similar to figure 6 but for annual losses that aggregate the impact
of changes in hurricane frequency and intensity. Panel (a):Median annual loss forfixed present-day socio-economic values (black
line) and under full socio-economic evolution (blue line) together with the separate contribution ofGDPper capita (red line) and
population change (green line) on projected losses based on the damagemodels that separate population and income (basicmodel
type 2). Panel (b): The difference in loss projections for damagemodels that treat the socio-economic predictors GDPper capita and
population separately (basicmodel type 2, blue solid line, same as in panel (a) or combined as total GDP (basicmodel type 1, orange
solid line) becomes evenmore pronounced on annual scales. Shaded regions show the inter-model variability as caused by the
projections of individual damagemodels (dashed/dotted lines). Each data point is the decade-median of all simulated annual
hurricane losses based on 8 different damage projections (except for the dashed/dotted lines in panel (b) and 6GCMs. Loss changes
are given relative to 2010 values.
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of future losses, exceeding all other sources of
variability, i.e. the difference in hurricane climatol-
ogy from different GCMs and the uncertainty caused
by different damage models and hurricane loss data
sets. Based on the different damage models with
separated per capita GDP and population we project
that average future hurricane losses will triple with
respect to national GDP under climate change and
socio-economic development, while future losses for
the unseparated damage models are projected to
decrease.
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