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The potential impact of global temperature change on global crop yield has recently been assessed with diferent methods. 
Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without 
deliberate adaptation or CO2 fertilization efects, produce similar estimates of temperature impact on wheat yields at global 
and national scales. With a 1 ◦ C global temperature increase, global wheat yield is projected to decline between 4.1% and 
6.4%. Projected relative temperature impacts from diferent methods were similar for major wheat-producing countries China, 
India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical 
regressions, were consistent in projecting that warmer regions are likely to sufer more yield loss with increasing temperature 
than cooler regions. By forming a multi-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model 
uncertainty. This significantly improves confidence in estimates of climate impacts on global food security. 

 
Global demand for food is expected to increase 60% by the middle 
of the twenty-first century1. Climate change, and in particular 

rising temperatures, will impact food production2 . For global food 
security, it is important to understand how climate change will 
impact crop production at the global scale to develop fact-based 
mitigation and adaptation strategies. Many studies have shown a 
wide range of temperature impacts on yields of different crops in 

different seasons at different locations3 , including Europe4 , China5 , 

India6 and sub-Saharan Africa7 . A few studies have considered 

impacts on the entire globe8–11 . However, the methods used to 
make these assessments are based on very different premises and 

use different methodological steps. 
The uncertainty of  estimates  of  global  temperature  impact 

on crop yields was analysed for the  crop  model  component 

(that is, model uncertainty) by using two different multi-model 

ensemble approaches8,9 . While both studies used process-based crop 
simulation models, the scaling approach and input data differed 

greatly. The first study divided the globe into geographical grid 
cells defined by latitude and longitude and used climate and crop 
management data integrated over each grid as input for seven crop 

models9 . This grid-based system was used to estimate relative yield 

changes for rice, maize, wheat and soybean. The second study used 
data from 30 individual field sites deemed to represent two-thirds 

of wheat-producing areas worldwide8 . In this point-based approach 

estimates from sentinel sites were scaled up and extrapolated to 
cover geographical areas with similar conditions. 

In further contrast, statistical regressions based on global and 

country-level data have been used to quantify the impact of 

increasing temperatures on yields of wheat, maize, barley, soybean, 

sorghum and rice10,11 . An important difference from the simulation 
models is that statistical models do not directly consider processes 

inherent to crop growth. However, statistical models may include 

indirect effects of climatic variability, such as those related to 

pests and diseases, which are not well captured by simulation 
models12 . When assessing climate effects on crop yields, crop models 

can take into account autonomous adaptation and an increase in 

atmospheric CO2 concentration. Also some statistical regressions 

include the yield effects associated with autonomous adaptation10 . 
For the effects of gradual increase in CO2 concentration in the past, 

statistical models may inherently include these within yield effects13 , 
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Methods 

point-based simulations, and statistical regressions at global level 
were all between 4.1% and 6.4% (Fig. 1). The average estimated 

temperature impact from all three methods (and four studies) was 
a 5.7% reduction in global yield per degree of global temperature 

increase. The estimated temperature effects on global wheat yield 
from the three different methods were similar. 

A meta-analysis of mostly process-based crop model simulations 

reported a 3.3 ± 0.8% decline in wheat yields with a 1 ◦C increase 
in   local   temperature16 .   When   adjusted   to   global   temperature 

change (which is usually less than local wheat region temperature 
changes17 ), this impact amounts to 3.9% yield reduction per 

degree of global temperature increase. Also, a summary of past 
regression and simulation studies reported an average of 5.9% 

wheat yield decrease with 1 ◦C warming18 . These values are very 

similar to the results obtained here for wheat using three different 

assessment methods. 
The  results  here  are  presented  for  1 ◦C  of  global  warming 

Figure 1 | Impacts of 1 ◦C global temperature increase on global wheat 
yield estimated by diferent assessment methods. The grid-based (0.5◦ × 
0.5◦grid cells) method is an ensemble median from seven global gridded 
crop models, averaged over 30 years and aggregated over all simulated grid 
cells (after ref. 9). The point-based method is an ensemble median from 30 
models, averaged over 30 years and aggregated over 30 global 

locations (after ref. 8). Regression_A is based on a country-level statistical 
regression from ref. 10. Regression_B is based on a global-level statistical 
regression from ref. 11. The error bars for the four different methods indicate 
the 95% confidence intervals based on multi-model ensembles 
in the simulations and bootstrap resampling in the statistical regressions. 
The mean of the method_ensemble is shown with error bars indicating the 
95% confidence intervals based on medians of individual methods. 

 
but for some regression models with a linear time term, effects of 
steady increase in CO2 can be removed from yield impacts, just 
as the effects of technology improvement. In addition, upscaling 
methods influence the outcomes from  regional  assessments14 . 
The statistical approach obtained global or regional impacts by 
aggregating county districts or countries10,11 . The grid-based system 

obtained global or regional impacts by aggregating 0.5◦ × 0.5◦  grid 
cells9 , while the point-based approach employed 30 sites to represent 
global wheat regions8 . Therefore, differences in upscaling could add 
uncertainties in the impact estimated in these studies. 

In this letter, we compared three largely independent assessment 
methods used to estimate temperature impacts on wheat yields: 

grid-based simulations, point-based simulations, and statistical 
regressions. The details of each method are shown in Supplementary 

Table 1. The methods used independent different dynamic, 
statistical, upscaling and source data approaches. The grid- 

based simulations used here were from the Agricultural Model 

Intercomparison and Improvement Project (AgMIP)15 as part of 

the Inter-Sectoral Impact Model Intercomparison Project (ISI- 
MIP). Wheat yields were simulated with seven global gridded crop 
models during 1980–2099 under Representative Concentration 

Pathway (RCP) 8.5, a greenhouse gas emissions scenario (here 

without CO2  fertilization effects), over 0.5◦ × 0.5◦  grid cells9 . The 
point-based simulations from the AgMIP-Wheat project8   consisted 

of simulations from 30 wheat models (including one statistical 
model) for 30 representative locations around the world from a 
baseline of the 1981–2010 period and a linear temperature increase. 

Temperature impacts determined by statistical regression methods 
were obtained directly from previously published  data  or  our 

own statistical analysis (Supplementary Table 1 and Supplementary 
Methods). 

 

Similar global impact from diferent methods 
The average reductions in global wheat yield with 1 ◦C global 

temperature  increase  estimated  from  grid-based  simulations, 

for consistency. However, the estimated impacts do not increase 
linearly with increasing temperature and the disagreement among 

method estimates become larger with more temperature change 
(Supplementary Fig. 9). 

 

Impacts for major wheat-producing countries 

To understand how the different methods project such similar 

temperature impacts on global wheat yields, we disaggregated the 

temperature impacts to the national scale. Point-based and grid-

based simulations were compared for 97 countries (Fig. 2a). 

Generally, projected temperature impacts on wheat yields  for most 

of the large wheat  producers  were  similar  between  the two 

simulation methods (with a R2 of 0.64 for the top 20 producers, 

Supplementary Fig. 12), while differences were larger for small wheat-

producing countries. Some large differences occurred between point-

based and grid-based simulation in irrigated semiarid regions of 

Africa, which are mostly small wheat producers. The larger differences 

observed for smaller producers have little weight in the global 

analysis. However, they are important for regional economies. 

Method results were compared in more detail for the top five wheat-

producing countries (Fig. 2b and Fig. 3). For China, India, USA and 

France, the different assessment methods resulted in similar values for 

temperature impacts on country wheat yields. Additional country-level 

studies relying on other methods and data sources gave similar 

estimates. For example, for China, point-based simulations, grid-

based simulations, and two different regressions all concluded that 

yield reductions of about 3.0% are expected with 1 ◦C warming 

(Fig. 3a). For India, country-level statistical regressions, grid-based 

and point-based simulations all estimated about 8.0% yield declines 

per 1 ◦C of global temperature increase (Fig. 3b). For Russia, the two 

simulation methods agreed well, but yield reductions estimated from 

statistical regression were markedly higher (Fig. 3c). Another study 

using statistical regression methods also showed higher negative 

temperature impacts on wheat yield than the two modelling methods 

used here for Rostov, a main wheat-producing region in Russia19 . 

Since wheat-producing regions in Russia can experience relatively low 

temperatures (below optimal growth temperature) during early 

growing stages, a temperature increase during this stage (tillering) 

may have a positive yield impact, while at a later stage (booting or 

grain filling) an increase in temperature often reduces wheat yields19 . 

As an average temperature over a growing season is usually used in 

statistical regressions, such in-season variability in temperature 

impacts would remain undetected. A dynamic crop simulation 

model takes in-season variability and impacts into account. This may 

explain the estimated larger impacts in Regression_A in comparison 

with the simulation results. For the USA, a recent study using data 

from wheat variety trials from 1985 to 2013 in Kansas, USA reported 

a 7.3% decrease (corrected for global temperature change) in wheat 

yield with
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Figure 2 | Comparison of wheat yield changes with 1 

◦
C global temperature increase for 97 wheat-producing countries estimated using three diferent  

methods. a, Median simulations of a grid-based (0.5◦ × 0.5◦) ensemble of seven models (after ref. 9) versus a point-based (30 locations over 30 years) 

ensemble of 30 models (after ref. 8). b, Country-level statistical regression for China, India, USA, France and Russia, the top five wheat-producing countries, from ref. 10, versus 

point-based simulations for these countries (after ref. 8). Note, only data on these five countries were supplied in ref. 10. Circle colour indicates the wheat growing season 

temperature (from ref. 10). Circle size indicates the amount of wheat production for each country according to FAO statistics23. The solid line is the 1:1 line and dashed lines 

represent 0% yield change. 
 

1 ◦C global temperature increase20 . This result is similar to the 

other estimated temperature impacts on wheat yields for the USA 

(Fig. 3d). For France, yield reduction estimates from grid-based 
simulations, point-based simulations, and statistical regressions 

were 4.6%, 5.2% and 4.2%, respectively (Fig. 3e). In an independent 

study, a 0.42 t ha−1 reduction in wheat yields, which is a reduction 

of about 5.5% after correction for global temperature change, was 
reported in northern France from 1998 to 2008 that included the 

planting of reference varieties in field experiments21 . This is also 

in line with simulated impact response surfaces from a 26-wheat- 

model ensemble across a European transect22 . 
With the different temperature impact methods used, despite 

some variation, there is a general similarity in the magnitude of 

negative effects of increasing temperature on wheat yields for major 

wheat-producing countries. As the five largest wheat-producing 
countries have a combined total >50% of total global wheat 

production23 , the similarity in method estimates of temperature 

impacts for these countries also dominates the similar negative 

temperature impacts computed at the global scale. 
 

Diferences in model inputs 
At the location scale, the yields from the point-based simulations 
were highly correlated to the yields from the grid-based simulations 

for the baseline and baseline +1 ◦C periods (P < 0.001, R2 > 
0.5; Supplementary Table 2), but simulated yields were generally 
higher in point-based than in grid-based simulations (Fig. 4 and 
Supplementary Fig. 1). The average yields of the 30 locations in the 

point-based simulations were 3.2 (82%) and 3.0 (82%) t ha−1 higher 
than in the corresponding grid-based simulations under baseline 

and baseline +1 ◦C conditions, respectively. In both studies, mean 
temperatures were similar across sites for the 90 days period prior to 
maturity, except for three locations (Supplementary Fig. 2). Seasonal 
temperature variability in the model input data differed slightly 
between methods and caused a larger seasonal yield variability 
in  the  grid-based  simulations  compared  with  the  point-based 

simulations (Supplementary Fig. 7). Solar radiation inputs were 5% 
to 7% lower in the grid-based than in the point-based simulations 

(Supplementary Fig. 3), which might have contributed slightly to 

the simulated yield difference24 . Water stress was not considered 
in either study for the comparison of these 30 locations and any 
possible differences in precipitation inputs had no impact on the 

simulated results (Supplementary Table 3). No nitrogen stress was 

assumed in the point-based simulations, but four of the seven crop 
models in the grid-based simulations did consider country-level 

average N fertilizer application, which could explain why the grid- 
based model ensemble simulated generally lower yields compared 

with the point-based simulations (Supplementary Table 3). 

Another important factor possibly contributing to yield 

differences between the grid-based and point-based simulation 

at the local scale was the models used in the studies. There were 
29 crop models and one statistical regression in the point-based 

simulation ensemble, whereas there were seven crop models in the 

grid-based simulations. Three models (CERES, EPIC and LPJmL) 

were common to both studies. These three models tended to 
simulate lower yields than the 30-model ensemble average from the 

point-based study for the 30 locations, for example, about 0.9 t ha−1 

less in the baseline period (Supplementary Fig. 4). This may have 

lowered the average simulated yields in grid-based simulations. 
Differences in the calibration of the crop models would also affect 

simulations25 . Some models in the grid-based simulations were 

calibrated and some were not, and especially growing periods were 

not harmonized across grid-based models9 , while in point-based 
simulations all models were calibrated for anthesis and maturity 

dates with local phenology information8 . Hence, differences in 

models, solar radiation and inputs such as N fertilizer may explain 

some of the lower yields found in the grid-based studies. Differences 
in cultivar calibration, particularly for phenology and growing 

season, add another source of differences between these two studies. 
 

More yield reduction at warmer regions 
Interestingly, when comparing the grid-based and point-based 
simulations, no obvious bias was observed in the simulated relative 
yield impacts between point-based and grid-based simulations 
(Fig. 4c and Supplementary Fig. 1c), even though simulated absolute 

yields with point-based simulations were much higher than grid- 
based simulations. This was still true when the outlier location 
in Fig. 4c was removed from calculations. Temperature impacts 
at the local scale in grid-based and point-based simulations were 

highly correlated. With 1 ◦C global temperature increase, higher 

yield reductions were observed at locations with higher baseline 
temperatures than locations with lower baseline temperatures in 
both point-based and grid-based simulations (Fig. 4c). For example, 
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Figure 3 | Estimated impacts of 1 ◦C global temperature increase on wheat yield. a–e, China (a), India (b), Russia (c), USA (d) and France (e) using 
different assessment methods. The grid-based (0.5◦ × 0.5◦) method produced an ensemble median from seven global gridded crop models (after ref. 9). 
The point-based method produced an ensemble median from 30 models from 1 to 3 country locations (after ref. 8). Regression_A is a statistical regression 
based on country statistics after ref. 10. Regression_C is a statistical regression based on 0.5◦ × 0.5◦ grid statistics after ref. 45. Regression_D is 
county-level statistical regressions produced by two different regression methods from ref. 49. Regression_E is a county-level regression produced for this 
study. The error bars indicate the 95% confidence interval based on multi-models for the simulations and bootstrap resampling (Regression_A, 
Regression_B, and Regression_D) or t-tests (Regression_E) for the statistical regressions. No error bar was provided for Regression_C in ref. 45. 

 

at Aswan in Egypt, point-based and grid-based simulations showed 

about 11% and 20% decline in yield with 1 ◦C temperature 
increase, while for Krasnodar in Russia, point-based and grid- 

based simulations estimated about 4% and 7% yield decline with 

1 ◦C global increase. The spatial pattern of temperature impacts 

at the location scale was also consistent with that at the country 
scale (Fig. 2a,b, and Supplementary Fig. 11), which indicated that 

warmer regions (for example, India) are likely to suffer more wheat 

yield reductions than cooler regions (for example, China). The 

exception is for statistical regression estimates for Russia, a generally 
cooler region (Fig. 2b). The effects of temperature on wheat yields 

are consistent with reports of impacts on other crops, such as 

maize, soybean and cotton26–28 . An increase in extreme temperature 

events with increasing mean temperatures29 is likely to further 
contribute to yield decline in wheat30,31 . Several crop models used 

in point-based simulations (tested against warming experiments) 

and Regression_A (using a nonlinear regression method) also 

considered the impacts of extreme temperature8,10 . 
 

Efects of upscaling methods 
To assess climate impacts on global or country-level crop 
production, both process-based crop modelling approaches and 
statistical regressions need to be upscaled from locations to regions 

and then to the entire globe32 . In the point-based simulations, a 
range of local information (for example, local sowing dates, cultivar, 
anthesis and maturity date) was used for the 30 locations selected 
to represent about 70% of current global wheat production, which 

was then upscaled via FAO (Food and Agriculture Organization 

of the United Nations) statistics8 . Much less local information was 

available for each of the 0.5◦ × 0.5◦ grid cells which were aggregated 
to  country  and  global  scales  in  the  grid-based  simulations9 . 

However, very similar estimated temperature impacts on relative 

global yield changes were simulated with both approaches. This was 
surprising as it was shown that scaling methods can add significant 

uncertainties to simulated outcomes14 . Although uncertainties are 
known to be reduced with multi-model ensembles, these results 
might also indicate that the selected 30 locations in the point-based 

study8 were indeed representative of agro-climatic variability of 
wheat-growing conditions throughout the world. The results also 
suggest that global grid-based models, despite having limited local 

information, are on a par with point-based approaches, while 
providing greater coverage of regional heterogeneity. 

In the statistical regression methods, yield  and  weather  data 

from different scales were used to obtain global and country-level 

temperature impacts. For example, both global11 and country-level10 

regressions, observed  yield records  were  used to  conduct  global 
assessments, and both country-level yields and county (or similar)- 

level yields were used for country assessments (for example, for 
China, India and USA). Generally, regressions with different spatial 
scales resulted in similar temperature impacts on yields. 

 

Advantage of diferent assessment methods 
Compared with process-based crop models, statistical regressions 

are simpler and require less input information. However, other 
important growth factors that change with climate change, such 

as radiation or the combined effects of heat, water and nutrient 
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Figure 4 | Comparison of simulated multi-model median wheat yield and yield changes. a–c, Absolute wheat yields for baseline (a) and baseline +1 ◦C 

(b) periods, and relative yield change with 1 ◦C global temperature increase from grid-based simulations (0.5◦ × 0.5◦) (from ref. 9) of cells centred around 

the 30 locations from the point-based study versus that from the point-based simulations (from ref. 8) (c). Note in c, the regression line is drawn without 

the outlier (location in Sudan). Dashed lines represent regression lines. 
 

stresses, vary over the period of a crop growing cycle, but are 
often not directly considered in statistical regressions. Some of 
these factors might also be confounded in a statistical regression 

analysis. While there have been attempts to include more factors 

in statistical impact methods33 , detailed process-based, dynamic 
crop simulation models may be more suitable to simulate the more 
complex climate change scenarios, beyond the single impact of 
temperature change. However, process-based models, like statistical 
methods, often do not account for many other important factors 
required for holistic climate change impact assessment. Such factors 
include impacts from frost, pests, weeds, diseases and floods, and 

also dissimilar impacts between day and night temperatures34 , or 
extreme temperature events at different growth stages, which are 
all likely to change with future climates. However, process-based 
models are capable of accounting for the effects of elevated CO2 

(ref. 35), even though this effect is not considered here, but large 
uncertainties exist not only with respect to the general effects on 

crop yields36,37 but also with respect to model implementation9,38 . 

Field or environment-controlled experiments are independent 

ways to estimate temperature impacts on wheat yields8,16 . For 

example, 2% to 8% reductions in wheat yield for every 1 ◦C 

increase of post-anthesis temperature above an optimum season- 

average temperature of 15 ◦C (that is, local temperature) have been 
measured for a range of cultivars under controlled39 and field 

experiments40 . Considerable variations of wheat yield impacts with 

increasing temperature have been found in a four-growing-season 

warming experiment41 . However, while measured temperature 
impacts on yields can guide other impact estimation methods, they 

are often specific to a particular location, cultivar, crop management 

or experimental treatment and are not representative of a larger 

region, which makes it difficult to extrapolate such measurements 
to regional or global impacts. 

 

Applying multi-method ensembles 
Understanding and quantifying uncertainty of impact assessments 

has been a key aspect in assessing climate impacts on crop 

production in recent studies25,42,43 . Most previous studies have 
focused on uncertainties arising from crop models or climate 

models25 . Here the uncertainties in both point-based and grid- 
based simulations were quantified by multi-model ensembles. 
Uncertainties due to crop  models,  expressed  as  error  bars  in 
the grid-based simulations, were relatively large at both global 

and country scales (Figs 1 and 3), which was due to  the 
limited number of models and relatively wide spread of model 
results in this study. The differences in model inputs (for 

example, nitrogen application, sowing dates, cultivars), calibration 

methods and model9 explain  some  of  the  variability  between 

the  point-  and  grid-based  simulations.  Many  crop  models  do 
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not simulate temperature interactions with canopy 

temperature variation under different soil water 

conditions, which could result in simulated differences 
of temperature impacts8 . However, multi- model 

ensemble medians have been shown to be more 

consistently accurate than individual models when 

comparing measurements across locations and 
growing environments, adding confidence to the 

estimates here44 . Bootstrap resampling methods were 

employed to estimate  the  uncertainty  of  temperature  

impacts  calculated in the two global-scale statistical 
regressions. Thus, different assessment approaches 

have independent methods of quantifying uncertainty. 

Multi-method ensembles can enable the quantification 

of method uncertainty, similar to how multi-model 
ensembles enable estimation of model uncertainty. The 

uncertainty range of wheat yield reduction with 1 ◦C 

global temperature increase from the multi-method 

ensemble calculated from the median of the four 
methods analysed here was between 4.0% and 6.9% at 

the global scale (95% confidence interval). While this 

absolute difference is still substantial, this is narrower 

than the uncertainty due to the models in the multi-
model ensembles from the simulations or the boot- 

strapping method in the statistical regressions. 

Therefore, applying multi-method ensembles can 

improve reliability of the assessment of climate impacts 
on global food security. 

However, the consistency of negative global yield 
impacts of increasing temperature quantified here at 

the global level should not be applied to the local or 
regional scale. As previous studies have found, there 
were considerable large variations of increasing 

temperature impacts on wheat yields at the local 

and regional scale8,45 , and the spatial variation  of  
temperature  impacts  has also been observed in the 

two modelling approaches here among different 
locations. 

Adaptation to global warming, for example, farmer’s 
autonomous adaptation through changing sowing 

dates or cultivars, has been suggested in several  
studies  to  compensate  negative  impacts of 

increasing temperature46 . At the global scale, point-

based simulations did not consider adaptation. Also a 
panel regression approach attempted to exclude 

adaptations10 . In the grid-based simulations, four of 
the seven models did allow cultivar and sowing date 

adaptation with a changing climate (Supplementary 
Table 3), and the simulated impacts tended to be 
lower with simulated adaptation (Supplementary Fig. 

10). However, temperature impacts from models with 
adaptation varied largely. Temperature impacts with 
and without adaptation were estimated from different 

models in grid-based simulations, which added 
considerable uncertainty in the results. The adaptation 
effects on temperature impacts should be further 
studied with more consistent protocols for multi- model 

assessments. Other future adaptation, for example, 
wheat cultivation shifting to marginal regions in 
higher latitudes, could offset some of the negative 

impacts. 
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Assessing climate change impacts on crop production is a key 

aspect in determining appropriate global food security strategies42 . 
Reliable estimates of climate change impacts on food security 

require an integrated use of climate, crop and economic models15 . 

Applying multi-method ensembles further improves the estimated 

impact precision and confidence in assessments of climate impacts 
on global food security. The consistent negative impact from 

increasing temperatures confirmed by three independent methods 

warrants critical needed investment in climate change adaptation 

strategies to counteract the adverse effects of rising temperatures 
on global wheat production, including genetic improvement and 

management adjustments47,48 . However, some or all of the negative 

global warming impacts on wheat yield might be compensated by 

increasing atmospheric CO2 concentrations under full irrigation 
and fertilization25 . 

 

Methods 
Methods and any associated references are available in the online 

version of the paper. 
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Methods 
Grid-based simulations. Seven global gridded models simulated 0.5◦ × 0.5◦ grid 
cells across all wheat-growing regions of the world from 1980 to 2099 under a 

RCP 8.5 scenario with a statistically downscaled version of HadGEM2-ES50 , with 

only a small trend in solar radiation at some locations (Supplementary Fig. 6). 

Here, a set of simulation experiments without effects of elevated CO2 and under 

full irrigation treatments were used. Among the seven global gridded models, 

adaptation through cultivars, sowing dates or growing season had been employed 

in four of the models (Supplementary Table 3). The global yield impacts from 

models with and without adaptation are compared in Supplementary Fig. 10. Only 

one climate model and RCP were used as there were limited data available for 

grid-based simulations. The period 2029–2058 was selected as being on average 

2 ◦C warmer globally than the baseline period of 1981–2010 and the impact was 

halved to adjust the temperature change to +1 ◦C for the analysis here. The 
temperature change considered here is 1 ◦C warming of the global mean 

temperature, including land and ocean surface. The change in simulated grain 

yields between these two temperature periods was used to estimate temperature 

impacts on wheat at global and national scales. Grid-based simulations for the 

direct comparison with point-based simulations were extracted from simulations 

assuming full irrigation. For national- and global-scale results, grid-based 

simulations were aggregated by area-weighted means, using rain-fed and irrigated 

wheat areas per pixel of MIRCA2000 (ref. 51) combining simulations under 

irrigated and rain-fed conditions. To make projections between the different 

grid-based models comparable, yield simulations were bias-corrected to national 

FAO levels by using FAO mean yields and superimposing projected relative 

changes. More details about the grid-based simulations can be found in ref. 9. 

 

Point-based simulations. Thirty models, 29 crop simulation models and one 

statistical regression model, were used to simulate wheat grain yields for 30 

representative locations in high-rainfall and irrigated wheat-growing regions 
around the world (together representing about 70% of global wheat production) 

with the estimated baseline period of 1981–2010 and baseline +2 ◦C. Three models 
(CERES, EPIC and LPJmL) in point-based simulations were used in grid-based 
simulations. No CO2 fertilization effects or any adaptation was considered in the 
point-based simulations. The impact was halved to adjust the temperature change 

to +1 ◦C for the analysis here. Local temperature impacts on yields were adjusted to 
global temperature change and upscaled via FAO statistics. Temperature impacts  
on national scales were assessed for 97 countries. Each country was assigned as 
being similar to one or more representative locations, so the temperature impacts  
of each country were the average impacts of the corresponding representative 

locations. More details can be found in ref. 8. 

 

Statistical regressions. All estimated temperature impacts from statistical 

regressions were from literature reports10,11,45,49 , except for one new statistical 

regression analysis for the USA that we present here (Supplementary Methods). All 

temperature impacts were adjusted to global temperature change following the 

approach by ref. 8. Details of these regression studies and impacts adjustments are 

summarized in Supplementary Table 1. 
 

Meta-analysis and experimental data. Meta-analysis and experimental data from 

the literature are cited here for further comparison after adjusting them to global 

temperature change where possible. Meta-analysis and experimental data from the 

literature were cited here for further comparison after adjusting them to global 

temperature change. An adjustment factor to global temperature used for the 

statistical regressions was also used here. The temperature factors are listed in 

Supplementary Table 1. 

 

Comparison at a national scale. Temperature impacts for 97 countries from both 

grid-based and point-based simulations were compared. Due to the limited number 

of country-scale estimates of temperature impacts on wheat yields with statistical 

regression analysis, we compared the regression results with the two simulation 

approaches for the top five wheat-producing countries (Supplementary Table 1). 

 

Comparison at local scales. Yield simulations from 30 single grid cells from the 

grid-based method were chosen that were centred around the 30 global 

representative locations from the point-based method. Full irrigation treatments 

were applied in point-based and grid-based simulations. The baseline and 

increased temperature periods for the 30 grid cells were determined individually by 

matching the 30-year average annual temperature of each grid to the 30-year 

average annual temperature of the corresponding location from point-based 

simulations. The baseline and increased temperature periods for each of the 30 grid 

cells and temperature differences between the two methods are shown in 

Supplementary Table 4. Most locations had very similar temperature input data in 

the two comparison periods for grid-based and point-based simulations. Outliers 

(Supplementary Table 4) were found where the input data differed substantially but 

these did not cause outliers in yield impacts. The yield impact outlier at the Sudan 

location was caused by very low simulated yields (Fig. 4). The simulated yields for 

baseline and increased temperature periods were used to calculate temperature 

impacts at the local scale. These were also adjusted to global temperature change 

with the same method at global and national scales. The temperature and radiation 

data from the critical growing period of wheat from 90 days before maturity to 

maturity were compared. Maturity dates were the dates supplied from observations 

for each location in the point-based method8 . 
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