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Abstract. Major revolutions in energy capture have occurred in both Earth and human history, with each transi-

tion resulting in higher energy input, altered material cycles and major consequences for the internal organization

of the respective systems. In Earth history, we identify the origin of anoxygenic photosynthesis, the origin of oxy-

genic photosynthesis, and land colonization by eukaryotic photosynthesizers as step changes in free energy input

to the biosphere. In human history we focus on the Palaeolithic use of fire, the Neolithic revolution to farming,

and the Industrial revolution as step changes in free energy input to human societies. In each case we try to quan-

tify the resulting increase in energy input, and discuss the consequences for material cycling and for biological

and social organization. For most of human history, energy use by humans was but a tiny fraction of the overall

energy input to the biosphere, as would be expected for any heterotrophic species. However, the industrial revolu-

tion gave humans the capacity to push energy inputs towards planetary scales and by the end of the 20th century

human energy use had reached a magnitude comparable to the biosphere. By distinguishing world regions and

income brackets we show the unequal distribution in energy and material use among contemporary humans.

Looking ahead, a prospective sustainability revolution will require scaling up new renewable and decarbonized

energy technologies and the development of much more efficient material recycling systems – thus creating a

more autotrophic social metabolism. Such a transition must also anticipate a level of social organization that can

implement the changes in energy input and material cycling without losing the large achievements in standard

of living and individual liberation associated with industrial societies.

1 Introduction

Human society has become a planetary force, approaching or

even exceeding natural dynamics (Turner et al., 1990; Stef-

fen et al., 2004). A great deal of work has been devoted to

measuring the scale of human society with respect to the

Earth system (Daly, 1973), especially after the introduction

of new concepts such as the “great acceleration” (Steffen

et al., 2004), the Anthropocene (Crutzen, 2002) or “plane-

tary boundaries” (Rockström et al., 2009). Many studies as-

sessing the human impact on the Earth system focus on rates

of change in a multitude of parameters (Steffen et al., 2004).

Others define a natural background against which the human

impact should be measured, notably the Holocene epoch (Pe-

tit et al., 1999), during which the climate was unusually sta-

ble (and other environmental variables are argued to have

been stable) compared to the preceding Pleistocene epoch

with its characteristic glacial cycles (Rockström et al., 2009).

Suggested metrics of human impact on the Earth system in-

clude changes in land use (Ellis, 2011), bio-productive land

capacity (Wackernagel and Rees, 1996), human appropria-

tion of terrestrial net primary production (Vitousek et al.,

1997; Haberl et al., 2007; Krausmann et al., 2013a) or the

impact of human appropriation of free energy on the capabil-

ity of the biosphere to generate free energy (Kleidon, 2012).
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Here we propose an alternative approach to measure the

human influence against a natural background, following pi-

oneering work by Smil (1991), who first compared energy

use in the biosphere and in human civilization (where “bio-

sphere” is taken here to be synonymous with the biota, i.e.

the sum total of all life on the planet). Our starting point is

the fundamental ability of all life forms, from archaea and

bacteria to human societies, to capture free energy and to use

it for moving and transforming matter in order to sustain an

internal order. Building on Smil’s (Smil, 1991, 2008) char-

acterization of energy use in the biosphere and human civi-

lization, we expand the temporal dimension to consider the

full history of transitions in biospheric energy capture, and

we add a material cycling dimension, also partly inspired by

Smil’s work (Smil, 2014). In both Earth and human history

major revolutions in energy capture have occurred, with each

subsequent transition resulting in higher energy input, altered

material cycles and major consequences for the internal or-

ganization of the respective systems.

In general, when a new biological mechanism of accessing

under-utilized resources evolves, this can lead to profound

environmental change – as shown by generic models cap-

turing the co-evolution of life and its environment (Williams

and Lenton, 2010). Indeed, in Earth history as new metabolic

waste products were created or the production of existing

waste products was scaled up, these waste products accumu-

lated in the environment (Lenton and Watson, 2011). When

step increases in free energy input to the biosphere occurred,

the environmental consequences were sometimes dramatic

and global – destabilizing nutrient and carbon cycles and

the Earth’s climate (Lenton and Watson, 2011). When past

increases in free energy input to human societies occurred,

the resulting waste products also disrupted the environment –

initially on a local scale, but now globally. Here we compare

the order of magnitude of energy use by human societies with

the energy input to the entire biosphere throughout Earth and

human history based on a common framework. A clear dis-

tinction to note at the outset is that the input of energy to the

biosphere has thus far been dominated by autotrophs harvest-

ing sunlight, whereas humans are heterotrophs and our cur-

rent industrial consumption of fossil fuels is also essentially

heterotrophic.

We consider a series of six past revolutions, three in Earth

history and three in human history, each contingent on the

previous one(s). In Earth history, we focus on the origins of

anoxygenic photosynthesis, of oxygenic photosynthesis, and

of eukaryotic photosynthesis, especially the colonization of

the land by plants. In human history we consider the Palae-

olithic use of fire, the Neolithic revolution to farming, and

the Industrial revolution. In each case we try to quantify the

resulting increase in energy input to the biosphere or to hu-

man societies, and discuss the consequences for material cy-

cling. Changes in energy input and material cycling in turn

altered limiting conditions for biological and cultural evo-

lution and we highlight some of the crucial biological and

social consequences. We discuss similarities and crucial dif-

ferences among the six energy revolutions, their underlying

regulatory mechanisms and their impacts. For most of human

history, energy use by humans was but a tiny fraction of the

overall energy input to the biosphere, as would be expected

for any heterotrophic species. All major increases in energy

input to human societies were contingent on new technolo-

gies that shifted human energy and material use beyond the

limits of their biological metabolism. We show that the ca-

pacity of humans to push energy inputs towards planetary

scales only emerged with the industrial revolution and that

by the end of the 20th century human energy use reached a

magnitude comparable to the biosphere.

After revolutions in Earth history, long-term sustainabil-

ity and stability were only recovered when disrupted mate-

rial cycles were closed again, through global biogeochemical

recycling mechanisms (Lenton and Watson, 2011). Equally,

for humans to have a long-term sustainable future within the

Earth system will require both a shift to sustainable sources

of energy and, crucially, the closure of material cycles (Weisz

et al., 2015; Weisz and Schandl, 2008) – amounting to a more

autotrophic social metabolism. We finish by advocating a re-

search agenda that considers pathways towards a renewable

and decarbonized energy system in its ramifications for ma-

terial use and a prospective material cycle revolution.

2 Revolutions in Earth history

2.1 Anoxygenic photosynthesis

The first revolution in energy input to the biosphere was

the origin of photosynthesis. The earliest life forms were

probably fuelled by chemical energy stored in compounds

in their environment, but the supplies would have been

small, except in unusual environments with concentrated vol-

canic/metamorphic activity such as deep sea vents near mid-

ocean ridges (if plate tectonics started early on the Earth).

Shortage of chemical energy on a global scale would thus

have severely restricted the spread of chemolithoautotrophic

life. The first truly global biosphere arose when early life be-

gan to harness the most abundant energy source on the planet

– sunlight. Evidence for the photosynthetic fixation of carbon

dioxide from the atmosphere is coincident with the first puta-

tive evidence for life on Earth > 3.7 Ga (Ohtomo et al., 2014;

Rosing, 1999), and perhaps as early as 4.1 Ga (Bell et al.,

2015). It takes the form of small particles of graphite carbon,

which have a likely biogenic origin, and an isotopic signature

consistent with carbon-fixation by the enzyme RuBisCO.

The first photosynthesis was not the familiar kind, which

uses water as an electron donor and produces oxygen as a

waste product. Instead, molecular phylogenies suggest that

several forms of anoxygenic photosynthesis evolved inde-

pendently, early in the history of life, long before oxygenic

photosynthesis (Blankenship, 2010). This makes energetic

sense as there are several donor compounds from which it
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is easier to extract electrons than water, requiring fewer or

less energetic photons and simpler photosynthetic machin-

ery. Hydrogen gas (H2) gives up its electrons the easiest

and may thus have fuelled the first photosynthesis (Olson,

2006). Other potential electron donors include elemental sul-

phur (S0) derived from sulphur dioxide (SO2) gas, or fer-

rous iron (Fe2+) dissolved in the ancient oceans (Canfield

et al., 2006). The meagre supply of these compounds (rela-

tive to H2O) limited the energy input to the early biosphere.

For example, the present-day flux of H2 emanating from vol-

canic processes can only support ∼ 0.1 EJ yr−1 (3 TgC yr−1)

of anoxygenic photosynthetic net primary production (NPP)

(Canfield et al., 2006), over 4 orders of magnitude less than

present marine biosphere (1800 EJ yr−1 or 48 PgC yr−1).

The challenge for the first photosynthetic biosphere would

thus have been to evolve the means of recycling the scarce

materials that it needed to metabolize, especially the electron

donors for photosynthesis. The ease or difficulty of evolv-

ing recycling has been examined theoretically by simulating

“virtual worlds” seeded with “artificial life” forms and leav-

ing the resulting ecosystems to evolve (Williams and Lenton,

2007). In these simulations, the closing of material recycling

loops robustly emerges (Williams and Lenton, 2007), even

if they incur an energetic fitness cost (Boyle et al., 2012).

The empirical record of how and when recycling emerged

in the early Earth system is sparse, but there is some ev-

idence for biogenic methane production by 3.5 Ga (Ueno

et al., 2006). This would have recycled hydrogen (and car-

bon) back to the atmosphere. If the early biosphere was fu-

elled by anoxygenic photosynthesis based on H2, then re-

cycling of hydrogen via methane production and photolysis

could have boosted global NPP to 1.8 EJ yr−1 (48 TgC yr−1)

or 0.1 % of the modern marine biosphere (Canfield et al.,

2006). If volcanic activity on the early Earth was elevated

by an order of magnitude, a hydrogen-fuelled biosphere

might have approached 1 % of modern marine NPP (Can-

field et al., 2006). Alternatively, if early anoxygenic photo-

synthesis used the supply of reduced iron upwelling in the

ocean then its NPP, controlled by ocean circulation, might

have reached 77–225 EJ yr−1 (2–6 PgC yr−1) or ∼ 10 % of

modern marine NPP (Canfield et al., 2006; Kharecha et al.,

2005) (Fig. 1). A potential constraint on early biosphere pro-

ductivity is provided by the carbon isotope record of marine

carbonate rocks, which is conventionally interpreted as indi-

cating that the proportion of carbon buried in organic form

(rather than inorganic carbonates) was around 20 % even as

early as 3.5 Ga. Given greater inputs of carbon from the man-

tle on the early Earth, this would imply a marine organic car-

bon burial flux in excess of the present 60 TgC yr−1, setting

a lower limit on NPP at the time (assuming no heterotrophic

recycling, i.e. all organic carbon produced was buried). This

would likely preclude H2-based photosynthesis as the domi-

nant source of carbon 3.5 Ga onwards, suggesting instead an

iron-fuelled (or even oxygenic) biosphere. However, a more

nuanced interpretation of the carbon isotope record allows
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Figure 1. Energy capture in the biosphere and human society. Dates

indicate beginning of the respective revolution, energy estimates

are given for dates where energy regimes had matured. Data and

sources are in Table S1.

for the possibility that little organic carbon was buried for

large parts of the Archean Eon (Schwartzman, 1999; Bjer-

rum and Canfield, 2004).

The waste products of early metabolisms would have al-

tered the environment. The long-term burial of organic car-

bon, even if it was a small flux, would have removed carbon

from the atmosphere (and ocean) tending to cool the planet.

This cooling effect could have been profound given that to-

day 15 ZgC are stored as organic carbon in sedimentary

rocks, compared to 38 EgC in the ocean–atmosphere system.

Somewhat counterbalancing the net removal of carbon to the

crust, the conversion of atmospheric CO2 to methane would

have increased radiative forcing, tending to warm the planet.

As a crustal reservoir of reduced carbon accumulated in sed-

imentary rocks, some organic carbon would later be exposed

on the continents, potentially supporting heterotrophic pro-

ductivity there. Relatively low estimates of global produc-

tivity make it unlikely that the macro-nutrients nitrogen and

phosphorus became limiting, making them under-tapped re-

sources in the ocean environment.

2.2 Oxygenic photosynthesis

The next major revolution in energy input to the biosphere

was the origin of oxygenic photosynthesis, using water as

an electron donor (Lenton and Watson, 2011). To split wa-

ter requires more energy (i.e. more high energy photons of

sunlight) to be captured than in any of the earlier anoxygenic

forms of photosynthesis. It was contingent on the prior ori-

gin of anoxygenic photosynthesis in that two existing pho-

tosystems – derived from anoxygenic photosynthetic ances-

tors – were wired together in the same cell (Allen and Mar-

tin, 2007). To be naturally selected, oxygenic photosynthesis

required an environment – plausibly freshwater (Blank and

Sanchez-Baracaldo, 2009) – where easier electron donors

were absent or had been drawn down to limiting concen-

trations. The resulting cyanobacterial cell was the ancestor

of all organisms performing oxygenic photosynthesis on the

planet today. It took up to a billion years to evolve (Lenton

www.earth-syst-dynam.net/7/353/2016/ Earth Syst. Dynam., 7, 353–370, 2016
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and Watson, 2011), with the first evidence of oxygen appear-

ing 3.0–2.7 Ga (Farquhar et al., 2011; Planavsky et al., 2014).

Once oxygenic photosynthesis evolved, the productivity of

the biosphere was no longer restricted by the supply of sub-

strates for photosynthesis, as water and carbon dioxide were

abundant. Instead, the availability of nutrients, notably ni-

trogen and phosphorus, would have become the major lim-

iting factors on global productivity – as they still are to-

day. Oxygenic photosynthesis would have flourished wher-

ever nutrients were available and anoxygenic photosynthe-

sis drew down its electron donors to limiting concentrations,

or where oxygen removed those electron donors by oxidiz-

ing them. Anoxygenic photosynthesis might have flourished

underneath oxygenic photosynthesis in parts of the surface

ocean if and when anoxic waters bearing Fe2+ extended up

into the sunlit photic zone (Johnston et al., 2009), and this

would have set up some competition for the nutrients nitro-

gen and phosphorus.

Constraints on nutrient concentrations in the early ocean

are scarce (Planavsky et al., 2010). Nitrogen would initially

have been in the form of ammonium (rather than nitrate), but

the advent of an oxygen source plausibly triggered the onset

of nitrification and denitrification (Godfrey and Falkowski,

2009; Garvin et al., 2009). Nitrification could have pro-

duced small pools of nitrate in restricted surface ocean ‘oxy-

gen oases’ with nitrogen in the form of ammonium else-

where. Whether denitrification could then have caused ni-

trogen scarcity (Godfrey and Falkowski, 2009), depends on

whether nitrogen fixation had evolved and could counter-

balance it (Zhang et al., 2014). Iron and vanadium-based

nitrogen fixation were plausibly already widespread (Zhang

et al., 2014), although molybdenum-based nitrogen fixation

may have evolved later (Boyd and Peters, 2013). Thus phos-

phorus was probably the ultimate limiting nutrient, as it is

today. Lower terrestrial weathering fluxes of phosphorus (rel-

ative to present) have been predicted, due to a shift from ter-

restrial to seafloor weathering to balance the carbon cycle

earlier in Earth history, and this would have tended to reduce

ocean phosphorus concentration, because seafloor weather-

ing is not a source of phosphorus (Mills et al., 2014). Ini-

tial work estimated only ∼ 10–25 % of today’s phosphorus

concentration in the Late Archean ocean (Bjerrum and Can-

field, 2002), however subsequent studies have revised this

upwards to ∼ 1–4 times present-day phosphorus concentra-

tion (Planavsky et al., 2010). Furthermore, nutrient recy-

cling by the microbial loop within the surface ocean (Azam

et al., 1983) was conceivably more efficient than today be-

cause eukaryotic mechanisms of exporting organic matter out

of the surface ocean were absent. One model suggests that

marine NPP may have been ∼ 25 % of today’s productivity

(450 EJ yr−1 or 12 PgC yr−1) in the Late Archean ∼ 2.7 Ga

(Goldblatt et al., 2006).

With the advent of oxygenic photosynthesis there was thus

an order of magnitude increase in organic carbon production

(Fig. 1). The extra flux of carbon sinking into the anoxic

depths of the ocean would initially have fuelled methano-

genesis (as sulphate was yet to build up significantly in the

ocean, Crowe et al., 2014; Zhelezinskaia et al., 2014). The

resulting upward flux of methane could support widespread

methanotrophy near the source of oxygen from oxygenic

photosynthesis, consistent with very isotopically light or-

ganic carbon from ∼ 2.7 Ga (Hayes, 1994; Eigenbrode and

Freeman, 2006; Daines and Lenton, 2016). A large flux of

methane, equivalent to around 60 % of the primary produc-

tion sinking out of the surface layer of the ocean (Daines and

Lenton, 2016), would also escape to the atmosphere, warm-

ing the planet. However, if the CH4 : CO2 ratio in the atmo-

sphere approached 0.1, photochemical production of an or-

ganic haze that scattered sunlight back to space would have

triggered cooling (Haqq-Misra et al., 2008). This process

would be self-limiting, but might help explain the earliest

glaciations ∼ 2.9 Ga (Domagal-Goldman et al., 2008).

Oxygen remained a trace gas, O2 < 10−5 PAL (present at-

mospheric level), until 2.45 Ga as indicated by the mass in-

dependent fractionation of sulphur isotopes (MIF-S), pre-

served in sediments older than this, which shows that the

ozone layer was absent and high energy ultraviolet radia-

tion reached the surface (creating the signal), and sulphate

had yet to accumulate in the ocean (allowing the signal to

be preserved) (Lenton and Watson, 2011). Elevated concen-

trations of methane in such a reducing atmosphere would

have supported an increased flux of hydrogen loss to space,

causing the long-term oxidation of the surface Earth sys-

tem (Catling et al., 2001). Stability broke down 2.45–2.3 Ga

in the “Great Oxidation” event (Lenton and Watson, 2011).

The MIF-S signature disappeared indicating that oxygen rose

> 10−5 PAL sufficient to form an ozone layer. Massive de-

posits of oxidized iron appeared in the form of the first sed-

imentary “red beds”, and oxidized iron also appeared in an-

cient soils, indicating that oxygen increased to > 10−2 PAL.

Models suggest that once enough oxygen built up for the

ozone layer to start to form, this shielded the atmosphere be-

low from UV and slowed down the removal of oxygen by

reaction with methane (Goldblatt et al., 2006; Claire et al.,

2006; Daines and Lenton, 2016). This created a strong posi-

tive feedback explaining the abruptness of the Great Oxida-

tion (Goldblatt et al., 2006; Claire et al., 2006; Daines and

Lenton, 2016).

The Great Oxidation destabilized other environmental

variables. As oxygen rose, atmospheric methane concentra-

tion declined (Goldblatt et al., 2006; Claire et al., 2006;

Daines and Lenton, 2016), which could help explain the

series of Huronian glaciations (Haqq-Misra et al., 2008)

and the low-latitude Makganyene glaciation 2.32–2.22 Ga

(Teitler et al., 2014; Kopp et al., 2005). The reaction of

oxygen with sulphide in continental rocks plausibly pro-

duced sulphuric acid that dissolved phosphorus out of ap-

atite inclusions in the rocks and fuelled marine productiv-

ity (Bekker and Holland, 2012). The oxidizing power un-

leashed in the Great Oxidation could thus have made an-
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other limiting resource, phosphorus, more available, boost-

ing energy input to the biosphere. One model estimates that

marine NPP in the Proterozoic Eon after the Great Oxida-

tion was ∼ 1300 EJ yr−1 (34 PgC yr−1) or ∼ 70 % of today’s

value (Mills et al., 2014). This would have supported in-

creased organic carbon burial, which is inferred to have oc-

curred during the “Lomagundi” carbon isotope excursion,

2.23–2.06 Ga (Bjerrum and Canfield, 2004), potentially trig-

gering an “overshoot” of atmospheric oxygen (Bekker and

Holland, 2012; Canfield et al., 2013). However, there were

large crustal reduced sinks for oxygen at the time (Bachan

and Kump, 2015), and after ∼ 150 Myr, excess buried or-

ganic carbon was recycled through the crust back to the sur-

face, consuming oxygen and deoxygenating the ocean (Can-

field et al., 2013). After this protracted interval of instability,

the Earth entered an even longer period of stability, known as

“the boring billion”.

Marine productivity during this protracted interval of the

Proterozoic Eon is very uncertain. We know that the deep

ocean remained largely anoxic and “ferruginous” (with Fe2+

in solution), with euxinic waters (SO4-reducing) at interme-

diate depths along some ocean margins, and surface waters

largely oxygenated (Poulton et al., 2010; Planavsky et al.,

2011). Several authors have argued for very low productiv-

ity partly on the grounds of a sparsity of organic carbon

rich shales, but largely based on theoretical arguments for

low nutrient conditions. Phosphate supply to the ocean could

have been reduced by scavenging onto iron oxides forming in

freshwater and estuarine environments (Laakso and Schrag,

2014). Phosphate could also have been efficiently removed

from ocean waters by the formation of mixed Fe2+ / Fe3+

compounds such as “green rust” (Zegeye et al., 2012). How-

ever, reducing deeper waters and sediments (especially eu-

xinic ones) should have been effective at recycling phos-

phorus and shuttling it back to the surface ocean, consis-

tent with high estimates of phosphate concentration at 1.7 Ga

(Planavsky et al., 2010). Nitrogen limitation has been ar-

gued for on the grounds of a lack of molybdenum for ni-

trogen fixation (Anbar and Knoll, 2002), but the existence

of alternative nitrogenases makes this unlikely (Zhang et al.,

2014). Instead, heterogeneous ocean redox conditions could

have supported a mixed nitrogen cycle with ammonium in

the predominantly reducing waters of the deep ocean and

small reservoirs of nitrate in oxygenated waters. In such a

system there would be large fluxes of denitrification along

the extensive interfaces between oxygenated and anoxic wa-

ters, counterbalanced by large fluxes of nitrogen fixation in

surface waters replenishing the nitrogen reservoirs. Indeed

the fact that the Great Oxidation was never reversed sets a

lower bound on Proterozoic productivity of ∼ 25 % of mod-

ern marine NPP in an existing model (Goldblatt et al., 2006).

The Great Oxidation increased energy consumption by the

biosphere, even with no change in energy input, because

respiring organic matter with oxygen (2870 kJ mol−1) yields

an order of magnitude more energy than breaking it down

anaerobically (e.g. 232 kJ mol−1 for alcohol fermentation).

This greater energy source facilitated the evolution of new

levels of biological organization, in the form of eukaryotes.

The ancestral (heterotrophic) eukaryote is thought to have

had mitochondria performing aerobic respiration. The timing

of eukaryote origins is deeply uncertain, but with putative

biomarker evidence 2.7 Ga now rejected (Rasmussen et al.,

2008; French et al., 2015), and molecular clocks suggest-

ing a last common ancestor 1.8–1.7 Ga (Parfrey et al., 2011),

they may post date the Great Oxidation. Mitochondrial res-

piration in turn allows eukaryotes to support a much larger

genome than prokaryotes, giving them the capacity to create

more complex life forms with multiple cell types (Lane and

Martin, 2010), the first evidence for which appears ∼ 1.2 Ga

(Parfrey et al., 2011; Butterfield, 2000; Knoll et al., 2006).

2.3 Eukaryotic photosynthesis and land colonization

The next revolution in energy input to the biosphere involved

encapsulating an existing metabolism – oxygenic photosyn-

thesis – in progressively more complex, eukaryotic organ-

isms and symbioses – algae, lichens and land plants (with

mycorrhizal fungi). This energy revolution involved increas-

ing the supply and utilization of limiting nutrient resources

needed to perform photosynthesis and increasing the area

over which it occurred.

The lineage containing all extant photosynthetic eukary-

otes arose 1.7–1.4 Ga (Parfrey et al., 2011), but eukary-

otic algae only became ecologically significant relative to

cyanobacteria ∼ 740 Ma, when biomarkers of algae become

more prevalent in ocean sediments and the diversity of eu-

karyote fossils starts to increase (Knoll et al., 2006). Larger

eukaryote cells are better at exploiting excess nutrients in

polar surface oceans, but would also have removed carbon

and nutrients from the surface ocean more efficiently, thus

reducing recycling, with uncertain overall effects on produc-

tivity (Lenton et al., 2014). More efficient carbon export to

sediments plausibly increased phosphorus removal from the

ocean, lowering global productivity and tending to oxygenate

the deep oceans (Lenton et al., 2014), and contributing to

CO2 drawdown and global cooling (Tziperman et al., 2011).

CO2 drawdown by silicate weathering might have been en-

hanced by the arrival of eukaryotes (fungi and algae) in mi-

crobial ecosystems on the land (Lenton and Watson, 2004).

Estimates of the productivity of global microbial mats, based

on a simple area-scaling of modern desert crust (Brostoff

et al., 2005), suggests only 3–11 % of today’s terrestrial NPP,

comparable to today’s cryptogamic cover, which achieves

1–6 % of terrestrial NPP (Porada et al., 2013). However,

deserts are unproductive environments and modern cryp-

togamic cover is living in a world dominated by vascular

plants. Taking the ecophysiological model of cryptogamic

cover (Porada et al., 2013) and considering higher atmo-

spheric CO2 and lack of competition from vascular plants,

putative Neoproterozoic-early Paleozoic land biota might

www.earth-syst-dynam.net/7/353/2016/ Earth Syst. Dynam., 7, 353–370, 2016
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have achieved ∼ 25 % of today’s terrestrial NPP. Whatever

the cause(s), the Earth experienced two low-latitude “snow-

ball Earth” glaciations – the Sturtian (starting 715 Ma) and

Marinoan (ending 635 Ma) – amidst a protracted interval of

instability in the global carbon cycle. Iron formations de-

posited during these events apparently record high concen-

trations of phosphate in the ocean (Planavsky et al., 2010),

which could be explained by a shutdown of biological up-

take and removal to sediments. In the aftermath of glacia-

tions, high productivity could have been fuelled – at least

temporarily – by elevated phosphorus concentrations. There

is evidence of at least partial oxygenation of the deep ocean,

and complex eukaryotic life including animals began to flour-

ish in the oceans. However, by the early Phanerozoic, phos-

phorus concentrations were broadly comparable to today

(Planavsky et al., 2010; Bergman et al., 2004), implying com-

parable levels of marine NPP.

The key change in energy input to the biosphere and mate-

rial cycling came later with the rise of plants on land, starting

around 470 Ma and culminating in the first global forests by

370 Ma (Kenrick et al., 2012). This roughly doubled global

NPP, increasing it by an order of magnitude on land and

potentially indirectly in the ocean. Terrestrial NPP is esti-

mated to have exceeded today’s value (∼ 2100 EJ yr−1 or

56 PgC yr−1) on average during the Phanerozoic (Bergman

et al., 2004) (Fig. 1), with peaks potentially exceeding twice

the present value (Beerling, 1999). To colonize the land new

nutrient acquisition mechanisms were required, achieved

through symbioses with mycorrhizal fungi and nitrogen-

fixing bacteria. Plants and their associated mycorrhizal fungi

accelerated the chemical weathering of the land surface in

search of rock-bound nutrients, notably phosphorus. Ulti-

mately, stunningly effective recycling developed, such that

the average terrestrial ecosystem today recycles phosphorus

∼ 50 times through primary production before it is lost to

freshwaters (Volk, 1998).

Increased silicate weathering lowered atmospheric CO2

levels, plausibly triggering the Late Ordovician glaciations

(Lenton et al., 2012), although others question the magni-

tude of early plant effects on the carbon cycle (Quirk et al.,

2015; Edwards et al., 2015). A more established view is

that the weathering effects of later plants, notably the first

deep-rooting trees forming forests, caused the later Permian-

Carboniferous glaciations. Increased phosphorus weathering

supplied nutrient to the oceans, increasing marine productiv-

ity and plausibly triggering oceanic anoxic events (Algeo and

Scheckler, 1998). The increase in organic carbon burial with

the rise of plants also increased atmospheric oxygen, as re-

vealed in the charcoal record (Scott and Glaspool, 2006). Al-

though ignition sources (lightning, volcanoes) have always

existed on Earth, there was little to burn before land plants

arose, and experiments show that O2 > 15 % of the atmo-

sphere is required for biomass combustion to be sustained

(Lenton and Watson, 2011; Belcher and McElwain, 2008).

The first charcoal evidence for natural fires coincides with

the appearance of vascular plants on drier land ∼ 420 Ma

(Scott and Glaspool, 2006). Plants in turn provided a new

source of organic carbon for burial in sediments, especially

new structural carbon polymers (including lignin), which are

hard to biodegrade. Fungi evolved to recycle these, but a de-

lay may have caused atmospheric O2 to peak in the Carbonif-

erous (Robinson, 1990; Floudas et al., 2012). The continuous

charcoal record indicates O2 persistently > 15 % of the at-

mosphere since 370 Ma (Belcher and McElwain, 2008; Scott

and Glaspool, 2006).

The rise in atmospheric oxygen and increase in food sup-

ply brought about by land plants has allowed a flourish-

ing of animal complexity from aerobic pathways – includ-

ing the emergence of us humans. Today, the total global en-

ergy flux through heterotrophic biomass, based on a 10 %

conversion efficiency of 100 PgC yr−1 with energy density

40 kJ gC−1, is ∼ 400 EJ yr−1, roughly half on land and half

in the ocean. Natural fires additionally consume∼ 55 EJ yr−1

(1.4 PgC yr−1) (Eliseev et al., 2014), and human-induced

fires ∼ 45 EJ yr−1 (1.1 PgC yr−1) (Haberl et al., 2007), giv-

ing a total biomass burning flux today of ∼ 100 EJ yr−1

(∼ 2.5 PgC yr−1) (Randerson et al., 2012), or ∼ 2.5 % of the

energy and carbon captured in photosynthesis.

3 Revolutions in human history

Like all animals humans are heterotrophs. Our biological

metabolism relies on the products of photosynthesis. At the

same time humans are exceptional among animals in creating

and maintaining a social metabolism via breeding and culti-

vating plants and animals, in constructing buildings and large

infrastructure systems and in producing numerous artifacts

(Ayres and Simonis, 1994; Fischer-Kowalski, 1998; Weisz

et al., 2001). The social metabolism inevitably extends total

human energy capture and material use beyond the biologi-

cal requirements. In modern industrial societies the amount

of energy and materials used to produce and reproduce do-

mesticated livestock and all artifacts typically is 2 orders of

magnitude larger than the basic biological metabolism of the

human population itself. For the following comparison be-

tween human energy use and the primary productivity of the

entire biosphere, it is therefore important to keep in mind

the different trophic levels involved, autotrophs versus het-

erotrophs, and the unique capability of human societies to

extend their biological means of energy and materials uti-

lization through agriculture and technology.

A critical question in this regard is how to define the sys-

tem boundary of human society vis a vis its environment in

terms of inputs and outputs of energy and materials. For ma-

terials we apply the method implemented by the European

Statistical Office (Fischer-Kowalski et al., 2011; Krausmann

et al., 2015). According to this method all raw materials,

except water and air, that serve the production and repro-

duction of humans, livestock, buildings, built infrastructure,
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durable and non-durable goods and services are accounted

for as socioeconomic input. The main raw material inputs to

modern societies are therefore plant harvest for food, feed,

other energy uses and as material input to industrial produc-

tion, sand, gravel and crushed stone mainly for construction

purposes, metals and non-metallic minerals for various in-

dustrial production purposes, and fossil energy carriers for

both energetic and material applications. The national indi-

cator derived from this method is domestic material con-

sumption (DMC) defined as raw materials extraction plus

imported goods minus exported goods measured in tons per

year (Weisz et al., 2006).

Regarding energy we deviate from the most common ap-

proach to account for total primary energy supply (TPES)

used in national and international energy statistics, see, e.g.

the annually published energy balances by the International

Energy Agency. TPES excludes plant biomass used for food

and feed which makes this indicator unsuitable for a com-

prehensive reconstruction of the evolution of human energy

use in a deep history perspective. Instead, the method used

here applies the same system boundary to the material and

the energetic dimension, taking into account the primary en-

ergy used in technical conversion processes as well as the

energy content of plants for human nutrition and for feeding

domesticated animals (Haberl, 2001).

Energy capture by human societies involves trophic lev-

els and specific mechanisms which are different from those

occurring during primary production at the planetary scale.

A comparison between the two is still warranted, as hu-

man society inevitably operates within the thermodynam-

ically closed Earth system. The emergence and continued

existence of human civilization is conditional upon the sta-

bility of certain basic dynamics of the Earth system which

are vulnerable to metabolic changes in kind and scale, such

as changes in the overall energy balance, or changes in the

chemical composition of the atmosphere, oceans or soils,

rather than the specific mechanisms that caused them.

3.1 Palaeolithic fire use

During most of their existence humans lived as foraging soci-

eties in an uncontrolled solar-energy system (Sieferle, 1997),

simply tapping into the existing energy and material cycles of

the biosphere, without deliberately controlling them by sys-

tematic land management, and without introducing new bio-

geochemical pathways. The first human revolution in energy

input was the intentional use of fire, which set humans apart

from all other species. With it humans extended their energy

utilization beyond their biological metabolism towards areas

outside the human body. This marked the beginning of a so-

cial metabolism – a collectively organized extension of en-

ergy and material use by human societies (Fischer-Kowalski,

1998; Fischer-Kowalski and Weisz, 1999).

There is robust evidence that Homo erectus could control

fire from 790 ka in Africa (Pausas and Keeley, 2009) and

from 400 ka in Europe (Roebroeks and Villa, 2011). The abil-

ity to cook, which implies the control of fire, may date as far

back as 1.5 Ma (Wrangham et al., 1999). Cooking provided

higher food energy, higher food diversity through detoxifica-

tion, and a selective force to develop social abilities and large

brains, thus playing a key role in human evolution. The use

of fire may also have facilitated humans occupying colder

climates (Gowlett, 2006), and developing increased abilities

to cooperate (Brown et al., 2009), a decisive element of their

evolutionary success.

Use of fire for cooking increased energy input to approx-

imately 7–15 GJ cap−1 yr−1, i.e. a factor of 2–4 above the

average physiological energy demand of 3.5 GJ cap−1 yr−1

(Simmons, 2008; Fischer-Kowalski and Haberl, 1997; Boy-

den, 1992). Assuming a population of 2–4 million at the be-

ginning of the Neolithic (Cohen, 1995), overall energy cap-

ture by humans amounted to roughly 14–60 PJ yr−1, a fac-

tor of ∼ 1000 below the global human energy input in 1850

and ∼ 10 000 below today’s (Fig. 1). In foraging societies,

biomass accounts for more than 99 % of material input. Ma-

terials are used predominantly for energetic purposes, as fire

wood or food. Thus the energetic and the material social

metabolism were practically identical.

Based on their direct energy and material inputs, forag-

ing societies had a negligible impact on the global environ-

ment. However, the intentional use of fire for hunting, clear-

ing land and other purposes could have caused significant

environmental impacts – accepting that the empirical evi-

dence regarding frequency, scale and age for applying those

intentional burning techniques is highly contested. Poten-

tial impacts include extinction of large Pleistocene land an-

imals and ecosystem tipping events, including shift of veg-

etation to desert shrub triggering a weak monsoon in Aus-

tralia (Miller et al., 2005), rapid landscape transformations

in the mesic environments of New Zealand (McWethy et al.,

2010), the wet tropical forests of the pre-Columbian Amazon

(Nevle et al., 2011), and across the savannas and woodlands

of Africa (Archibald et al., 2012).

Foraging societies need large areas. Although the energy

density of natural vegetation ranges over 0.1–1 W m−2 (NPP

of 3.16–31.6 MJ m−2 yr−1) (Smil, 2008), the bulk biomass

of the most abundant plants, grasses and trees, is not edible

for humans. The very small share of human-edible natural

biomass restricts the population density of foraging societies

to no larger than ∼ 0.02–0.2 cap km−2 (Simmons, 2008).

Such low population densities and the necessity to stay mo-

bile prevent the accumulation of artifacts and the develop-

ment of complex institutions, e.g. institutions to deal with

conflict are prohibitively costly as long as moving away is an

attainable alternative. Therefore foraging societies are typ-

ically portrayed as small egalitarian groups of low internal

complexity, based largely on a few extant foraging societies

who have been pushed aside to marginalized environments.

In more favourable environments higher resource intensities

could have supported higher population densities and sig-
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nificantly more complex social structures, including settle-

ments, handcraft, trade and social stratification (Headland

et al., 1989; Gowdy, 1997).

3.2 The Neolithic revolution

By the beginning of the Holocene, 11 700 BP, humans had

successfully inhabited all continents. Then, within a few

thousand years a fundamentally new socio-metabolic energy

regime emerged on all continents except Australia, involving

the domestication of wild plant and animal species and the

control of their reproduction via husbandry. Agriculturalists

greatly enhanced the area productivity of edible species at

the expense of non-edible species and of food competitors.

In contrast to pre-agricultural societies they lived in a con-

trolled solar energy system (Sieferle, 1997).

Agriculture had multiple independent origins; in the

Near East (∼ 10 000 BP), Peru (∼ 10 000 BP), South China

(8500 BP), North China (7800 BP), Mexico (4800 BP), East

North America (4500 BP), and possibly sub-Saharan Africa

(4000 BP) (Smith, 1995; Dillehay et al., 2007; Diamond

and Bellwood, 2003; Barker, 2006). Archaeological evidence

from several sites at the shoreline of the Persian Gulf has

revealed a rapid colonization of this area by advanced agri-

cultural and urban societies at around 7500 BP. As sea-level

rise from the last glacial low stand was only completed in the

Persian Gulf 7000–8000 BP, there could be even older agri-

cultural sites in areas that are now beneath the Indian Ocean

(Rose, 2010). Explaining the relatively rapid transition to

agriculture is one of the most controversial topics in univer-

sal history. The puzzle is that early agriculture, especially

farming, was not obviously superior to foraging. Ethnologi-

cal studies have shown that early farmers spent more hours to

exploit their food base, relied on a less diverse and less sta-

ble diet, were more prone to diseases, and even had lower

productivity in terms of calorific return on labour invest-

ment (Boserup, 1965; Bowles, 2011). The Neolithic revolu-

tion therefore tends to be explained as a necessity driven tran-

sition, fostered by population pressure (Boserup, 1965), dete-

rioration of resources (extinction of Pleistocene megafauna),

or climate change. Whatever the reasons for switching from

foraging to farming, it creates a lock-in once population den-

sities exceed the natural carrying capacity of the surrounding

ecosystem. Then reverting to foraging cannot occur without

substantially reducing population numbers.

After ∼ 7000 BP complex agrarian civilization emerged

(Sieferle, 1997). Extant biomass was still the energy source

for almost all energy uses: food, fodder, heat, mechanical

power and chemical transformation (metallurgy). Wind and

water power used by agrarian civilizations (sailing ships and

mills) were locally important but contributed only marginally

to the energy input. Despite huge variations in agrarian land

use systems, a defining condition is that energy supply is

tightly coupled to productive land and (human and animal)

labour working on the land. Without any external energy sub-

sidies in the form of mechanical power and synthetic fer-

tilizers, a larger usable energy output from extant biomass

typically requires more land or more labour input on ex-

isting land, thus putting relatively strict limits to the pos-

sibility of increasing energy supply per capita (Krausmann

et al., 2008b). Higher yields could be achieved by various

improvements in agricultural technology but those improve-

ments were typically population driven and lead to absolute

growth in energy capture per area of land while per capita en-

ergy availability stagnated or even declined (Boserup, 1965).

Estimates of global average energy input to agrarian soci-

eties are 45–75 GJ cap−1 yr−1 roughly a factor of 5 greater

than in foraging societies (Fischer-Kowalski et al., 2014).

With the estimated population rising to ∼ 450 million in AD

1500 (when the agrarian mode of subsistence dominated the

global population), overall energy capture by humans may

have reached ∼ 20 EJ yr−1 (Fischer-Kowalski et al., 2014), a

factor of 300 above the foraging regime, but 30 below today.

When the industrial revolution took off around 1850 human

population was∼ 1.3 billion and energy capture had reached

∼ 60 EJ yr−1 (Fig. 1).

The increased population and energy flows due to farming

increased the material inputs to, and waste products from,

societies. The resulting environmental effects began early in

the Holocene, but their scale is much debated (Ellis et al.,

2013; Ruddiman, 2013). Irrigation began around 8000 BP in

Egypt and Mesopotamia, leading to some localized salina-

tion and siltation of the land, reducing crop yields and en-

couraging a shift in agricultural crop from wheat to more

salt-tolerant barley (Jacobsen and Adams, 1958). The use of

manure as fertilizer may have begun as early as 9000 BP in

SW Asia and 7000 BP in Europe (Ellis et al., 2013; Bogaard

et al., 2007). The clearance of forests to create agricultural

land and supply biomass energy and wood from 8000 BP on-

wards, reduced the carbon storage capacity of the land, trans-

ferring CO2 to the atmosphere (Kaplan et al., 2011). Cumu-

lative carbon emissions may have approached 300 PgC by

500 BP (Kaplan et al., 2011) contributing ∼ 20 ppm to at-

mospheric CO2 levels. The biogeophysical effects of forest

clearance also affected the climate, regionally and remotely

(Devaraju et al., 2015). Anthropogenic sources of methane

started around 5000 BP with the irrigation of rice paddies and

have contributed to changes in atmospheric CH4 concentra-

tion over the past ∼ 3000 years (Mitchell et al., 2013).

The energetic surplus generated by agrarian societies

first allowed cities to become a widespread phenomenon

∼ 5000 years after the beginning of agriculture. This led

to more complex social organization with increasing divi-

sion of labour, technological innovations, social stratifica-

tion and written language (Sieferle, 1997). This in turn re-

quires re-integration via exchange, trade and redistribution

creating mutual dependencies which increased the potential

for conflict, prompting the inception of social institutions to

deal with such conflicts (e.g. priests, judges). Additionally,

stockpiling and concentration of resources in cities attracted
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predators stimulating institutions of defense (military). So-

cial complexity has costs as well as benefits and a number of

early complex societies collapsed when those costs became

prohibitively high (Tainter, 1988).

Agrarian societies are faced with relatively severe con-

straints regarding the energy surplus they can achieve. On

average around 90 % of the population is required to work

in agriculture. This limits the urban population engaged in

non-food producing activities to no more than 10 % (GEA,

2012), although locally urbanization levels could be much

higher. The outstanding role of bio-productive land as the

main factor of production also explains the important polit-

ical role of territory in agrarian societies. The intrinsic con-

nection between social stratification and territory in agrar-

ian societies can be illustrated by the role of land in me-

dieval European feudalism, where the power of the nobility

was strongly connected to the control over productive land.

Economic growth was only possible through land expansion

and increase in area productivity. Both have inherent practi-

cal limits and both require a growing population. Combined

with hard constraints on transportation in pre-industrial so-

cieties, this leads to relatively fast local negative feedbacks

in the energetic and material social metabolism and renders

sustained material growth impossible on a per capita basis –

making the distribution of material wealth a zero sum game.

3.3 The Industrial revolution

Fossil fuels, especially coal and peat had been used for hun-

dreds of years in China, Burma, The Netherlands and Eng-

land (Ayres, 1956). However, their contribution to the social

metabolism always remained small. The key energy trans-

formation of the industrial revolution came with the abil-

ity to massively scale-up fossil energy use (Sieferle, 1997,

2001; Wrigley, 2010). Unlike the Neolithic revolution, the

Industrial revolution was a historical singularity. Its incep-

tion in 18th century England was followed by a worldwide

expansion of the new energy regime, which is still ongoing.

The fossil energy regime eventually surmounted the inherent

thermodynamic constraints of agrarian societies that had ex-

isted for millennia by decoupling socially usable energy from

bio-productive land and human labour (Krausmann et al.,

2008b). Within 150 years, from 1850 to 2000, global human

energy use increased tenfold from 56 to 600 EJ yr−1 (esti-

mates based on Krausmann et al., 2008b; Fischer-Kowalski

et al., 2014), the world population (van Zanden, 2015) went

from 1.3 billion to 6 billion, and global GDP (TMP, 2015) in-

creased from 800 to 6600 intGK$. Thus by 2000 the annual

global energy flux through human societies was one third of

the global terrestrial NPP (Haberl et al., 2007) and one third

above the total global energy flux through all non-human het-

erotrophic biomass (Fig. 1).

Unlike the Neolithic revolution, the puzzle of the industrial

revolution is not that it began, but that it continued (Wrigley,

2010). Similar innovation-driven growth periods in agrarian

civilizations (e.g. the Dutch golden age) could not be sus-

tained, because they were sooner or later counterbalanced

by diminishing returns on energy investment in the agricul-

tural sector. Even for the classical British economists Adam

Smith, David Ricardo, Thomas Malthus, and John Stuart

Mill, who witnessed England’s industrial take-off, there was

no doubt that diminishing marginal yields in the agricul-

tural sector would eventually bring industrialization to a halt

(Sieferle, 2010). A key challenge was to feed a growing in-

dustrial labour force with a controlled solar-energy based

system of agriculture (given that the agricultural sector did

not industrialize until the 1930s in the USA and the 1950s

in Europe) (Krausmann et al., 2008b). England was in a spe-

cially favoured position, because since the late 16th and early

17th century area yields, total agricultural production and

labour productivity had been growing continuously (Broad-

berry et al., 2015). This allowed 18th century England to

support a growing industrial labour force in the initial phase

of the industrial revolution. When agricultural productivity

gains eventually came to a halt around 1830 – while the pop-

ulation was still growing rapidly – England’s hegemonic po-

litical position was instrumental to massively increase food

imports (Krausmann et al., 2008b; Broadberry et al., 2015).

The availability of technologies to overcome bottlenecks

in energy utilization also played a decisive role in the indus-

trial revolution happening in England. Notably, the coinci-

dence of a domestic endowment of coal with the emergence

of a new technology complex consisting of the steam engine

and coke-based iron smelting. With this technological com-

plex energy constraints could be exceeded (Grubler, 2004),

which had previously limited coal extraction, steel produc-

tion, and long-distance transportation.

The step increase in energy capture with industrialization

is associated with fundamental changes in global material

cycles. Material inputs to societies were transformed from

biomass dominance to minerals dominance. Global average

per capita material use increased from 3.4 to 10 t cap−1 yr−1

from 1870 to 2000, and with roughly constant biomass use of

3 t cap−1 yr−1, the average use of mineral and fossil materi-

als increased from 0.4 to 7 t cap−1 yr−1 (Krausmann et al.,

2013b, 2009). In industrial economies ∼ 80 % per weight

of the total annual outflow of materials is CO2, making

the atmosphere the largest waste reservoir of the indus-

trial metabolism (Matthews et al., 2000). Between 1850 and

2000 global CO2 emissions from combustion of fossil fu-

els and materials processing increased 125-fold from 54 to

6750 TgC yr−1 and reached 9140 TgC yr−1 in 2010 (Marland

et al., 2007).

Industrial societies require large physical stocks: build-

ings, transport infrastructure, energy, water and waste infras-

tructure, production facilities and durable consumer goods.

For example, the material stock of industrializing Japan has

increased by a factor of 40 between 1930 and 2005 reach-

ing 38.7 billion tonnes or 310 tonnes per capita (Fishman

et al., 2014) and the non-metallic minerals incorporated in
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residential buildings, roads and railways in the EU25 was

75 billion tonnes or 203 tonnes per capita in 2009 (Wieden-

hofer et al., 2015). In the USA the amount of iron incorpo-

rated in durable products and infrastructure increased from

100 million tonnes to ∼ 3200 million tonnes between 1900

and 2000 (Müller et al., 2006). Industrial societies also use

a much larger diversity of minerals. Almost all metals are

now commercially used in increasingly complex combina-

tions (Graedel et al., 2015). Overall recycling rates (mea-

sured as the global average of the content of secondary metal

in the total input to metal production) of metals are uncertain.

Recycling rates are above 50 % for only three metals (Nb, Ru,

Pb), between 20–50 % for another 16, and below 20 %, often

less than 1 %, for all the other ∼ 40 metals in wide industrial

use (UNEP, 2011). A recent study estimated that only 6 % of

globally extracted materials are currently recycled within the

socioeconomic system (Haas et al., 2015).

The global biogeochemical cycles of nutrients have also

been transformed by industrialization. Between 1860 and

2005 anthropogenic creation of reactive nitrogen grew more

than tenfold, from ∼ 15 to 187 TgN yr−1 (Galloway et al.,

2008). Furthermore, the creation of nitrogen oxides as a

waste product of fossil fuel combustion increased from ∼ 0

to 25 TgN yr−1 (Galloway et al., 2008). The excess reac-

tive nitrogen was transferred to other environmental pools,

partly denitrifying to atmospheric N2, but also contributing

to eutrophication and acidification of terrestrial and coastal

marine ecosystems, to global warming and to tropospheric

ozone pollution. Analogous human-induced acceleration af-

fected the P-cycle.

The industrial revolution also gave rise to entirely new

metabolites. The CAS Registry (ACS, 2015) currently in-

cludes 92 million unique chemical substances in commercial

use of which only 320 000 are regulated in key markets. It

is unknown how many of these substances represent entirely

new chemicals and whether they are harmful to humans or

the environment. With 15 000 new entries daily comprehen-

sive in-vivo toxicity testing is practically impossible (Rovida

and Hartung, 2009).

The industrial revolution expanded to the European con-

tinent and to the USA in the early 19th century, to Japan

in the late 19th century and to large nations like China,

India, and Brazil in the last decades of the 20th century.

With the transition to an industrial mode of production the

socio-economic power of the nobility (based on control over

productive land) diminished and shifted towards the own-

ers of the means of industrial production (which Karl Marx

called capitalists). Large differences in consumption among

countries persist until today (GEA, 2012) (Fig. 2; data from

Krausmann et al., 2008a; Steinberger et al., 2010 and the

World Bank Income Classification, WB, 2015). If we con-

sider high income countries with an average energy use of

302 GJ cap−1 yr−1 as fully industrial, and upper middle and

lower middle countries, with an average energy use of 140

and 74 GJ cap−1 yr−1 respectively as transitioning to an in-

dustrial energy regime, then ∼ 15 % of the world population

lived in a mature industrial energy regime in 2000, ∼ 44 %

were in transition, and the remaining∼ 40 % still lived under

largely agrarian conditions with average energy use amount-

ing to 42 GJ cap−1 yr−1. The correlation between energy use

and human development appears to be highly non-linear. At

high levels of human development large increases in energy

input have little or no effect on further increases in standards

of living. However, at low levels of human development rel-

atively small increases in energy input have large positive

effects (Steinberger and Roberts, 2010), for example supply-

ing ∼ 3.5 kilowatt per person can greatly increase life ex-

pectancy (Schwartzman and Schwartzman, 2013).

4 Forward look: a solar-powered recycling

revolution

Each revolution in Earth and human history involved a new

mechanism to capture free energy and the accessing of previ-

ously underutilized resources. The resulting step increase in
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free energy input privileged the systems, biological or social,

using the new energy capture mechanism, making them glob-

ally significant or even dominant. However, material con-

straints ultimately became limiting to the expansion of en-

ergy innovators either because the scale of waste products

they generated disrupted their environment, or because the

material resources they depended upon became scarce. The

lesson for human society is that to have a long-term sustain-

able future within the Earth system will require both a sus-

tainable source of energy and the closure of material cycles

(Lenton and Watson, 2011; Weisz et al., 2015; Weisz and

Schandl, 2008).

A sustainable energy system is challenging but feasible

from a purely technological point of view. The technical

potential for renewable energy technologies, most of which

ultimately rely on solar energy, exceeds current and future

global primary energy demand by several orders of mag-

nitude (GEA, 2012). However, the rate of de-carbonization

of the global energy system is constrained by a number

of economic (e.g. economic viability of renewable energy

technologies, large up-front investments, devaluation of in-

vestments in existing energy infrastructure), socio-cultural

(e.g. public acceptance of large-scale infrastructure projects,

food security and various other competing land uses), and

technological (e.g. issues of transmission, integration and

storage) factors (Fischedick et al., 2011). Current assess-

ments of global development scenarios with ambitious cli-

mate mitigation targets put the supply of RE between 250

and 500 EJ yr−1 in 2050 (GEA, 2012; Fischedick et al.,

2011; Clarke et al., 2014). Depending on assumptions this

corresponds to 25–75 % of the projected (2050) global pri-

mary energy demand. The importance of other, more con-

tested energy technologies for achieving a sustainability tran-

sition of the global energy system depends on the develop-

ment of future energy demand. Assuming ambitious energy

efficiency improvements the transformation goals can be

achieved without nuclear fission, carbon-capture and storage,

or high-tech carbon sink management. With less progress on

the demand side, one or more of these technologies would

be required in the energy mix (Riahi et al., 2012). Nuclear

fusion might be an option in the long-term, but is no attain-

able option in the coming decades when climate mitigation

measures must be implemented (World Bank, 2012). Signif-

icant additional investments and several decades of technol-

ogy development would be needed to bring nuclear fusion

into large-scale practical implementation (von Hippel et al.,

2012).

Whilst energy generation for (post-) industrial purposes

can be largely de-carbonized, food energy production cannot.

The carbon cycle linked to food production can conceivably

be re-closed, through a combination of reductions in land-

use change CO2 emissions, and land-based carbon dioxide

removal (CDR). However, the much larger (in a fractional

sense) perturbations to nutrient (N and P) cycling present

a greater challenge, for two contrasting cycles. Nitrogen is

abundant in the atmosphere and returned there relatively

rapidly by natural biological recycling processes, hence with

a sustainable source of energy, nitrogen could be fixed in-

definitely. Phosphorus, in contrast, is a rock-bound, finite

and non-substitutable resource likely facing either economic

(Scholz et al., 2013) or physical scarcity within this century

(Van Vuuren et al., 2010). For both nutrients there is a need

to minimize the harmful by-products of excess deposition.

Yet fertilizer N and (especially) P demand is set to increase

significantly with an ongoing shift to more meat-rich diets

(Bouwman et al., 2013).

In addition to reversing this trend there is huge poten-

tial to counteract this increase through more efficient phos-

phorus and nitrogen application to crops (through e.g. better

targeted fertilizer application), and reducing losses from do-

mestic animal (and human) excrement, crop residues and the

post-harvest life cycle (Clift and Shaw, 2012; Cordell et al.,

2011).

The longevity of manufactured capital leads to consider-

able path dependency and even lock in, and complicates its

analysis and accounting. Recent studies have investigated the

material stocks of specific metals (Müller et al., 2011) and

there are some signs of saturation for specific material stocks

in industrialized countries. However, it is unclear to what ex-

tent a saturation of the stocks of any single metal are due to

material substitution (Fishman et al., 2014). Even if stocks

for bulk materials (mainly for construction) were to saturate

in industrialized countries due to the projected stabilization

of population and slow economic growth, stock levels will

need to increase dramatically in emerging and developing

countries. Careful design and implementation of these future

stocks holds huge potential to slow further growth of the in-

dustrial metabolism and minimize lock in.

The explosive proliferation of new metabolites could be

tackled by a shift toward green chemistry (Linthorst, 2010)

that encourages the design of products and processes that

minimize the use and generation of hazardous substances.

However, given the immense amount of newly introduced

chemicals and the importance of material and chemical de-

sign for many high-tech produces, additional strategies will

be necessary. These may range from new and faster toxicity

screening tools, to environmental design guidelines to reg-

ulations regarding recyclability and biodegradability mate-

rial components and final products, applying cradle to cradle

principles.

The solar-powered material-recycling “revolution” that we

have sketched out demonstrates that the material dimension

of the industrial metabolism is much more complex, much

more inert and inflexible, and at the same time much less un-

derstood than its energetic dimension. Furthermore, such a

revolution must anticipate a level of social organization that

can implement the changes in energy source and material

cycling without preventing present and future generations

from attaining similar achievements in standard of living

and individual liberation associated with industrial societies.
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With regards to the lasting attention to Georgescu-Roegen’s

flawed fourth law of thermodynamics (Georgescu-Roegen,

1971) it is important to note that such a “revolution” does not

contradict any established thermodynamic laws (Fleissner

and Hofkirchner, 1994; Ayres, 1999; Schwartzman, 2008)

as is amply demonstrated by the biological evolution of the

Earth’s biota.

Pertinent large-scale systemic characteristics and relevant

regional ramifications of the material social metabolism are

still poorly understood, e.g. the structure and dynamic of

complex global material supply chains, path-dependency and

potential lock-in created by the different components of the

manufactured capital, quantitative assessments of the techni-

cal and economic potential to close materials cycles, or ef-

fective means to balance the huge number of newly intro-

duced chemicals with feasible tools to assess their toxicity

for humans and other species. Furthermore multiple barriers

as well as co-benefits between a solar-powered material cy-

cling revolution and other sustainability goals such as climate

mitigation, adaptation, reducing extreme poverty, reducing

social inequalities, and increasing health are severely under-

researched.

Future societies might look back at the period of a glob-

ally expanding industrial metabolism, with its characteristic

exponential material growth, as a necessary phase to transi-

tion from the inherently scarce agrarian controlled solar en-

ergy system to a second generation controlled solar energy

that can provide “affluence without abundance” (Sahlins,

1972) at a much higher level than foraging societies could

ever achieve. An outstanding task therefore is to formulate

a steady-state “Earth system economics” that supports long-

term human and planetary well-being. Two of the most dif-

ficult problems to be solved along the way will be to find

out how desirable attributes of society, such as knowledge,

can still grow while resource input is constrained and how

to organize a just distribution of access to physical and non-

physical resources in an economy that functions physically

as a zero sum game.

The Supplement related to this article is available online

at doi:10.5194/esd-7-353-2016-supplement.
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