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Abstract We present two solution algorithms for a large-scale integrated assess-
ment model of climate change mitigation: the well known Negishi algorithm and a
newly developed Nash algorithm. The algorithms are used to calculate the Pareto-
optimum and competitive equilibrium, respectively, for the global model that in-
cludes trade in a number of goods as an interaction between regions. We demon-
strate that in the absence of externalities both algorithms deliver the same so-
lution. The Nash algorithm is computationally much more effective, and scales
more favorably with the number of regions. In the presence of externalities be-
tween regions the two solutions differ, which we demonstrate by the inclusion of
global spillovers from learning-by-doing in the energy sector. The non-cooperative
treatment of the spillover externality in the Nash algorithm leads to a delay in the
expansion of renewable energy installations compared to the cooperative solution
derived using the Negishi algorithm.
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1 Introduction

Climate change is a complex global phenomenon involving long time scales. The
assessment of climate change mitigation policies requires specialized tools to deal
with the long-term impacts and the interactions between different environmental
and socio-economic systems. Over the last three decades, Integrated Assessment
(IA) models have increasingly been used for analyzing climate change mitiga-
tion and adaptation strategies. IA models describe the complex relations between
macro-economic, energy, climate, and land use systems. Yet, the solution algo-
rithms used to solve these large-scale models are hardly ever discussed in the
literature (Nordhaus and Yang 1996). The choice and specification of the solution
algorithm determine, on the one hand, the numerical effectiveness of the solution
process. On the other hand, the type of regional interactions covered in IA model
places requirements on the solution algorithms.

In this paper we discuss different solution algorithms of an IA model that can be
classified as a policy optimization model (Weyant et al. 1996). We present a new
implementation of an algorithm that is commonly used to compute a competitive
equilibrium solution in less complex models. This new algorithm is computation-
ally more effective than previously used algorithms and allows for integration of
real-world externalities that are usually not covered by existing IA models.

In the discussion of the solution algorithms, we are not interested in the details of
the underlying mathematical optimization procedures. Instead, we describe the al-
gorithms with emphasis on economic mechanisms, asking how to reconcile actions
and decisions of different actors. Our model does not capture regional interaction
due to climate change damages. Therefore, we do not contribute to the litera-
ture addressing climate policies and the stability of climate coalitions based on
the climate externality (Finus et al. 2014). The new algorithm developed in this
contribution primarily captures international trade. Recent literature increasingly
focuses on the interaction of trade and climate policies (e.g. Copeland and Taylor
2005, Weber and Peters 2009). Trade is relevant to climate policy, as, for example,
climate policies may put revenues of fossil fuel exporters at risk. Models including
trade interactions are useful to assess viable mitigation strategies of regions or
countries and provide insights into terms-of-trade effects.

The paper is structured in the following way: Referring to the existing literature,
we discuss in Section 2 the representation of regional interactions and extrernalities
in IA models, and relevant solution algorithms. In Section 3, we introduce the IA
model REMIND. Two different algorithms to find a general equilibrium solution
are presented in Section 4, highlighting advantages of the new algorithm. The
application of the model for the evaluation of a climate change mitigation scenario
in Section 5 highlights differences in the solution of the two algorithms due to the
inclusion of an externality. This indicates the potential of the newly developed
algorithm in analyzing other policy questions. We end with conclusions in Section
6.
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2 Regional interactions in Integrated Assessment models

IA models simulate long-term dynamics of the socio-economic system, often in-
cluding the energy sector and parts of the environmental system, in particular the
climate system. IA models of the policy optimization type, for example MERGE
(Manne et al. 1995), DICE (Nordhaus and Boyer 2000), and MESSAGE (Mess-
ner and Schrattenholzer 2000), derive a solution in form of mitigation strategies
by cost minimization or welfare maximization. The solution algorithms for these
models either treat the interaction of decentralized regional actors explicitly, or
assume a global social planner – this differences is most important in the presence
of externalities. While a global social planner internalizes external effects between
regions, decentralized actors do usually not anticipate and internalize them. In IA
models, these actors commonly are world regions. We distinguish four types of
regional interactions:

(I) For trade interactions, the synchronization of trade decisions is the modeling
challenge in a decentralized decision framework, as is the redistribution of wealth
in a social planner framework. Trade relations are therefore commonly considered
in a restricted way in IA models only, for example excluding capital trade and
changes in the current accounts (Bosetti 2006).

(II) Technological learning in energy technologies is included in some IA models
with great detail in the energy system. Learning effects decrease investment costs
driven by cumulative investments in modern energy conversion technologies (i.e.
learning-by-doing) (Manne and Richels 2004, Rao et al. 2006, Magne et al. 2010).
Learning effects are partly external, as some investment costs decrease indepen-
dently of where and by whom the new capacities are built.

(III) Technological spillovers affecting the productivity of production factors are
taken into account just by few IA models (Crassous et al. 2006, Bosetti et al. 2008,
Leimbach and Baumstark 2010, Huebler et al. 2012). They depend on R&D invest-
ments and may represent externalities in a way similar to learning spillovers.

(IV) The climate externality is caused by the global impact of GHG emissions
of each country. If the climate externality is included in the form of a damage
function or a global climate target, it is fully internalized by a social planner. In a
decentralized setting, however, depending on whether or not the actors internalize
this externality, a cooperative solution or a non-cooperative solution can be ob-
tained (Brechet et al. 2014). Nordhaus and Yang (1996) prominently discuss the
difference of the cooperative and non-cooperative solution, including algorithmic
implications. Their results show that non-cooperative policy, with selfishly acting
nations ignoring spillovers and damages imposed on others, leads to much smaller
emission reductions than cooperative policy.

The representation of these regional interactions in IA models varies, and so does
the specification of the solution algorithm. A complete overview is beyond the
scope of the paper – we focus on a particular IA model, the REMIND model. Re-
garding the four regional interactions discussed above, REMIND includes trade on
different markets. Interactions through global technological learning are covered
by the model as well. By contrast, R&D spillover externalities and the climate
externality are not represented in REMIND. While the Nash and Negishi algo-



4 Marian Leimbach* et al.

rithm, as presented in the next section, compute the same solution with respect
to the trade interaction, they compute a non-cooperative (Nash) and cooperative
(Negishi) solution with respect to the learning externality.

REMIND belongs to the class of intertemporal optimization models which are com-
putationally expensive (Pan 1992), and is formulated as a non-linear optimization
problem. The computation time of such problems rises strongly with the number
of variables in the problem. The main challenge in solving the REMIND model is
the large number of different markets that have to be cleared simultaneously. We
apply two different algorithms to compute a competitive equlibrium. One follows a
proven approach for finding a Pareto-optimal solution that corresponds to a com-
petitive equilibrium: Negishi (1972) demonstrated that this market equilibrium
can be computed by global welfare optimization with a particular adjustment of
the regional welfare weights (see Section 4). The other algorithm in this paper –
the Nash algorithm – follows a Walrasian type price adjustment approach. The
basic idea of this type of algorithm dates back to the tatonement process of the
Walrasian auctionneer, as described by Arrow and Hahn (1971). By iterative price
adjustments, this algorithm searches for a fixed point where the aggregated excess
demand equals zero. Numerical determination of the equilibrium of a Walrasian
system was first provided by Scarf (1967). Other essential contributions to the
computation of equilibria in large-scale models are, for example, Dixon (1975) and
Manne and Rutherford (1994).

The Negishi algorithm used in REMIND to find a Pareto-optimal solution is similar
to that in RICE (Nordhaus and Yang 1996) and MERGE (Manne et al. 1995).
The Nash algorithm we implement does not have direct antecedents in IA models:
While Nordhaus and Young (1996) implemented a Nash algorithm1 in order to
find a non-cooperative solution with respect to the climate externality, we develop
an algorithm for a competitive equilibrium solution with respect to the trade
interaction.

3 REMIND Model

REMIND is a global energy-economy-climate model spanning the time from 2005
to 2100 (Leimbach et al. 2010). Its general structure is illustrated in Fig. 1. A com-
prehensive description of REMIND can be found in Luderer et al. (2015).

The macro-economic core of REMIND is a Ramsey-type optimal growth model
where intertemporal welfare is maximized. The world is divided into eleven model
regions. Each region is modeled as a representative household with a utility func-
tion U(r) that depends only on per-capita consumption:

1 Within an iterative sequence Nordhaus and Yang (1996) compute a closed-loop Nash
equilibrium (Fudenberg and Levine 1988). Technically, this is an outcome of a finite game with
perfect information and calculated through backward induction (Mas-Colell 1995, Chapter
9, Kicsiny et al. 2014). A survey on Generalized Nash equilibrium problems is provided by
Facchinei and Kanzow (2010). Yang (2003) demonstrated how the closed-loop solution can be
found by a computationally more tractable sequence of open-loop equilibria.
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Fig. 1 Structure of REMIND

U(r) =
T∑

t=t0

(1 + ζ)−t · L(t, r) · ln
(
C(t, r)

L(t, r)

)
∀ r. (1)

The variable C(t, r) is the consumption in time-step t and region r, L(t, r) is
population, and ζ is the rate of pure time preference.

Each region generates macro-economic output (GDP) based on a calibrated and
nested constant elasticity of substitution (CES) production function with factor
inputs labor, capital, and final energy. Final energy is generated through a detailed
representation of the energy system in a nested CES tree. The production function
reads:

Vout(t, r) =

 ∑
MCES

(θinVin(t, r))
ρout


1

ρout
∀t, r, out. (2)

Vout(t, r) represents CES function output (GDP and intermediate products) and
Vin(t, r) CES function input. The mapping MCES assigns input types in to each
output out. θ and ρ are parameters representing efficiency and elasticity of sub-
stitution, respectively. GDP Y (t, r) is available for consumption, investments into
the macro-economic capital stock I(t, r), energy system expenditures E(t, r) and
for the export of composite goods XG(t, r), which may instead also be imported
as MG(t, r):

Y (t, r) = C(t, r) + I(t, r) +XG(t, r)−MG(t, r) + E(t, r) +D(t, r). (3)
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The term D(t, r), as defined in Eq.(15), is relevant only for technical reasons of the
convergence process and does not change the solution point of the model.

Macro-economic investments I(t, r) as control variable enter a common capital
stock equation for macro-economic capital K(t, r) with depreciation rate δ:

K(t+ 1, r) = (1− δ) ·K(t, r) + I(t, r) ∀r, t. (4)

Energy system expenditures E(t, r) consist of investment costs Einv(t, r), fuel costs
Efc(t, r) as well as operation and maintenance costs Eom(t, r):

E(t, r) = Efc(t, r) + Eom(t, r) + Einv(t, r) ∀r, t. (5)

By means of energy expenditures and final energy input in the production function,
the macro-economic core and the energy system module are hard-linked to each
other. This ensures simultaneous equilibria on all primary energy carrier and capi-
tal markets (Bauer et al. 2008). Around fifty different technologies are represented
in REMIND for the conversion of primary energy into secondary energy carriers as
well as for the distribution of secondary energy carriers into final energy. Technol-
ogy choice follows implicit cost optimization based on investment costs, operation
and maintenance costs, fuel costs, emission costs, efficiencies, lifetimes, and learn-
ing rates. Endogenous technological progress is captured by learning-by-doing:
Variable investment costs of low-carbon technologies decrease with cumulative in-
stalled capacity through global learning curves.

Balance equations ensure that energy demand matches production. One balance
equation equals production Pe(t, r) of primary energy type e to extraction Fe(t, r)
and net export Xe −Me of the corresponding primary energy carrier:

Pe(t, r) = Fe(t, r) − Xe(t, r) + Me(t, r) ∀ t, r, e (6)

Resource scarcity is reflected by extraction cost curves. The model accounts for
CO2 emissions from fossil fuel combustion and land use as well as emissions of
other greenhouse gases (GHGs). REMIND is coupled to the MAGICC climate
model (Meinshausen et al., 2011) to translate emissions into changes in atmo-
spheric composition, radiative forcing, and temperature increase.

Besides macroeconomic investment, investments into the installation of energy
conversion capacities, resource extraction, and the reduction of non-energy related
greenhouse gases, trade is another control variable of the regional actors. Trade
between regions is induced by differences in factor endowments and technologies.
There is trade in five primary energy carriers (oil, coal, gas, biomass, uranium), in
a composite good (aggregated output), and in emission permits. Trade is not bilat-
eral, but through exports into and imports from a common pool. Capital mobility
is represented by free trade in the composite good and by the possibility of in-
tertemporal trade – resulting in comparatively high capital trade flows. Nordhaus
and Yang (1996) and Leimbach et al. (2015) discuss alternatives approaches to
intertemporal trade. Capital mobility and intertemporal trade cause price equal-
ization and guarantee an intertemporal and inter-regional equilibrium.
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4 Solution algorithms

To find the intertemporal and inter-regional equilibrium, a mechanism of reconcil-
ing trade decisions of regions is needed. In the following subsections we describe
the Negishi and the Nash algorithms in detail.

4.1 Negishi algorithm

We apply a sequential joint maximization algorithm (Manne and Rutherford, 1994)
– also called the Negishi algorithm (Negishi, 1972). In this iterative algorithm,
the objective functions of the individual regions U(r), as defined in Eq. (1), are
aggregated into a global objective function W by means of welfare weights wi(r)
(index i is the iteration index):

W =
∑
r

wi(r) · U(r). (7)

Market clearing is included as a constraint to the optimization problem. With
Xj(t, r) and Mj(t, r) as export and import of region r in period t, the following
clearance condition holds for each market j:∑

r

(Xj(t, r)−Mj(t, r)) = 0 ∀ t, j. (8)

A distinguished Pareto-optimal solution, which in the absence of externalities also
corresponds to a competitive market solution, is obtained by iteratively adjusting
the welfare weights based on the intertemporal trade balances Bi(r):

Bi(r) =
∑
t

∑
j

pij(t) · [X
i
j(t, r)−M

i
j(t, r)] ∀ r, i. (9)

Present value world market prices pij(t) are derived iteratively as shadow prices
from Eq. 8.

A new set of weights is derived iteratively (Leimbach et al. 2015):

wi+1(r) = wi(r) +
Bi(r)∑

t(1 + ζ)−(t−t0)L(t, r)
∀ r, i. (10)

Based on the new weights, a new solution is computed from which we derive
Bi+1(r). This algorithm has a fixed point in which the intertemporal trade balance
of each region converges towards zero. We stop the iteration as soon as the residual
deviation from zero is sufficiently small. An exemplary convergence process is
shown in Fig. 2.
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Fig. 2 Exemplary convergence process generated by the Negishi algorithm. Deficits from the
intertemporal trade balance (9) for each region approach zero over some 8 iterations.

4.2 Nash algorithm

The Nash algorithm assumes that decisions are taken by decentralized regional
actors. In contrast to the Negishi algorithm it neither includes a global welfare
function nor explicit market clearing conditions as part of the optimization. In-
stead, the optimization of each region directly includes its respective intertemporal
budget constraint:

B(r) =
∑
t,j

pij(t) · (1 + χi) · [Xi
j(t, r)−M

i
j(t, r)]. (11)

The factor χi is only of importance for technical aspects of the algorithm, and is
explained in Eq. (14).

Market clearing is achieved through a Walrasian-auctioneer type iterative price
adjustment. Regional actors start from an initial price vector and choose their trade
pattern, acting as price takers. The regional solutions are consequently collected,
and the price for the next iteration is adjusted based on the surplus Si

j(t) on each
market:

Si
j(t) =

∑
r

(
Xi

j(t, r)−M
i
j(t, r)

)
(12)

pi+1
j (t) = pij(t)

(
1− ηjHi

j(t)
Si
j(t)

Zi
j(t)

)
. (13)
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Market surpluses are normalized by Zi
j(t), the global consumption of the respective

good, which is a proxy measure for the potential market volume. The parameters
η−1
j play the role of price elasticities, and are set from experience as to support

convergence and minimize convergence time. An auxiliary parameter Hi
j(t) is used

to introduce a time-dependence into the price elasticity η−1
j that is set from expe-

rience in order to achieve convergence.

The algorithm converges towards a fixed point where markets clear, as demon-
strated exemplarily in Fig. 3. We stop the iteration as soon as the market surplus
falls below a certain residual threshold, which typically requires in between 30 and
100 iterations.

The biggest challenge with this formulation of the algorithm is the large number of
markets that need to be cleared simultaneously. In our model there is one market
for each traded good at each time step. In order to guarantee convergence, we
employ two auxiliary mechanisms: Both act as guardrails protecting against a
too abrupt change in trade patterns across iterations that may otherwise lead to
diverging trade patterns. These mechanisms do not influence the solution point of
the iteration. The first one allows regions to anticipate price changes caused by
their trade decisions endogenously within the optimization. This is achieved by an
additional factor χi in the intertemporal budget equation (11):

χi(t, r) = ξij

(
[Xi−1

j −M i−1
j ]− [Xi

j −M
i
j ]
)

V i
j (t, r)

(14)

This factor is linear in the differences between the net exports of subsequent iter-
ations (we suppressed the time and region index of the trade variables). An inter-
pretation of the anticipation mechanism from an economic perspective is: Regions
are able to anticipate a decline (increase) in the price for a good when increasing
their exports (imports), enabling strategic behavior on the markets (Mandel and
Gintis 2016). Technically, the mechanism helps the algorithm to converge.

In order to prevent the fixed point of the algorithm to be influenced by this kind
of strategic behaviour, we smoothly fade out the anticipation parameter ξi to zero
as soon as the markets are reasonably close to clearance. We make sure that the
influence of the price anticipation helper mechanism on the solution point is negli-
gible: Varying the anticipation parameter in numerical experiments, we observe a
robust solution point. The variation in the solution due to the anticipation param-
eter is much less than the already small variance that is due to residual market
surpluses, which not only depend on the length of the convergence process but
also on the starting point. As there are non-convexities in the model, multiple
equilibria may in principle exist. In the course of our experiments we only observe
unique solutions though, disregarding the aforementioned inherent small numerical
variance.

The second auxiliary mechanism is a penalty cost D(t, r) depending on the change
in the regional trade pattern over iterations, a mechanism sometimes referred to
as regularization. The square of the deviation from last iteration’s trade pattern
is multiplied by a weight parameter Ωj , and priced into each respective region’s
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budget equation (3) as a penalty:

D(t, r) =
∑
j

Ωj

pij(t)

V i
j (t, r)

(
[Xi−1

j −M i−1
j ]− [Xi

j −M
i
j ]
)2

∀ t, r (15)

Regions are thus prevented from changing their trade pattern all too abruptly
across iterations. As trade patterns converge, this cost penalty goes to zero and
does thus not influence the solution point of the algorithm.
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Fig. 3 Exemplary convergence process generated by the Nash algorithm. Residual surplus
over iteration are in the first row of panels, and prices over iterations in the second row are
shown for two markets (Goods and Gas) at selected time steps. Units for surplus are Trillion
US Dollar for goods, and exajoule per year for the gas market. Prices are normalized to their
first-iteration value. The begin of the phase-out of the price anticipation mechanism is marked
by a dotted vertical line.

4.3 Computational effectiveness

Both solution algorithms, Negishi and Nash, are implemented in GAMS (Brooke
et al. 1992). We use CONOPT3 (Drud 1994) as the solver for the non-linear pro-



Title Suppressed Due to Excessive Length 11

gramming problem (NLP) of the global social planner maximizing global welfare
(Eq. 7) in the Negishi case, and the regional social planners maximizing regional
welfare (Eq. 1) in the Nash case, respectively. The two respective NLP problems
differ in their number of non-superbasic variables by a factor of m = 11, the num-
ber of regions in our model. From our experience, the computing time to solve
NLP models grows much faster than linear with the number of non-superbasic
variables. This can be understood assuming matrix inversion is the most expen-
sive operation within the solver, which scales polynomially with the size of the
system (Pan 1992).

Large-scale NLP models (size of more than 100 000 variables and equations) in
GAMS often cannot be reliably solved without providing a starting point for the
solver in form of a GDX file. The choice of the GDX file from previous model
runs significantly influences model run time. In order to compare performance
between the Nash and Negishi algorithms, we set up the following model runs:
Two exemplary REMIND scenarios, a business-as-usual and a carbon tax scenario
are each run in Negishi-, sequential-Nash-, and parallel-Nash-mode. We use six
different GDX points as initial starting points for the solver, some known to be
closer to the solution, some farther away. Run times of the resulting 36 model
realizations are shown in Fig. 4. The median run times are significantly smaller
for the Nash algorithm, around an order of magnitude below the Negishi value.
Furthermore, the performance of the Nash algorithm is less dependent on the
starting point, as seen from the smaller spread of run times in the Nash mode.

Computational effectiveness mainly depends on three factors: First, for NLP prob-
lems the time complexity of problems typically rises much faster than linear with
the size of the problem. Formulating the model as m independent regional NLP
problems thus potentially decreases the total run time, even if the problems are
solved sequentially.

Second, the Nash algorithm requires an adjustment of many more parameters in
between iterations than the Negishi algorithm – potentially increasing total run
time. In the Nash algorithm, prices on markets for all goods and all times (on the
order of 100) have to be adjusted in each iteration, while the Negishi algorithm
only requires updating the Negishi weight of each region (11 in our case). Con-
sequently, while the Negishi algorithm takes about 10 iterations to converge, the
Nash algorithm requires in between 30 and 100 iterations. In our implementation,
the first effect outweighs the second one quite drastically. As seen from Fig. 4,
the median run time in sequential Nash mode (where all regions are solved on the
same CPU core sequentially) is 4.2 hours, much less than the 42.4 hours in Negishi
mode.

Third, the separate regional problems can be solved in parallel in the Nash mode,
using the GAMS grid computing facilities. Each regional problem then runs as a
separate thread, allowing for the distribution of these threads on different CPU
cores2. This contributes to the reduction in total run time of the model in Nash

2 We solve the model on a high-performance computer cluster equipped with Intel Xeon
E5472 CPUs at 3.0GHz.
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mode, reducing the median run time from 4.2 hours in sequential Nash mode to
2.3 hours in the parallel mode.

The separation into regional NLP problems in the Nash algorithm also allows for
a very favorable scaling of run time with the number of regions in the model.
Given the GAMS grid computing facility has access to as many cores as regions in
the problem, total run time should not significantly increase with the number of
regions. This is in stark contrast to the scaling behaviour of the Negishi algorithm,
where the number of regions is effectively limited by the drastic increase of run
time of the single NLP problem with its size.

4.4 Equivalence in the absence of externalities

In the absence of the learning-by-doing externality (i.e. assuming that there are no
learning technologies), trade is the only interaction between regions in our model.
In this case, the Negishi and Nash solution algorithms converge to the same fixed



Title Suppressed Due to Excessive Length 13

point – the competitive equilibrium. We demonstrate this by comparing both
solutions numerically in detail.

Trade pattern deviation [%] median mean max
Oil 0.05 0.17 2.01
Coal 0.08 0.34 5.31
Gas 0.12 0.40 5.80
Biomass 0.56 0.99 2.82
Uranium 0.09 0.91 12.84
Composite good 0.05 0.11 1.45

Table 1 Deviation of trade patterns between Nash and Negishi solution on different markets
in relative terms.

Trade pattern deviation
relative to global consumption [%] median mean max
Oil 0.000 0.004 0.069
Coal 0.003 0.020 0.181
Gas 0.003 0.039 0.754
Biomass 0.001 0.013 0.875
Uranium 0.007 0.333 9.033
Composite good 0.000 0.000 0.009

Table 2 Deviation of trade patterns between Negishi and Nash solution on different markets,
relative to the global consumption of the respective market good in percent.

To compare the two solutions, statistics on relative deviations in regional trade
patterns between the two solution points are shown in Tab. 1. Statistics are based
on the relative deviations of net exports at all time periods and regions of an
exemplary Nash and Negishi run:

Trade pattern deviation = 100 ·

∣∣∣∣∣ X(t, r)nash −M(t, r)nash

X(t, r)negishi −M(t, r)negishi
− 1

∣∣∣∣∣ (16)

We exclude the resource markets with a very small volume of below 0.5 EJ/yr from
this analysis, as the resulting high relative deviations would only be an artifact of
regions switching from import to export of this specific resource. The deviations
are small in general, with median relative deviations of below 0.6% across all
markets and all times. The relatively high maximum deviations on the uranium
markets of up to 13% are due to the high flexibility (indeterminacy) of uranium
deployment across regions in the model as compared to other types of primary
energy supply.

We introduce a more aggregated measure for the residual deviations in the trade
structure of the two solutions: The deviation of trade patterns between Nash and
Negishi solution, divided by to the global consumption of the respective good or
primary energy type, as shown in Tab. 2. These normalized deviations in trade
patterns are very small, with a median value below 0.007%.

Differences in the regional consumption paths are also small, with a maximum
deviation of around 0.07% and a median of 0.02%.
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5 Application to climate change mitigation

In this section, we present an exemplary climate change mitigation assessment with
REMIND using both solution algorithms discussed previously. REMIND does not
model climate change damages, but evaluates mitigation strategies for a given
global climate target, that is, the analysis here is a cost-effectiveness, not a cost-
benefit analysis. The cost-efficient allocation of mitigation efforts is based on a
globally uniform carbon tax imposed on each region. The tax path is iteratively
adjusted based on the difference between the simulated radiative forcing and and
the forcing level corresponding to the aspired climate stabilization target (see
below), ensuring that the given climate target is achieved.

The alternative use of the Nash and Negishi algorithm computes a constrained
competitive equilibrium solution and a constrained Pareto-optimum, repectively.
The solutions deviate from each other due to a different handling of technological
spillovers. In contrast to the experiment in the previous section, we activated the
technological learning externality for this application. Due to learning-by-doing,
the globally uniform specific investment costs IL(t) decrease with the cumulative
capacities CCL(t, r) for emerging low carbon energy conversion technologies of
type L:

IL(t) = IL,floor + IL,0

(∑
r

CCL(t, r)

)−bL

(17)

IL,floor and IL,0 represent the floor costs and the initial variable costs of invest-
ments, respectively. The parameter bL describes the learning rate of technology
L. Learning technologies are solar photovoltaics, concentrated solar power, wind
power, hydrogen cars, electric cars, and storage technologies.

The global social planner of the Negishi algorithm anticipates that regional invest-
ments into learning technologies reduce the respective investment costs worldwide.
The respective regional social planners in the Nash algorithm do not take these
spillovers to other regions into account in their investment decision, creating a
wedge between the Negishi solution and the Nash solution. Regarding the learn-
ing externality, a cooperative solution is computed by the Negishi algorithm and a
non-cooperative solution by the Nash algorithm. Global technological learning still
exists in the decentralized world though. In each iteration of the Nash algorithm,
the unanticipated spillover effect is captured through the inclusion of the invest-
ment decisions of the decentralized actors from the preceding iteration.

The international community has agreed on the long-term target of limiting global
warming to no more than 2◦C above pre-industrial levels. Here we consider a
climate mitigation scenario with a radiative forcing target of 2.6 W/m2 by 2100,
allowing for temporary overshoot of this target during the century. Such scenarios
have been shown to keep global warming below 2◦C with a high likelihood (Clarke
et al. 2014, Rogelj et al. 2011). This climate target requires a drastic reduction
of global greenhouse gas emissions and a sustained transformation of the global
energy system. Fig. 5 shows the emission trajectories for both, the Negishi and
the Nash solution, for a baseline scenario with no mitigation (scenario names: NE-
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BAU, NA-BAU), and a mitigation scenario (NE-450 and NA-450) simulated by
REMIND.

Fig. 5 Total greenhouse gas emissions over time for different scenarios: Baseline scenarios
(named ”BAU”), and climate policy scenarios in line with the 2◦C target (”450”), each for
the Nash (”NA-”) and Negishi(”NE-”) algorithm.

While the baseline scenarios show an increase of total GHG emissions until 2080
to a level of around 90 GtCO2eq, emissions peak at 51 GtCO2eq in 2015 in the
mitigation scenarios and decline to below zero over the second half of the century.
The emission trajectories differ only slightly between the Nash and Negishi solu-
tion. While learning technologies play a minor role in the baseline scenario, they
are heavily used in the mitigation scenario, but the optimal emission trajectory is
mainly determined by the climate target.

The consumption of primary energy and electricity in 2050, as shown in Fig. 6 and
Fig. 7, indicates the marked transformation of the energy system induced by the
ambitious mitigation policies. In the baseline scenarios, fossil fuels are still domi-
nating the energy mix in 2050. In the mitigation scenarios, by contrast, the high
share of renewables increases constantly until 2100 – modern biomass in the non-
electricity sector and solar and wind in the electricity sector. Furthermore, energy
efficiency improvements contribute significantly to emissions reduction. Primary
energy consumption is reduced by around 20% in 2050 and more than 30% in 2100
compared to the baseline scenario. This reduction is mainly at the expense of the
non-electricity sector, while the share of electricity on final energy consumption
increases continuously.

Differences between the Nash and Negishi solution are moderate. Within the base-
line scenario, the reduced incentive to invest into learning technologies results in
hardly any investments in solar technologies until 2050 in the Nash solution. Some
investments in solar technologies is found for the Negishi solution (Fig. 8). Differ-
ences can be seen in the use of solar energy in the mitigation scenario. A substantial
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Fig. 6 Primary energy consumption in 2050 for different scenario: Baseline scenarios (named
”BAU”), and climate policy scenarios in line with the 2◦C target (”450”), each for the Nash
(”NA-”) and Negishi(”NE-”) algorithm.

Fig. 7 Electricity consumption in 2050

part of nuclear energy that is used for electricity production in the Nash solution
is replaced by solar energy in the Negishi solution (Fig. 7). As a common pat-
tern, the expansion of solar technologies is delayed by around 10-15 years in the
non-cooperative Nash solution.
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Fig. 8 Solar Photovoltaic (PV) capacity paths in the Nash (NA-BAU) and the Negishi (NE-
BAU) solution of the business-as-usual scenario.

6 Conclusions

We present an implementation of a decentralized solution algorithm to find a gen-
eral equilibrium solution of an IA model of climate change mitigation. The main
contribution is a more effective computation of trade interactions. We demon-
strate robustness of the solution by comparing it to a solution from an established
Negishi solution algorithm. The new algorithm – called Nash algorithm – has two
major advantages: first, it is computationally more effective, and allows for an
increased number of regions in the problem. The median run time of the model is
reduced by more than a factor of 10 with respect to the Negishi algorithm. The
new algorithm can also take advantage of parallel computing. Second, the algo-
rithm allows, based on the assumption of decentralized actors, for an extended
representation of real-world inter-regional externalities. In an exemplary applica-
tion of the two algorithms to climate change mitigation, we demonstrate moderate
differences in technology choice between a cooperative and non-cooperative solu-
tion: internalizing global spillover externalities related to investments into learning
technologies accelerates the adoption of emerging low-carbon technologies such as
solar power.

Further research could apply the Nash algorithm in model settings including other
externalities, as, for example, the climate externality or technological spillover
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driven by R&D investments. A larger gap between the Nash and the Negishi solu-
tion can be expected in both cases. Moreover, the question of how these externali-
ties could be explicitly internalized by policy instruments within the decentralized
Nash solution algorithm arises. While corresponding instruments (e.g. carbon tax,
technology subsidy) are well-understood conceptually, the design and implemen-
tation of solution algorithms of large-scale IA models will likely be challenged by
each additional inter-regional externality and policy instrument.
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