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See–saw relationship of the Holocene East
Asian–Australian summer monsoon
Deniz Eroglu1,2, Fiona H. McRobie3, Ibrahim Ozken1,4, Thomas Stemler5, Karl-Heinz Wyrwoll3,

Sebastian F.M. Breitenbach6, Norbert Marwan1 & Jürgen Kurths1,2,7

The East Asian–Indonesian–Australian summer monsoon (EAIASM) links the Earth’s

hemispheres and provides a heat source that drives global circulation. At seasonal and

inter-seasonal timescales, the summer monsoon of one hemisphere is linked via outflows

from the winter monsoon of the opposing hemisphere. Long-term phase relationships

between the East Asian summer monsoon (EASM) and the Indonesian–Australian summer

monsoon (IASM) are poorly understood, raising questions of long-term adjustments to future

greenhouse-triggered climate change and whether these changes could ‘lock in’ possible

IASM and EASM phase relationships in a region dependent on monsoonal rainfall. Here we

show that a newly developed nonlinear time series analysis technique allows confident

identification of strong versus weak monsoon phases at millennial to sub-centennial

timescales. We find a see–saw relationship over the last 9,000 years—with strong and weak

monsoons opposingly phased and triggered by solar variations. Our results provide insights

into centennial- to millennial-scale relationships within the wider EAIASM regime.
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H
igh-resolution speleothem proxy records from cave
KNI-51 (15.30� S, 128.61� E) in northwestern Australia
and Dongge Cave (DA) (25.28� N, 108.08� E) from

southern China (Fig. 1) provide an outline of the summer
monsoon states of the last 9,000 years1. Details of the U/Th
chronology and stable isotope records are given by Denniston
et al.2 and Wang et al.3, respectively. Both caves are well placed to
capture the summer monsoon regimes located at the end points
of the EAIASM system (Fig. 1 and Supplementary Fig. 2 as well as
Supplementary Discussion). Stalagmite d18O time series have
prominently been used to identify and study past changes in
summer monsoon strength4. The d18O signal recorded in Asian
stalagmites depends on multiple factors, including moisture
source composition and distance, Rayleigh fractionation during
moisture transport, and amount of precipitation. These factors,
and thus stalagmite d18O, are all directly related to summer
monsoon strength2,5–9. A more distal moisture source lengthens
the transport pathway to the study site, and Rayleigh distillation
during rainout, which in turn leads to more negative d18O in
monsoonal rainfall and associated infiltrating and drip water,
ultimately resulting in more negative stalagmite d18O. Thus,
speleothem d18O is a complex integral of multiple factors, not
exclusively reflecting local rainfall amount, but instead providing
a valid proxy for monsoon strength in a more general sense4,10. In
some instances a pronounced amount effect is observed. For
example, in the IASM realm, rainfall d18O is mainly linked to
rainfall amount, as a comparison of rainfall amount and d18O at
the Global Network of Isotopes in Precipitation (GNIP) station
at Darwin (B400 km SW of KNI-51) demonstrates (R2¼ 0.8;
Po0.001)2. Positive d18O excursions in stalagmites coincident
with the timing of graffiti on cave walls telling of massive
droughts, exemplify the sensitivity of d18O to drought in the
EASM region7. A negative example was found in NE India, where
the amount effect is clearly absent5, but speleothem d18O still
records changes in Indian summer monsoon strength linked to
ENSO11. Thus, we emphasize again that the d18O variability acts
as a proxy for monsoon strength and not rainfall amount alone.
Moreover, advanced nonlinear time series analysis methods
can be used to analyse the dynamical imprint of the monsoon
activity in the d18O record and by analysing the time series

it is possible to go beyond an interpretation of just the values
of d18O.

The records of DA and KNI-51 are irregularly sampled, that is,
the time between two consecutive measurements is not constant
and may vary largely along the length of the record. Most time
series analysis methods, however, require regular sampling.
Traditionally, some form of interpolation is used to deal with
these irregularities, but this introduces additional information
into the time series with much higher uncertainty than the real
observations12. To avoid corrupting the quality of the proxy
records, a newly developed method can be used (see refs 13,14)
that is based on techniques used for the neurological data15. This
Transformation Cost Time Series (TACTS) method produces a
detrended and regularly sampled time series, that can be further
analysed with standard time series analysis methods to identify
regime changes.

Here we show that the TACS method is well suited to analyse
the records of DA and KNI-51 and can detect statistical
significant dynamical details of the monsoon dynamics by
distinguishing phases of strong/weak monsoon on centennial
time scale. This allows us to substantiate and improve previous
more qualitative interpretations of the DA and KNI-51
records2,3,16. Overall, the phase relationship between major
regime shifts in the two records is anticorrelated (see Figs 2
and 3). Phases of strong (weak) monsoon activity in the northern
hemisphere (DA proxy) coincide with phases of weak (strong)
monsoon activity in the southern hemisphere (KNI-51 proxy).
Solar activity provides a likely driver of this see–saw dynamics
and our analysis confirms previous conclusions that solar
activity can impact on the overall monsoon dynamics by
shifting the position of the the Intertropical Convergence Zone
(ITCZ)3.

Results
Transitions of the monsoon activity. Analysis of the DA and
KNI-51 records reveals alternating periods of statistically
significant centennial to millennial-scale strong/weak monsoon
states (Fig. 2). Strong/weak states are defined as exceeding the
confidence bands. Prolonged strong/weak states are identified,
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Figure 1 | Top of atmosphere outgoing long wave radiation during the monsoon months delimiting its extent. (a) East Asian summer monsoon (EASM)

during June, July and August (JJA); and (b) Indonesian–Australian summer monsoon (IASM) during December, January and February (DJF)54;

Dongge Cave (dot) and KNI-51 cave (star).
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and the comparison given by the coloured bands in Fig. 2
highlights that our quantitative technique is able to reveal new
details of the monsoon dynamics.

The strong/weak regimes identified improve upon previous,
qualitative interpretations of the proxy records2,3,16. Here we
provide a detailed discussion of where our method supports,
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Figure 2 | Determinism of the KNI-51 Cave and Dongge Cave records with comparison to previous studies. (a) (red) KNI-51 cave and (b) (green)

Dongge Cave (DA). The determinism is calculated from the corresponding transformation costs time series and statistical significance is indicated by the

two horizontal bands (see Methods section for details). High (low) determinism values correspond to wet (dry) monsoon regimes. The coloured bands

(blue indicating wet regimes; brown, dry) provide a comparison of our findings with those of previous, qualitative studies. In the text we provide a detailed

discussion of previously unidentified or incorrectly identified wet and dry regimes uncovered by our method. (black) Determinism of the solar activity proxy

D14C time series. Cross-correlation between the determinism of the solar activity proxy D14C time series and KNI-51 time series is r¼ �0.32, and DA time

series is r¼0.29 (see Methods section for details).
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corrects and improves earlier studies. We particularly focus on
regimes which are newly identified or previously incorrectly
interpreted.

Major strong(weak) phases, defined in kiloyears Before Present
(ka BP), occur in the northwest Australian summer monsoon
domain between 8.5–6.4 ka BP (6.3–5.0 ka BP), 5.0–4.0 ka BP,
possibly extending to 3.0 ka BP, (3.0–1.4 ka BP), 1.3–0.9 ka BP,
with a transition at 0.9 ka BP to the present regime.

Embedded within these time intervals are additional events of
centennial to sub-centennial duration. Unfortunately, the details
of the Holocene summer monsoon of northwestern Australia are
largely unknown, precluding any comparison of stratigraphic
records. Nevertheless, a recent pollen-sediment record from Black
Springs (northwestern Kimberley)17 shows some correspondence
to our phase record, but the pollen record is poorly resolved,
supported by only four radiocarbon dates. Our analyses offers
improved time resolution and greater details of the inherent
variability within major monsoon phases.

Cross-hemispheric see–saw dynamics. The Dongge Cave record
has been discussed by Wang et al.3, further developed by
Hu et al.16 and more recently by Zhao et al.18. Wang et al.3

recognised eight weak monsoon events lasting 100 to 500 years: at
0.5 ka BP, 1.6 ka BP, 2.7 ka BP, 4.4 ka BP, 5.5 ka BP, 6.3 ka BP,
7.2 ka BP and 8.3 ka BP. While adding some details, the Hu
et al.16 reconstructions essentially concur with those of Wang
et al.3. Our results indicate strong/weak regime intervals between
(8.2–7.6 ka BP), 7.6–7.2 ka BP, (7.1–6.9 ka BP), (6.4–5.8 ka BP),
5.8–5.0 ka BP, (5.0–4.0 ka BP), 3.0–2.7 ka BP, (2.2–2.0 ka BP),
1.9–0.8 ka BP and (0.7–0.4 ka BP). A comparative study applying
our method on the palaeo Summer Monsoon Index (SMI)
derived from sediments of the Qinghai Lake19 corroborates our
findings (see Supplementary Discussion and Supplementary Fig. 4
for details).

Our analysis has revealed details for KNI-51 and DA not
previously recognized (Fig. 2). In the KNI-51 record two events,
absent from Denniston et al.2, occur at 6.6–6.4 ka BP (weak
monsoon/wet) and 7.0–6.8 ka BP (strong monsoon/dry).
Furthermore, our results improve upon the findings of
Denniston et al.2 and McGowan et al.17 by reclassifying
previously misinterpreted regimes. We identify a strong (wet)
monsoon regime at 3.2–3.1 ka BP previously interpreted as dry17

and similarly a weak (dry) regime at 7.6–7.5 ka BP incorrectly
claimed to be wet by Denniston et al.2.

Similarly, the results of our DA analysis contradict the
conclusions of Hu et al.16 for the time periods 6.2–6.1 ka BP
(weak) and 7.8–7.6 ka BP (weak). In addition, there are three
events identified by Hu et al.16 that are not statistically significant
in our analysis (3.4–3.2 ka BP, 6.9–6.3 ka BP and 8.8–8.2 ka BP).
We assert confidence in these revisions, as they are based on a
rigorous, quantitative analysis, rather than rudimentary visual
comparison of data sets. The detailed comparison of our findings and
the literature summary is given in Supplementary Tables 1 and 2.

Moreover, our results reveal a striking strong/weak, opposing
relationship between the IASM2 and EASM3 (Fig. 2). The only
time when this see–saw relationship is not observed is during
7.6–7.2 ka BP, when both monsoon records show a ‘weak state’.
Over the entire time scale, the cross-correlation of the DET time
series is � 0.27, and while this affirms an antiphased relationship,
it does not capture the strong correspondence between the
statistically significant strong/weak monsoon states. In fact the
antiphased relationship is much stronger, if only the statistical
significant parts of the time series are used and the internal
variability on sub-centennial to decadal time scales is ignored.
This may be calculated using a step function filter, yielding a
cross-correlation of � 0.33. This can be perceived by

simultaneous plot of DET values for KNI-51 and DA in one
figure (Fig. 3). Comparable results are found in the Qinghai Lake
data (SMI) with a cross-correlation of � 0.28 (Supplementary
Fig. 4). Therefore, the variability at sub-centennial to decadal time
scales in both the DA and KNI-51 records is emphasized; such
short-term variability is evident in present-day monsoon records
from both regions20.

Impact of solar activity on monsoonal see–saw pattern. While
the details of the controls and processes determining the function
and latitudinal extent of the respective summer monsoons are
more complex21,22 than simply relating them to the position of
the ITCZ, still the ITCZ provides a convenient metric of
monsoon extent21,23,24. For the broader EAIASM history, the
displacement of the ITCZ is a driver that has been advocated in a
range of Quaternary paleoclimate studies25–29. The argument
recognises that the ITCZ is displaced towards the warmer
hemisphere in response to differential cooling30–32. This is an
attractive and apparently straightforward explanation, with a
caveat that the ITCZ over the region of the West Pacific
Warm Pool (that is, the Maritime Continent) is much less
well defined than over the wider Pacific and Indian Oceans,
with a more complex south-north (north–south) seasonal migration
pattern23,33,34.

In explaining the DA d18O record, Wang et al.3 appeal to a
likely displacement of the ITCZ driven by solar variability. They
use the atmospheric D14C record35 as a proxy for solar activity
with which they obtain a correlation of 0.3 with their speleothem
d18O record. The inference is followed by Zhao et al.18 who
support the claim of a concordance of the DA d18O record with
solar variability. We extend this claim further and ask whether the
Holocene antiphase relationship that we have uncovered in the
summer monsoons of the overall EAIASM is driven by solar
variability.

To establish this, we compare the determinism-measure of
solar activity with that derived from the EASM and IASM proxy
records. The analysis identifies a statistically significant correla-
tion between solar activity and both records from DA with
correlation of 0.29 and KNI-51 with correlation of � 0.32 (SMI:
0.35; see Supplementary Fig. 4). Thus, when predictability of solar
activity is high (low), the Dongge Cave record indicates a strong
(weak) summer monsoon, while northern Australia experiences a
weak (strong) summer monsoon. Increased predictability of solar
activity corresponds to periods of a consistently high number of
solar ‘events’, increasing the solar irradiance received by the
Earth. Positive correlation with the Dongge Cave record therefore
indicates a direct control, whereby periods of increased solar
activity enhance the summer monsoon over East Asia. The
asymmetric response in the Australian monsoon record suggests
that periods of increased solar irradiance actually decrease
monsoon strength. To explain this, we consider orbital-scale
positioning of the ITCZ. Preferential heating of the Northern
Hemisphere during periods of high tilt and Northern Hemisphere
perihelion, as observed from 9 to 3 ka, provides a background
driver for increased EASM strengthening. At a global scale, there
is a northward shift in the ITCZ, weakening monsoon activity
over north west Australia. Coupling this shift with solar activity,
brief periods of increased irradiance would act to shift the ITCZ
further north, and we would therefore expect a stronger EASM
and corresponding weak IASM. This mechanism is supported by
our analysis, and compounded by the observation that from
c.2.5 ka onwards, as orbital controls begin to favour the Southern
Hemisphere, correspondence between the determinism-measure
of solar activity and EASM and IASM records diminishes.
These findings lead us to conclude that solar activity provides a
driver in the see–saw relationship observed between the EASM
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and IASM over the past 9,000 years, modulated by orbital-scale
ITCZ positioning.

Discussion
We note that in our interpretation we cannot rule out the
likelihood of ENSO events playing a role. Mann et al.36 using the
Zebiak–Cane model of the tropical Pacific ocean-atmosphere
system demonstrated that changes in solar radiative forcing
provokes an El Niño response. However, the impact of
ENSO events on both monsoon regimes is complex and
difficult to disentangle. Summer rainfall records from the NW
Australian monsoon region lack a significant ENSO signature
(http://bom.gov.au/climate/enso/ninocomp.shtml). On the other
hand, the Southern Oscillation Index, SOI, has been shown to
influence this region37, where a likely impact can be claimed only
for very strong negative/positive SOI values. In contrast,
the EASM is clearly influenced by ENSO11,38–41, but with
regional (north–south) differences40, complex phase-modulation
relationships38,42 and with specific ENSO events having quite a
different regional rainfall expression—for example, the 1997/1998
and 1982/1983 events. The role of ENSO is an open question and
the lack of well-expressed significant variation of the ENSO
during the last 7,000 years makes it difficult to answer it (ref. 43).
These facts, finally, do not allow to infer a clear ENSO driving of

the antiphase relationship between the IASM and the EASM at
the Holocene time scale.

A significant body of work is now available that highlights
the impact of solar variability on the tropical atmosphere44–47.
This work demonstrates that the Hadley and Walker circulation
are affected by solar variability, and through this, trigger an
increase in tropical precipitation during periods of high solar
activity and an associated change in the position of the ITCZ.
Thus, solar variability can force the north–south expansion and
contraction of the ITCZ over the region of the East-Asian–
Indonesian–Australian–Monsoon region48. We demonstrate that
solar variability can impact summer monsoon strength, and more
importantly provides the control of the antiphase relationship
between the EASM and IASM over the last 9,000 years. Our
results reveal a strong coupling between the monsoons of the two
hemispheres, expressed as a seesaw relationship, and driven by
decadal to centennialscale variations in solar activity. A full
understanding of how solar variability can drive the monsoon
response requires focused model studies. From these will emerge
the likelihood of disentangling the overall functioning of the
EAIASM regime, forming a further step in understanding how
this regime will respond to present-day Greenhouse forcing,
which may help to secure the future of people living in the region.

Methods
TACTS method. In essence, the TACTS method determines the ‘cost’ of
transforming one segment of a record into the following segment. For this
transformation we allow three possible modifications: first changing the amplitude of a
data point, second shifting a data point in time, and third creating or deleting a data
point. The ‘cost’ for changing the amplitude and shifting a data point is linearly
dependent on the size of the modification. However, creating and deleting data points
should be ‘expensive’ enough to not favour this modification over the other two points.

Many time series, for example, palaeoclimate proxy records, show cumulative
trends, which usually need to be removed in a preprocessing step before time series
analysis. A common procedure for regularly sampled time series is to apply a
difference detrending filter, Dx¼ x(t)� x(t� 1), simply taking the difference
between consecutive points. The TACTS method is a similar approach for
detrending but for irregularly sampled time series. Here the difference between
subsequent sequences is expressed by an associated transformation cost as
explained below (see Supplementary Discussion for details).

To calculate the transformation cost time series, we determine the cost for
transformation of one segment into another for two successive segments of a time
series. Treating each observation as an ‘event’, we seek to transform the events in
the first segment into those of the second. For a single transformation, this cost is a
generalized distance between these two segments. Therefore, as a distance, the cost
must be a positive number, symmetrical (that is, transforming the first into the
second is the same as transforming the second into the first), and must satisfy the
triangle inequality.

The cost associated with each transformation is given by:

p cð Þ ¼
X
a; bð Þ2C

l0 ta að Þ� tb bð Þj j þ 1
m

Xm

k¼1

lk La;k að Þ� Lb;k bð Þ
�� ��( )

þ lS Ij j þ Jj j � 2 Cj jð Þ;

ð1Þ
where I and J are a set of indices of the events in starting set Sa and the final set Sb,
respectively. These sets—Sa and Sb—correspond to the events in the two time series
segments. The first summation quantifies the cost associated with shifting events in
time. We sum over the pairs (a, b)AC, where the set C comprises the points that
need to be shifted in time. a and b denote the ath event in Sa and bth event in Sb.
The coefficient l0 is the cost factor for time shifts. The second summation
calculates the cost due to changing the amplitude of events. This involves the
difference |La,k(a)� Lb,k(b)|, where La,k(a) is the amplitude of the ath event in Sa.
The parameter lk has the unit of per amplitude and the sum is over the different
components of the amplitude. That is, if we are dealing with one dimensional data
m¼ 1, while for a three dimensional phase space m would be three. The last terms
in the cost function deal with the events not in C which have to be added or
deleted. Note that | � | denotes the size of the set and lS is the cost parameter for this
operation. Suzuki et al. omitted this parameter, since they chose a cost of one for
such an operation14.

We determine the cost factors l0, lk based on the time series at hand:

l0 ¼
M

total time
ð2aÞ

lk ¼
M� 1PM� 1

i xi � xiþ 1j j
; ð2bÞ

Initial

Final

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Figure 4 | Illustration of the transformation cost time series method. The

true time series from which the two time series are sampled is indicated by

the dashed line. The initial time series segment (top) is transformed into

the final time series segment (bottom) in seven steps. Note that after seven

steps the segment is identical to the final target time series. The steps 1, 2,

4, 5, 6 are combinations of the elementary operations (i) time shift and

(ii) adjusting the amplitude (first two terms of equation (3)), while in step 3

one event is deleted and therefore the (iii) elementary operation was

applied (last term of equation (3)).
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where xi is the amplitude of ith element and M is the total number of events in the
time series. Note that l0 is the mean event frequency and lk is the inverse of the
average amplitude difference.

The cost factor lS is an optimization parameter. We constrain lSA[0, 4] and
explore the costs of deleting or adding an event to our time series. If our time series
consists of nþ 1 segments of equal length, we can calculate n costs for each
individual transformation of the segments. Assuming that the costs are linearly
independent, the central limit theorem indicates that the distribution of the costs
should be a normal distribution. In particular, when dealing with non-stationary
data we find that changing lS such that the distribution becomes normal greatly
improves the skill of our time series analysis method.

In Fig. 4, we give an illustration of how to perform this transformation. Recall
that the transformation is done by three elementary steps: (i) shifting an event in
time; (ii) changing the amplitude of the event; and (iii) creating or deleting an
event. The figure outlines the steps required to transform the top time series
segment into the bottom one. This transformation consists of seven elemental
steps. Moves 1 and 2 move the first and second event to the right and, in addition,
adjust their magnitude, that is, a combination of the two elementary steps
(i) and (ii). In move three the last event is deleted (that is, elementary step (iii)).
As we can see it takes four additional elementary steps (combinations of (i) and
(ii)) to transform the starting time series into the target time series.

Recurrence plot analysis. The resulting regularly sampled cost time series is
analysed using recurrence plot analysis to derive the recurrence quantification
measure determinism (DET)49. DET is a measure of predictability well suited to
detect regime changes in time series. DET characterizes a specific, recurrence-based
dynamical property, independent of the state of the system (that is, the amplitude
of the d18O at a given time). Therefore, DET values are not directly related to a
specific state value such as strong or weak monsoon regime). Nevertheless, it is
possible that certain regime states (for example, a strong monsoon regimes) are
linked to a characteristic recurrence pattern, for example, a more regular and
periodic dynamics (enhanced monsoon regimes) or less periodic and less
predictable dynamics (weak monsoon or monsoon failure). Such relationships
between states and recurrence properties seem typical in the climate system, where,
for example, cooling events have been linked to less predictable (less regular)
climate dynamics13,50. Depending on geographic location and regional climate
mechanisms, such relationships can differ significantly and can even be opposite.
On the basis of information from literature, we are able to link the characteristic
dynamical property of determinism to a certain climate regime, such as dry or wet,
for the considered proxy records.

For each proxy record, the transformation cost time series is divided into
segment sizes of 20 years containing, on average, 4 to 5 points. The final results
shown in Fig. 2 are relatively insensitive to the choice of segment size. The
proportionality parameters for modifications (i) and (ii) are determined from the
proxy records and are related to the average amplitude and sampling time. The
creation and deletion cost factor l is our optimisation parameter, chosen relative to
the other parameters. Determining the costs of transformation provides a measure
of how close one segment is to the following one and produces a regularly sampled
transformation cost time series with a temporal resolution of 20 years. Using
recurrence plot analysis, as described below, we are able to quantify the
predictability of each segment by deriving the determinism49. Abrupt transitions
into or out of a ‘wet’ or ‘dry’ state are hard to predict, while behaviour within a
regime follows a somewhat similar pattern throughout. As a result, determinism is
particularly effective at identifying regime changes.

Recurrence plots visualise a fundamental property of dynamical
systems—namely, when a the system ‘repeats’ itself, returning to a previous state.
Formally, for a set of observations ~xi for i¼ 1, y, N this is defined as

Ri;j Eð Þ ¼ Y E� ~xi �~xj

�� ��� �
i; j ¼ 1; . . . ;N ð3Þ

where E is some threshold distance, || � || is some distance measure, and Y(y)¼ 1 if
yZ0 and 0 otherwise49. This method is well suited to capture regime changes,
as such an extreme event would result in a sudden reduction in the number of
recurring events. Plotting this matrix allows visual analysis of the system, and from
this quantitative measures can be derived. Diagonal structures within the plot,
running parallel to the main diagonal (bottom left to top right), indicate sections of
the trajectory with locally similar paths. Calculating the fraction of points in the
recurrence plot that form diagonal lines with respect to all points gives us the
measure determinism. This is a measure of the amount of predictability within the
system, as stochastic or chaotic systems result in none or only short diagonals. For
the selected threshold distance E, a histogram of diagonal lengths, P(E, l), is derived
and a minimal diagonal length, lmin, is set. Determinism is then given by

DET ¼
�N

l¼lmin
lP E; lð Þ

�N
l¼1 lP E; lð Þ ð4Þ

In this analysis, the recurrence plot is derived using the Euclidean distance
norm and E-threshold distance is chosen adaptively to ensure a sensible density of
‘ones’ in the RP, fixed at 10%. In the determinism calculation, we take lmin to be 2.
These parameters were selected to ensure a balance between stability and,
particularly in the case of the threshold distance, the inclusion of enough data
points for the recurrence structure of the underlying system to be captured.

For details on the embedding required to transform time series data into a
trajectory in phase space see ref. 51.

The variation of a quantitative recurrence measure, such as DET, has to be
tested whether its change is significant or not. We follow the approach by Marwan
et al. and apply a bootstrapping technique52. The basic idea is that the dynamics of
the system does not change over time. Such a change is usually measured by a
sliding window approach, where DETi means the recurrence measure calculated in
the ith window. Within these windows i, we also have the histograms of diagonal
lengths, Pi(E, l). We now bootstrap the lengths l from the histograms of all windows
and use these lengths to calculate DET of this bootstrapped histogram, allowing an
average picture of the DET measure for the whole time. Repeating this procedure N
times, we get an empirical test distribution for DET. The 5 and 95% quantiles are
used to infer confidence (90%) about the variation of DET and allows us to judge
whether the found variability of the measure DET is significantly different from an
unchanged dynamics (that is, whether a regime transition occurs)52.

Cross-correlation of two irregularly sampled time series. To compare the
KNI-51 and Dongge Cave records with solar variability (see Supplementary
Fig. 1a,b), we correlate these records with the atmospheric D14C record compiled
by Stuiver et al.53 (see Supplementary Fig. 1c). This record, spanning 9,700 years,
was compiled from radiocarbon tree ring ages and is a widely used proxy for solar
irradiance with lower D14C values inferring increased solar irradiance3.
This record is already sampled at regular time intervals so we do not need to apply
the transformation cost function. However, the time steps of this data set do not
align with the determinism time series generated from the speleothem records.
We cannot, therefore, calculate cross-correlation without transforming the data
sets again.

Interpolation is commonly used in such a scenario, but this creates artificial,
and necessarily uncertain, data points in the time series. A Gaussian kernel-based
cross-correlation (gXCF) has been demonstrated to reduce such biases relative to
linear interpolation, as well as Lomb-Scargle, rectangular and quasi-sinusoidal
kernel-based cross-correlation estimators12. We therefore use gXCF as our
estimator of the similarity between the speleothem and solar activity data sets.

The benefit of kernel based techniques is that, rather than introducing new data
to the time series, the two data sets are ‘matched’ using a weighting function.
Pearson cross-correlation takes the sum of the product of paired data points in two
time series X and Y. However, using the kernel, each data point in time series X is
multiplied by every data point in Y, but with a weighting function dependent on
the distance between the time that these observations occurred. Kernel-based cross-
correlation is therefore given by

r̂x;y ¼
PNx

i

PNy

j xiyjb ty
j � tx

i

� �
PNx

i

PNy

j b ty
j � tx

i

� � ð5Þ

where bðty
j � tx

i Þ is the kernel, determining how much weight to give to the product
of two observations xi and yj, based on the time gap between them.

In the case of gXCF, the kernel is

b ¼ 1ffiffiffiffiffiffiffiffi
2ps
p e� dj j2=2s2 ð6Þ

where d is the distance between the observation times Dtxy
ij and s is the s.d. of the

kernel distribution, which scales the kernel. As there is no theory detailing the best
choice of scaling parameter s, we use s¼Dtxy/4 as per Rehfeld et al.12.

Data availability. The proxies from Dongge cave (d18O) and solar activity (d14C)
are published/available data sets. d18O proxy from KNI-51 cave, Kimberley is
available from the authors. Requests for the TACTS of proxies can be sent to D.E.
(eroglu@pik-potsdam.de).
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