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Abstract In this paper we propose a new method to

detect and classify coexisting solutions in nonlinear

systems. We focus on mechanical and structural

systems where we usually avoid multistability for

safety and reliability. We want to be sure that in the

given range of parameters and initial conditions the

expected solution is the only possible or at least has

dominant basin of attraction. We propose an algorithm

to estimate the probability of reaching the solution in

given (accessible) ranges of initial conditions and

parameters. We use a modified method of basin

stability (Menck et al. in Nat Phys 9(2):89–92, 2013).

In our investigation we examine three different

systems: a Duffing oscillator with a tuned mass

absorber, a bilinear impacting oscillator and a beam

with attached rotating pendula. We present the results

that prove the usefulness of the proposed algorithm

and highlight its strengths in comparison with classical

analysis of nonlinear systems (analytical solutions,

path-following, basin of attraction ect.). We show that

with relatively small computational effort (comparing

to classical analysis) we can predict the behaviour of

the system and select the ranges in parameter’s space

where the system behaves in a presumed way. The

method can be used in all types of nonlinear complex

systems.

Keywords Basin stability � Multistable systems �
Identification of solutions.

1 Introduction

In mechanical and structural systems the knowledge of

all possible solutions is crucial for safety and reliabil-

ity. In devices modelled by linear ordinary differential

equations we can predict the existing solutions using

analytical methods [25, 29]. However, in case of

complex, nonlinear systems analytical methods do not

give the full view of system’s dynamics [3, 20, 24, 31].

Due to nonlinearity, for the same set of parameters

more then one stable solution may exist [5, 11, 16,

18, 22, 23, 32]. This phenomenon is called
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multistability and has been widely investigated in all

types of dynamical systems (mechanical, electrical,

biological, neurobiological, climate and many more).

The number of coexisting solutions strongly depends

on the type of nonlinearity, the number of degrees of

freedom and the type of coupling between the

subsystems. Hence, usually the number of solutions

vary strongly when values of system’s parameters

changes.

As an example, we point out the classical tuned

mass absorber [1, 2, 6, 9, 12, 17, 21, 30]. This device is

well known and widely used to absorb energy and

mitigate unwanted vibrations. However, the best

damping ability is achieved in the neighbourhood of

the multistability zone [5]. Among all coexisting

solutions only one mitigates oscillations effectively.

Other solutions may even amplify an amplitude of the

base system. So, it is clear that only by analyzing all

possible solutions we can make the device robust.

Similarly, in systems with impacts one solution can

ensure correct operation of amachine, while othersmay

lead to damage or destruction [4, 7, 14, 15, 28]. The

same phenomena is present in multi-degree of freedom

systems where interactions between modes and internal

resonances play an important role [8, 10, 19, 26].

Practically, in nonlinear dynamical systems with

more then one degree of freedom it is impossible to

find all existing solutions without huge effort and

using classical methods of analytical and numerical

investigation (path-following, numerical integration,

basins of attractions), especially in cases when we

analyse a wider range of system’s parameters and we

cannot precisely predict the initial conditions. More-

over, solutions obtained by integration may have

meager basins of attraction and it could be hard or

even impossible to achieve them in reality. That is why

we propose here a new method basing on the idea of

basin stability [23]. The classical basin stability

method is based on the idea of Bernoulli trials, i.e.,

equations of system’s motion are integrated N times

for randomly chosen initial conditions (in each trial

they are different). Analyzing the results we asses the

stability of each solution. If there exist only one

solution the result of all trials is the same. But, if more

attractors coexist we can estimate the probability of

their occurrence for a chosen set of initial conditions.

In mechanical and structural systems we want to be

sure that a presumed solution is stable and has the

dominant basin of attraction in a given range of

system’s parameters. Therefore, we build up a basin

stability method by drawing values of system’s

parameters. We take into account the fact that values

of parameters are measured or estimated with some

finite precision and also that they can slightly vary

during normal operation. When investigated system

has multiple attractors or their basins of attractions are

especially complex (fractal with the low level of

compactness) it may be necessary to support proposed

method by the classical analysis to investigate the

structure of solutions.

The paper is organized as follows. In Sect. 2 we

introduce simple models which we use to demonstrate

the main idea of our approach. In the next section we

present and describe the proposed method. Section 4

includes numerical examples for systems described in

Sect. 2. Finally, in Sect. 5 our conclusions are given.

2 Model of systems

In this section we present systems that we use to

present our method. Two models are taken from our

previous papers [5, 13] and the third one was described

by Pavlovskaia et al. [27]. We deliberately picked

models whose dynamics is well described because we

can easily evaluate the correctness and efficiency of

the method we propose.

2.1 Tuned mass absorber coupled to a Duffing

oscillator

The first example is a system with a Duffing oscillator

and a tuned mass absorber. It was investigated in [5]

and is shown in Fig. 1. Themain body consists of mass

M fixed to the ground with nonlinear spring (hardening

characteristic k1 þ k2y
2) and a viscous damper (damp-

ing coefficient c1). The main mass is forced externally

by a harmonic excitation with amplitude F and

frequency x. The absorber is modelled as a mathe-

matical pendulum with length l and mass m. A small

viscous damping is present in the pivot of the

pendulum.

The equations of the system’s motion are derived in

[5], hence we do not present their dimension form.

Based on the following transformation of coordinates

and parameters we reach the dimensionless form:

x2
1 ¼ k1

Mþm
, x2

2 ¼
g
l
, a ¼ m

Mþm
, b ¼ x2

x1

� �2
, a ¼ k2l

2

ðMþmÞx2
1

,
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f ¼ F
ðMþmÞlx2

1

; d1 ¼ cx
ðMþmÞx1

, d2 ¼ cu
ml2x2

, l ¼ x
x1
,

s ¼ tx1, x ¼ y
l
, _x ¼ _y

x1l
, €x ¼ €y

x2
1
l
, c ¼ u; _c ¼ _u

x2
; €c ¼ €u

x2
2

.

The dimensionless equations are as follows:

€x�ab€csinc�ab _c2 coscþ xþax3þd1 _x¼ f cosls;

€c�1

b
€xsincþ sincþd2 _c¼ 0;

ð1Þ

where l is the frequency of the external forcing and we
consider it as controlling parameter. The dimension-

less parameters have the following values: f ¼ 0:5,

a ¼ 0:091, b ¼ 3:33, a ¼ 0:031, d1 ¼ 0:132 and

d2 ¼ 0:02. Both subsystems (Duffing oscillator and

the pendulum) have a linear resonance for l ¼ 1:0.

2.2 System with impacts

As the next example we analyse a system with impacts

[27]. It is shown in Fig. 2 and consists of mass M

suspended by a linear spring with stiffness k1 and a

viscous damper with the damping coefficient c to

harmonically moving frame. The frame oscillates with

amplitude A and frequency X. When amplitude of

mass M motion reaches the value g, we observe soft

impacts (spring k2 is much stiffer than spring k1).

The dimensionless equation of motion is as follow

(for derivation see [27]) :

€xþ 2n _xþ xþ b x� eð ÞH x� eð Þ ¼ ax2 sin xsð Þ

where x ¼ y
y0

is the dimensionless vertical displace-

ment of mass M, s ¼ xnt is the dimensionless time,

xn ¼ k1
M
, b ¼ k2

k1
the stiffness ratio, e ¼ g

y0
the dimen-

sionless gap between equilibrium of mass M and the

stop suspended on the spring k2, a ¼ A
y0
and x ¼ X

xn
are

dimensionless amplitude and frequency of excitation,

n ¼ c
2mxn

is the damping ratio, y0 ¼ 1:0 ½mm� and Hð�Þ
the Heaviside function. In our calculations we take the

following values of system’s parameters: a ¼ 0:7,

n ¼ 0:01, b ¼ 29, e ¼ 1:26. As a controlling param-

eter we use the frequency of excitation x.

2.3 Beam with suspended rotating pendula

The last considered system consists of a beam which

can move in the horizontal direction and n rotating

pendula. The beam has the mass M and supports n

rotating, excited pendula. Each pendulum has the

same length l and masses mi ði ¼ 1; 2; . . .; nÞ. We

show the system in Fig. 3 [13]. The rotation of the i-th

pendulum is given by the variable ui and its motion is

damped by the viscous friction described by the

damping coefficient cu. The forces of inertia of each

pendulum acts on the beam causing its motion in the

horizontal direction (described by the coordinate x).

The beam is considered as a rigid body, so we do not

consider the elastic waves along it. We describe the

phenomena which take place far below the resonances

for longitudinal oscillations of the beam. The beam is

connected to a stationary base by a light spring with

the stiffness coefficient kx and viscous damper with a

damping coefficient cx. The pendula are excited by

external torques proportional to their velocities:

N0 � _uiN1, where N0 and N1 are constants. If no other

external forces act on the pendulum, it rotates with the

constant velocity x ¼ N0=N1. If the system is in a

gravitational field (where g ¼ 9:81 ½m=s2� is the

acceleration due to gravity), the weight of the pendu-

lum causes the unevenness of its rotation velocity, i.e.,

M
F tcos( )ω

y

l

m o
φ

k1 2k y+ 2 cx

cφ

Fig. 1 The model of the first considered system. Externally

forced Duffing oscillator with attached pendulum (tuned mass

absorber)

M

A tsin( )Ω

x

k1 c

k2

g

Fig. 2 The model of the second considered system. Externally

forced oscillator with impacts
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the pendulum slows down when the centre of its mass

goes up and accelerates when the centre of its mass

goes down.

The system is described by the following set of

dimensionless equations:

mil
2 €uiþmi€xlcosuiþcu _uiþmiglsinui¼N0� _uiN1

ð2Þ

M þ
Xn
i¼1

mi

 !
€xþ cx _xþ kxx

¼
Xn
i¼1

mil � €ui cosui þ _u2
i sinui

� � ð3Þ

In our investigation we analyze two cases: a system

with two pendula (where n ¼ 2 and i ¼ 1; 2) and with

20 pendula (n ¼ 20 i ¼ 1; 2; :::; n).. The values of the

parameters are as follows: mi ¼ 2:00
n
, l ¼ 0:25,

cu ¼ 0:02
n
, N0 ¼ 5:00, N1 ¼ 0:50, M ¼ 6:00,

g ¼ 9:81, cx ¼ ln 1:5ð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx M þ

Pn
i¼1

mi

� �s
and kx is a

controlling parameter. The derivation of the system’s

equations can be found in [13]. We present the

transformation to a dimensionless form in

‘‘Appendix’’.

3 Methodology

In [23] Authors present a ‘‘basin stability’’ method

which let us estimate the stability and number of

solutions for given values of system parameters. The

idea behind basin stability is simple, but it is a

powerful tool to assess the size of complex basins of

attraction in multidimensional systems. For fixed

values of system’s parameters, N sets of random

initial conditions are taken. For each set we check the

type of final attractor. Based on this we calculate the

chance to reach a given solution and determine the

distribution of the probability for all coexisting

solutions. This gives us information about the number

of stable solutions and the sizes of their basins of

attraction.

We consider the dynamical system _x ¼ f ðx; xÞ,
where x 2 Rn and x 2 R is the system’s parameter.

Let B � Rn be a set of all possible initial conditions

and C � R a set of accessible values of system’s

parameter. Let us assume that an attractorA exists for

x 2 CA � C and has a basin of attraction bðAÞ.
Assuming random initial conditions the probability

that the system will reach attractorA is given by p Að Þ.
It is calculated based on classical definition of

probability: p Að Þ ¼ N Að Þ=N, where N Að Þ is number

of trials leading to attractor A. If this probability is

equal to p Að Þ ¼ 1:0 this means that the considered

solution is the only one in the taken range of initial

conditions and given values of parameters. Otherwise

other attractors coexist. The initial conditions of the

system are random from set BA � B. We can consider

two possible ways to select this set.

1. The first way ensures that the set BA includes

values of initial conditions leading to all possible

solutions. This approach is appropriate if we want

to get a general overview of the system’s

dynamics.

2. In the second approach we use a narrowed set of

initial conditions that corresponds to practically

accessible initial states.

In our method we chose the second approach

because it let us take into account constrains imposed

on the system and because in engineering we usually

know or expect the initial state of the system with

1

m1

x

l

l

ll

M
kx

c

φ 2 m2
φ

m3

3φ

nφ mn

x

cφ cφ cφ cφ

Fig. 3 The model of the

third considered system.

Horizontally moving beam

with attached pendulums
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some finite precision. The definition of sets of initial

conditions is crucial for correctness of obtained

results. It should base on brief knowledge of systems

dynamics (maximum amplitudes of displacements and

velocities of solutions) and information about ranges

of accessible initial conditions (maximum values of

displacements and velocities that can be applied to the

system). In proposed method we are interested in

solutions which have basins of attractions in the

accessible ranges of initial conditions.

In the classical approach of Menck et al. [23] the

values of system’s parameters are fixed and do not

change during calculations. The novelty of our method

is that we not only draw initial conditions but also

values of some selected parameters of the system. We

assume that the initial conditions and some of the

system’s parameters are chosen randomly. Then using

N trials of numerical simulations we estimate the

probability that the system will reach a given attractor

A (p Að Þ). The idea is to take into consideration the

fact that the values of system’s parameters are

measured or estimated with some finite accuracy

which is often hard to determine. Moreover values of

parameters can vary during normal operation. There-

fore drawing values of parameters we can describe

how a mismatch in their values influences the

dynamics of the system and estimate the risk of

failure. In many practical applications one is interested

in reaching only one presumed solution A, and the

precise description of other coexisting attractors is not

necessary. We usually want to know the probability of

reaching the expected solution p Að Þ and the chance

that the system behave differently. If p Að Þ is suffi-

ciently large, we can treat the other attractors as an

element of failure risk.

In our approach we perform the following steps:

1. We pick values of system’s parameters from the

set CA � C.
2. We select the set CA so that it consists of all

practically accessible values of system’s

parameters x . This let us ensure that a given

solution indeed exists in a practically accessible

range (taking into account the mismatch in

parameters).

3. We subdivide the set CA in to m ¼ 1; 2; . . .M
equally spaced subsets. The subsets CmA do not

overlap and the relation
S

m¼1...M CmA ¼ CA is

always fulfilled.

4. Then for each subset CmA we randomly pick N sets

of initial conditions and value of the considered

parameter. For each set we check the final

attractor of the system.

5. After a suficient number of trials we calculate the

probability of reaching a presumed solution or

solutions.

6. Finally we describe the relation between the value

of the system’s parameter and the ‘‘basin

stability’’ of reachable solutions.. . .

In our calculations for each range of parameter values

(subset CmA ) we draw from N ¼ 100 up to N ¼ 1000

sets of initial conditions and parameter. The value of

N strongly depends on the complexity of the analysed

system. Also the computation time for a single trial

should be adjusted for each system independently such

that it can reach the final attractor. In general, we

recommend that in most casesN should be at least 100.

If the basins of attractions are especially complex

(fractal with low level of compactness) one should

take large number of trials N and in the selected range

of operation analyze system with classical methods.

Nevertheless, presented algorithm in very efficient to

select ranges with the low number of co-existing

solutions even in extremely complex systems.

4 Numerical results

4.1 Tuned mass absorber coupled to a Duffing

oscillator

At the beginning we want to recall the results we

present in our previous paper [5]. As a a summary we

show Fig. 4 with a two dimensional bifurcation

diagram obtained by the path-following method. It

gives bifurcations for varying amplitude f and fre-

quency l of the external excitation (see Eq. 1). Lines

shown in the plot correspond to different types of

bifurcations (period doubling, symmetry breaking,

Neimark-Sacker and resonance tongues). We present

these lines in one style because the structure is too

complex to follow bifurcation scenarios and we do not

need that data (details are shown in [5]). We mark

areas where we observe the existence of one solution

(black colour), or the coexistence of two (grey) and

three (hatched area) stable solutions. The remaining

part of the diagram (white area) corresponds to

Meccanica (2016) 51:2713–2726 2717
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situations where there are four or more solutions.

Additionally, by white colour we also mark areas

where only the Duffing system is oscillating in 1:1

resonance with the frequency of excitation and the

pendulum is in a stable equilibrium position, i.e., HDP

(hanging down pendulum) state. In this case the

dynamics of the system is reduced to the oscillations of

summary mass (M þ m).

The detailed analysis of system 1 is time con-

suming and creation of Fig. 4 was preceded by

complex analysis done with large computational

effort. Additionally, the obtained results give us no

information about the size of the basins of attraction

of each solution—which practically means that some

of the solutions may occur only very rarely in the real

system (i.e. due to not accessible initial conditions).

Nevertheless, such analysis gives us an in-depth

knowledge about the bifurcation structure of the

system. As we can see, the range where less then

three solutions exist is rather small, especially for

l\2:0. To illustrate our method of analysis, we focus

on three solutions: 2:1 oscillating resonance, HDP and

1:1 rotating resonance assuming that only they have

some practical meaning.

To show our results obtained with integration, we

compute bifurcation diagrams for f ¼ 0:5 in the range

l 2 ½0:1; 3:0� (see Fig. 5). In Fig. 5a we increase l
from 0.1 to 3.0 and in Fig. 5b we decrease l from 3.0

to 0.1. As the initial conditions we take the equilibrium

position (x0 ¼ _x0 ¼ 0:0 and c0 ¼ _c0 ¼ 0:0). In both

panels we plot the amplitude of the pendulum c.
Ranges where the diagrams differ we mark by grey

rectangles. It is easy to see that there are two

dominating solutions: HDP and 2:1 internal reso-

nance. Near l ¼ 1:0 we observe a narrow range of 1:1

and 9:9 resonances and chaotic motion (for details see

Figure 6 in [5]). Based on previous results we know

that we detected all solutions existing in the consid-

ered range, however we do not have information about

the size of their basins of attraction and coexistence.

Hence the analysis with the proposed method should

give us new important information about the system’s

dynamics. Contrary to the bifurcation diagram

obtained by path-following in Fig. 5, we do not

0
0 0.5 1 1.5 2

f

2.5 3

1

1.5

2

2.5

0.5

μ

2:1

2:1

1:1

1:3

1:3
1:11:1

2:5

1:2

2:3

11

m:n

11

m:n

- hanging down, no motion

- oscillations, resonance m to n

- one rotation clockwise, one counterclockwise

- rotations resonance, m to n

Symbols describing motion of the pendulum

Fig. 4 Two-parameter bifurcations diagram of the system (1) in

the plane f ; lð Þ showing periodic oscillations and rotations of

the pendulum. Black colour indicates one attractor, grey colour

shows two coexisting attractors (the same as for black but with a

coexisting stable steady state of the pendulum). In the hatched

area we observe the coexistence of stable rotations and a

stable steady state of the pendulum. A detailed analysis is

presented in [5]
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observe rotating solutions (the other set of initial

conditions should be taken).

In Fig. 6 we show the probability of reaching the

three aforementioned solutions obtained using the

proposed method. The initial conditions are random

numbers drawn from the following ranges:

x0 2 ½�2; 2�, _x0 2 ½�2; 2�, c0 2 ½�p; p� and _c0 2
½�2:0; 2:0� (ranges there selected basing on the results
from [5]). The frequency of excitation is within a

range l 2 ½0; 3:0� (Fig. 6a, c), then we refine it to l 2
½1:25; 2:75� (Fig. 6b, d). In both cases we take 15

equally spaced subsets of l and in each subset we

calculate the probability of reaching a given solution.

For each subset we calculate 1000 trials each time

drawing initial conditions of the system and a value of

l from the appropriate range. Then we plot the dot in

the middle of the subset which indicate the probability

of reaching a given solution in each considered range.

Lines that connect the dots are shown just to ephasize

the tendency. For each range we take N ¼ 1000

because we want to estimate the probability of a

solution with small basin of stability (1:1 rotating

periodic solution).

As we can see in Fig. 4, the 2:1 resonance solution

exists in the area marked by black colour around l ¼
2:0 and coexists with HDP in the neighbouring grey

zone. In Fig. 6 we mark the probability of reaching the

2:1 resonance using blue dots. As we expected, for

l\1:4 and l[ 2:2 the solution does not exist. In the

range l 2 ½1:4; 2:2� the maximum value of probability

pð2:1Þ ¼ 0:971 is reached in the subset l 2 ½1:8; 2:0�

and outside that range the probability decreases. To

check if we can reach pð2:1Þ ¼ 1:0, we decrease the

range of parameter’s values to l 2 ½1:25; 2:75� and the
size of subset to Dl ¼ 0:1 (we still have 15 equally

spaced subsets). The results are shown in Fig. 6b

similarly in blue colour. In the range l 2 ½1:95; 2:05�
the probability p(2 : 1) is equal to unity and in the

range l 2 ½1:85; 1:95� it is slightly smaller

pð2:1Þ ¼ 0:992. Hence, for both subsets we can be

nearly sure that the system reaches the 2:1 solution.

This gives us indication of how precise we have to set

the value of l to be sure that the system will behave in

a presumed way.

A similar analysis is performed for HDP. The

values of probability is indicated by the red dots. As

one can see for l\0:8, l 2 ½1:2; 1:4� and

l 2 ½2:6; 2:8�, the HDP is the only existing solution.

The rapid decrease close to l � 1:0 indicates the 1:1

resonance and the presence of other coexisting solu-

tions in this range (see [5]). In the range l 2 ½1:2; 1:4�
the probability pðHDPÞ ¼ 1:0 which corresponds to a

border between solutions born from 1:1 and 2:1

resonance. Hence, up to l ¼ 2:0 the probability of the

HDP solution is a mirror refection of p(2 : 1). The

same tendency is observed in the narrowed range as

presented in Fig. 6b. Finally, for l[ 2:0 the third

considered solution comes in and we start to observe

an increase of probability of the rotating solution

Sðl; HDPÞ as shown in Fig. 6c. However, the chance

of reaching the rotating solution remains small and

never exceeds pð1:1Þ ¼ 8� 10�2. We also plot the

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0 0.5 1 1.5 2 2.5 3
μ

-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1
1.2

0.5 1 1.5 2 2.5 3
μ

(b)(a)

Fig. 5 Bifurcation diagram showing the behaviour of the

pendulum suspended on the Duffing oscillator. For subplot a the
value of the bifurcation parameter l was increased, while for

subplot bwe decreased the value of l.Gray rectanglesmark the

range of the bifurcation parameter l for which different

attractors coexist. A detailed analysis is presented in [5]
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probability of reaching the rotating solution in the

narrower range of l in Fig. 6d. The probability is

similar to the one presented in Fig. 6c—it is low and

does not exceed pð1:1Þ ¼ 8� 10�2. Note that the

results presented in Fig. 6a–d are computed for

different sets of random initial conditions and param-

eter values; hence the obtained probability can be

slightly different.

4.2 System with impacts

In this subsection we present our analysis of different

periodic solutions in the system with impacts. A

discontinuity usually increases the number of coex-

isting solutions. Hence, in the considered system we

observe a large number of different stable orbits and

their classification is necessary. In Fig. 7 we show two

bifurcation diagrams with x as controlling parameter.

Both of them start with initial conditions x0 ¼ 0:0 and

_x0 ¼ 0:0. In panel (a) we increase x from 0.801 to

0.8075; while in panel (b) we decrease x in the same

range. We select the range of x basing on the results

presented in [27]. As one can see, both diagrams differ

in two zones marked by grey colour. Hence, we

observe a coexistence of different solutions, i.e., in the

range x 2 ½0:8033; 0:8044� solutions with period-3
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Fig. 6 Probability of reaching given solutions in (1) system

with tuned mass absorber. Subplots a, b present solutions with

2:1 periodic oscillations (blue) and without motion of the

pendulum (red). Subplots c, d present the probability of

reaching 1:1 rotations (black). (Please note that in both cases

(a, b) and (c, d) the initial conditions and parameter are

somehow random, hence the results may slightly differ). (Color

figure online)
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and -2 are present, while in the range x 2
½0:8068; 0:8075� we detected solutions with period-2

and -5. As presented in [27] some solutions appear

from a saddle-node bifurcation and we are not able to

detect them with the classical bifurcation diagram.

The proposed method solves this problem and shows

all existing solutions in the considered range of

excitation frequency.

We focus on periodic solutions with periods that are

not longer than eight periods of excitation. We observe

periodic solutions with higher periods in the narrow

range of x but the probability that they will occur is

very small and we can neglect them. All non-periodic

solutions are chaotic (quasiperiodic solutions are not

present in this system). The results of our calculations

are shown in Fig. 8a, b. We take initial conditions

from the following ranges x0 2 ½�2; 2�, _x0 2 ½�2; 2�.
The controlling parameter x is changed from 0.801 to

0.8075 with step Dx ¼ 0:0005 in Fig. 8a and from

0.806 to 0.8075 with the step Dx ¼ 0:0001 in Fig. 8b

(in each subrange of excitation’s frequency we pick

the exact value of x randomly from this subset). The

probability of periodic solutions is plotted by lines

with different colours and markers. We detect the

following solutions: period-1, -2, -3, -5 (two different

attractors with large and small amplitude), -6 and -8.

The dot lines indicate the sum of all periodic solutions’

probability (also with period higher then eight).

Hence, when its value is below 1, chaotic solution

exist. Dots are drawn for mean value i.e, middle of the

subset. For each range we take N ¼ 200 and we

increase the calculation time because the transient

time is sufficiently larger than in the previous example

due to the piecewise smooth characteristic of spring’s

stiffness.

As we can see, the chance of reaching a given

solution strongly depends on x. Hence, in the sense of
basin stability we can say that stability of solutions

rely upon the x value. In Fig. 8a the probability of a

single solution is always smaller than one. Neverthe-

less, we observe two dominant solutions: period-5

with large amplitude in the first half of the considered

x range and period-2 in the second half of the range.

The maximum registered value of probability is

pðperiod�2Þ ¼ 0:92 and it refers to the period-2

solution for x � 0:80675. To check if we can achieve

even higher probability we analyse a narrower range

of x and decrease the step (from Dx ¼ 0:0005 to

Dx ¼ 0:0001). In Fig. 8b we see that in range x 2
½0:8069; 0:807� the probability of reaching the period-
2 solution is equal to 1. Hence, in the sense of basin

stability it is the only stable solution. Also in the range

x 2 ½0:8065; 0:8072� the probability of reaching this

solution is higher then 0.9 and we can say that its basin

of attraction is strongly dominant.

Other periodic solutions presented in Fig. 8a are:

period-1 is present in the range x 2 ½0:801; 0:8025�
with the highest probability pðperiod�1Þ ¼ 0:4,

period-3 exists in the range x 2 ½0:803; 0:805� with
the maximum probability pðperiod�3Þ ¼ 0:36,
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Fig. 7 Bifurcation diagram showing the behaviour of impacting

oscillator (2). For subplot a the value of the bifurcation

parameter x was increased while for subplot b we decreased

the value ofx.Grey rectanglesmark the range of the bifurcation

parameter x for which different attractors coexist. Further

analysis can be found in [27]
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period-2 is observed in two ranges x 2
½0:8025; 0:8035� and x 2 ½0:804; 0:8045� with the

highest probability equal to 0.18 and 0.12 respectively.

Solution with period-5 (small amplitude’s attractor)

exists also in two ranges x 2 ½0:8055; 0:8065� and
x 2 ½0:807; 0:8075�with the highest probability equal
to 0.14 and 0.43 respectively.

4.3 Beam with suspended rotating pendula

The third considered system consists of a beam that

can move horizontally with two (n ¼ 2) or twenty

(n ¼ 20) pendula suspended on it. As a control

parameter we use kx which describes the stiffness of

the beam’s support. For the considered range of kx 2
½100; 5000� two stable periodic attractors exist in that

system. One corresponds to complete synchronization

of the rotating pendula. The second one is called anti-

phase synchronization and refers to the state when the

pendula rotate in the same direction but are shifted in

phase by p.
In Fig. 9 we show four bifurcation diagrams with kx

as the controlling parameter and a Pioncaré map of

rotational speed of the pendula. The subplots (a, b)

refer to the system with two pendula (n ¼ 2). We start

with zero initial conditions: x0 ¼ 0:0, _x0 ¼ 0:0,

u10 ¼ 0:0, _u10 ¼ 0:0, u20 ¼ 0:0, _u20 ¼ 0:0 and take

kx 2 ½100; 5000�. The parameter kx is increasing in

subplot (a) and decreasing in (b). We see that in the

range marked by grey rectangle both complete and

anti-phase synchronization coexist. In subplots (c,d)

we present results for twenty pendula (n ¼ 20). We

start the integration from initial conditions that refer to

anti-phase synchronization (two clusters of 10 pendula

shifted by p) i.e. x0 ¼ 0:1, _x0 ¼ 0:00057, uk0 ¼ 0:0,
_uk0 ¼ 9:81, uj0 ¼ 3:09, _uj0 ¼ 9:784 where: k ¼
1; 2; . . .10 and j ¼ 11; 12; . . .20. The value of kx is

increasing in subplot (c) and decreasing in (d).

Similarly as in the two pendula case, we observe the

region (kx 2 ½100; 750�) where two solutions coexist:

anti-phase synchronization and non-synchronous

state. To further analyse multistability in that system

we use proposed method.

In Fig. 10 we present how the probability of

reaching a given solution depends on the parameter

kx. In subplot (a) we show the results for the system

with 2 pendula, while in subplot (b) results obtained

for the system with 20 pendula suspended on the beam

are given. In both cases we consider kx 2 ½0; 5000� and
assume the following ranges of initial conditions:

x0 2 ½�0:15; 0:15�, _x0 2 ½�0:1; 0:1�, ui0 2 ½�p; p�,
u20 2 ½�p; p�, _u10 2 ½�3:0; 3:0� and _u20 2
½�3:0; 3:0� in Fig. 10a and x0 2 ½�0:15; 0:15�,
_x0 2 ½�0:1; 0:1�, ui0 2 ½�p; p�, _ui0 2 ½�p; p� where
i ¼ 1. . . 20 in Fig. 10b. We take 20 subsets of

parameter kx values with the step equal to Dkx ¼ 250

ω
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- period 1
- period 2

- period 3
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Fig. 8 Probability of reaching given solutions in the impacting

system. Subplots a, b present different periodic solutions and the
summary probability of reaching any periodic solution. In

Subplot a we analyze x 2 ½0:801; 0:8075� with the step

Dx ¼ 0:0005, and in subplot b we narrow the range x 2
½0:806; 0:8075� and decrease the step sizeDx ¼ 0:0001. (Please
note that in cases (a, b) the initial conditions and parameter are

somehow random, hence the results may slightly differ)
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and mark their borders with vertical lines. For each set

we run N ¼ 100 simulations; each one with random

initial conditions and kxvalue drawn from the respec-

tive subset. Then, we estimate the probability of

reaching given solution. The dots in Fig. 10 indicate

the probability of reaching a given solution in the

considered range (dots are drawn for mean value, i.e,

middle of subset). Contrary to both already presented

systems, this one has a much larger dimension of phase

space (six and forty two), hence we decide to decrease

number of the trials to N ¼ 100 in order to minimise

the time of calculations.

In Fig. 10a we show the results for 2 pendula.When

kx 2 ½0; 250� only anti-phase synchronization is pos-

sible. Then, with the increase of kx we observe a

sudden change in the probability and for kx 2

½750; 1750� only complete synchronization exists.

For kx [ 2000 a probability of reaching both solutions

fluctuates around pðcompleteÞ ¼ 0:7 for complete and

pðanti�phaseÞ ¼ 0:3 for anti-phase synchronization.

Further increase of kx does not introduce any signif-

icant changes.

In Fig. 10b we show the results for twenty pendula.

For kx 2 ½0; 250� the system reaches solutions differ-

ent from the two analysed (usually chaotic). Then, the

probability of reaching complete synchronization

drastically increases and for kx 2 ½750; 5000� it is

equal to pðcompleteÞ ¼ 1:0 which means that the

pendula always synchronize completely. We also

present the magnification of the plot where we see that

in fact for kx 2 ½715; 5000� we will always observe

complete synchronization of the pendula. Please note

(b)(a)

(d)(c)

Fig. 9 Bifurctaion diagram showing the behaviour of two (a,
b) and twenty (c, d) pendula suspended on the moving beam. For

subplots a, c the value of the bifurcation parameter kx was

increased, while for subplots b, d we decreased the value of kx.

Different colors correspond to Poincaré maps for different

pendula. Grey rectangles mark the ranges of the bifurcation

parameter kx for which different attractors coexist. Further

analysis of number of solutions can be found in [13]

Meccanica (2016) 51:2713–2726 2723

123



that for calculating both plots we use random initial

conditions and kx value hence, the results for a

narrower range may differ. Anti-phase synchroniza-

tion was never achieved with randomly chosen initial

conditions. This means that even though this solution

is stable for kx 2 ½100; 750� (see Fig. 9c) it has a much

smaller basin of attraction and is extremely hard to

obtain in reality. The results presented in Fig. 10 prove

that by proper tuning of the parameter kx we can

control the systems behaviour even if we can only fix

the kx value with finite precision.

5 Conclusions

In this paper we propose a new method of detection of

solutions’ in non-linear mechanical or structural sys-

tems. The method allows to get a general view of the

system’s dynamics and estimate the risk that the

system will behave behave differently than assumed.

To achieve this goal we extend the method of basin

stability [23]. We build up the classical algorithm and

draw not only initial conditions but also values of

system’s parameters. We take this into account

because the identification of parameters’ values is

quite often not very precise. Moreover values of

parameters often slowly vary during operation.

Whereas in practical applications we usually need

certainty that the presumed solution is stable and its

basin of stability is large enough to ensure its

robustness. Hence, there is a need to describe how

small changes of parameters’ values influence the

behaviour of the system. Our method provides such a

description and allows us to estimate the required

accuracy of parameters values and the risk of unwanted

phenomena.Moreover it is relatively time efficient and

does not require high computational power.

We show three examples, each for a different class

of systems: a tuned mass absorber, a piecewise smooth

oscillator and a multi-degree of freedom system.

Using the proposed method we can estimate the

number of existing solutions, classify them and predict

their probability of appearance. Nevertheless, in many

cases it is not necessary to distinct all solutions

existing in a system but it is enough to focus on an

expected solution, while usually other periodic, quasi-

periodic and chaotic solutions are classified as unde-

sirable. Such a strategy simplifies the analysis and

reduces the computational effort. We can focus only

on probable solutions and reduce the number of trials

omitting a precise description of solutions with low

probability.

The proposed method is robust and can be used not

only for mechanical and structural systems but also for

any system given by differential equations where the

knowledge about existing solutions is crucial.
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Fig. 10 Probability of reaching given solutions in the system

with rotating pendula. Subplot a refers to the case with two

pendula and b with twenty pendula. (Please note that on plot

(b) and its magnification the initial conditions and parameter are

somehow random, hence the results may slightly differ)
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Appendix

Themotion of the system presented in Fig. 3 is described

by the following set of two second order ODEs:

miDl
2
D
€u0
i þ miD

€x0lD cosu0
i þ cuD _u0

i

þ miDgDlD sinu0
i ¼ N0D � _u0

iN1D

ð4Þ

MD þ
Xn
i¼1

miD

 !
€x0 þ cxD _x0 þ kxDx

0

¼
Xn
i¼1

miDlD � €u0
i cosu

0
i þ _u02

i sinu
0
i

� � ð5Þ

The values of parameters and their dimensions are as

follow: miD ¼ 2:00
n
½kg�, lD ¼ 0:25 ½m�, cuD ¼ 0:02

n
½Nms�,

N0D ¼ 5:00 ½Nm�, N1D ¼ 0:50 ½Nms�, MD ¼ 6:00 ½kg�,

gD ¼ 9:81 ½m
s2
�, cxD ¼

ln 1:5ð Þ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx Mþ

Pn
i¼1

mi

� �s
½Ns
m
� and

kxD ½Nm� is controlling parameter. The derivation of the

above equations can be found in [13]. We perform a

transformation to a dimensionless form in a way that

enables us to hold parameters’ values. It is because we

want to present new results in a way that thay can be

easily compared to results of the investigation pre-

sented in [13]. We introduce dimensionless time

s¼ tx0, where x0 ¼ 1 ½Hz�, and unit parameters

m0 ¼ 1:0 ½kg�, l0 ¼ 1:0 ½m� and reach the dimensionless

equations:

mil
2 €ui þ mi€xl cosui þ cu _ui þ migl sinui

¼ N0 � _uiN1

ð6Þ

M þ
Xn
i¼1

mi

 !
€xþ cx _xþ kxx

¼
Xn
i¼1

mil � €ui cosui þ _u2
i sinui

� � ð7Þ

where: x ¼ x0

l0
, _x ¼ _x0

l0x0
, €x ¼ €x0

l0x2
0

, ui ¼ u0
i, _ui ¼

_u0
i

x0
,

€ui ¼
€u0
i

x2
0

, mi ¼ miD

m0
, l ¼ lD

l0
, cu ¼ cuD

m0l2ox0
, N0 ¼ N0D

m0l2ox
2
0

,

N1 ¼ N1D

m0l2ox0
, M ¼ MD

m0
, g ¼ gD

lox2
0

, cx ¼ cxD
m0x0

and dimen-

sionless control parameter kx ¼ kxD
m0x2

0

. Dimensionless

parameters have the following values: mi ¼ 2:0
n
,

l ¼ 0:25, cu ¼ 0:02
n
, N0 ¼ 5:0, N1 ¼ 0:5, M ¼ 6:0,

g ¼ 9:81.
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