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Survivability of Deterministic 
Dynamical Systems
Frank Hellmann1,*, Paul Schultz1,2,*, Carsten Grabow1, Jobst Heitzig1 & Jürgen Kurths1,2,3,4

The notion of a part of phase space containing desired (or allowed) states of a dynamical system is 
important in a wide range of complex systems research. It has been called the safe operating space, 
the viability kernel or the sunny region. In this paper we define the notion of survivability: Given 
a random initial condition, what is the likelihood that the transient behaviour of a deterministic 
system does not leave a region of desirable states. We demonstrate the utility of this novel stability 
measure by considering models from climate science, neuronal networks and power grids. We also 
show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very 
efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work 
underlines that the type of stability measured by survivability is not captured by common asymptotic 
stability measures.

In almost all dynamical systems applicable to the real world, the stability of the system’s stationary states (periodic 
orbits, chaotic attractors, etc.) is of key interest, because perturbations are never truly absent and initial data is 
never exactly determined. Nevertheless, the asymptotic stability of the system’s attractors ensures that we can still 
extract sensible long-term information from our dynamical models.

Complementary to the notion of stability, one can analyse whether the system will remain in a desirable 
regime1. This becomes important when a model represents a system that we have influence on, either because 
we engineer its fundamental behaviour, or because there are management options. We often want to design the 
dynamics, or our interventions, such as to more easily keep the system in such a desired state. Note that the desir-
able region not necessarily contains a stationary state.

For the traditional notion of asymptotic stability against small perturbations, the key mathematical concept 
is the analysis of the linearised dynamics, in particular by means of the Lyapunov exponent or master stability 
function2,3.

Real-world systems typically are multistable4–6. They have more than one stable attractor7, and thus potentially 
exhibit a wide range of different asymptotic behaviours. The key question then becomes from which initial state 
which attractor is reached, i.e., to determine the basin of attraction of an attractor. Most work so far focused on 
the geometry of the basin of attraction8 of desirable attractors, e.g. by finding Lyapunov functions9–11.

A recent idea that has been found to be useful is to study a more elementary property, i.e. not which states go 
to an attractor, but just how many. This quantity, the volume of the basin of attraction of a given attractor, can 
then be interpreted as the stability of the system in the face of a random, non-small perturbation. It quantifies 
the probability that the typically non-linear response to such a perturbation will lead the system to a different, 
undesirable attractor. This probability is called the basin stability (SB) of an attractor12. This is important for a 
number of applications where relevant system deviations are typically not small, for example in neuro science, 
system Earth or power grids.

One of the key appealing features of SB is that, by studying just the volume rather than the shape of the basin 
of attraction, it becomes numerically tractable to analyse even very high-dimensional systems. It was also shown 
that the information revealed by the volume of the basin genuinely complements the information provided by the 
Lyapunov exponents of the system12.

There are, however, two major drawbacks when estimating SB. On the one hand, the measure relies on identi-
fying the asymptotic behaviour of a system, which might be difficult to detect, typically requires prior knowledge 

1Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany. 2Department of 
Physics, Humboldt University of Berlin, Newtonstr. 15, 12489 Berlin, Germany. 3Institute for Complex Systems 
and Mathematical Biology, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom. 4Department of 
Control Theory, Nizhny Novgorod State University, Gagarin Avenue 23, 606950 Nizhny Novgorod, Russia. *These 
authors contributed equally to this work. Correspondence and requests for materials should be addressed to F.H.  
(email: hellmann@pik-potsdam.de) or P.S. (email: pschultz@pik-potsdam.de)

received: 21 March 2016

accepted: 20 June 2016

Published: 13 July 2016

OPEN

mailto:hellmann@pik-potsdam.de
mailto:pschultz@pik-potsdam.de


www.nature.com/scientificreports/

2Scientific Reports | 6:29654 | DOI: 10.1038/srep29654

about the attractor’s nature, and is only meaningful in multistable systems. On the other hand, a SB estimation 
is insensitive to undesired transient behaviour of the system, i.e. if the trajectory visits an undesired part of the 
phase space where the system would take damage that is not modelled explicitly. To detect this type of dangerous 
transients, a new, complementary measure is required.

In this paper we introduce a new stability-related measure, the survivability S(t) of a dynamical system. This 
is the fraction of initial system states (i.e. arising from an initial large perturbation) giving rise to evolutions that 
stay within a desirable regime up to a given time t. The set of these initial conditions is called basin of survival.

More formally, call the phase space of our system X, and a chosen desirable region ⊆+X X . The finite-time 
basin of survival ⊆ +X Xt

S  is defined as the set of initial conditions in X for which the entire trajectory over the 
interval [0, t] lies in X+. We choose a probability measure μ of initial conditions, reflecting our knowledge of the 
nature of perturbations we wish to study. Accordingly, the finite-time survivability is defined as

µ= .µS t X( ) : ( ) (1)t
S

The total survivability then is the infinite-time limit of Sμ(t). This can naturally be decomposed into the prob-
ability that the initial perturbation is survived, and that the following trajectory stays save:

µ
µ

µ µ= = ⋅ .µ µ+
+ +

+S t X
X

X S t X( ) ( )
( )

( ) ( ) ( )
(2)

t
S

with ∩µ µ µ⋅ = ⋅+ + +X X( ) : ( )/ ( ). Now μ(X+) does not depend on the dynamics but only on the desirable region 
and the perturbations, i.e. it is a constant for given X+. The conditional survivability µ+S t( ) captures the interplay 
of dynamics, desirable region and perturbations; it has a natural interpretation as the conditional probability of a 
system to survive random, large perturbations that do not kill it immediately.

Assuming a uniform distribution of perturbations, the measure μ is proportional to the volume Vol. The 
resulting conditional survivability is our main object of study in what follows. We will call this finite-time surviv-
ability of a dynamical system:

= = .++S t S t X
X

( ) : ( ) Vol( )
Vol( ) (3)

t
S

Vol

We are also interested in initial perturbations that only occur in a particular region of phase space. Thus, we 
want to study uniform perturbations in a subset C ⊂​ X. The conditional survivability SC(t) can then simply be 
defined with respect to the measure VolC(⋅​) =​ Vol(⋅​ ∩​ C)/Vol(C):

∩= = .S t S t X C
C

( ) : ( ) Vol( )
Vol( ) (4)

C t
S

VolC

An important example of such a conditionial survivability is the single node survivability for networked sys-
tems. There we condition on the phase space at a single node, thereby isolating the impact of local perturbations 
on the whole system. A mathematically precise discussion will follow in the power grid example in the results 
section and the supplementary information (SI).

To further illustrate this definition, consider a simple example: A penguin wishing to ski down a mountain X 
going the fastest route possible in Fig. 1. The system is multistable as the penguin might end up in the goal or the 
valley. However, if the penguin goes over the cliff it will almost certainly slide the rest of the way to the goal on its 
back. The state of the penguin is not explicitly modelled by our (potential) landscape. We take this into account 
by declaring the parts of the cliff our penguin can not ski safely as an undesirable region. Further, if the penguin 
wishes to continue skiing, the valley might or might not be undesirable as well. Depending on these choices, dif-
ferent starting points can be in the basin of survival. If the goal is the only desirable attractor, the basin of survival 
lies in its basin of attraction, but if the valley is OK, too, this is not the case, and the asymptotic structure plays 
no role.

As opposed to SB or a linear(-ised) analysis based on Lyapunov exponents, the survivability is concerned not 
just with the asymptotic behaviour of the system, but depends strongly on the transient dynamics. As opposed to 
SB it is applicable in unstable, mono-stable, or multistable, linear or non-linear systems.

The application of the survivability concept is especially appropriate when interventions happen at the same 
time scale as the system dynamics, or when entering an undesirable region is deadly.

A key insight is that evaluating survivability becomes amenable to Monte Carlo integration. This is due to 
focusing on the probability that the trajectory following a perturbation violates the boundary rather than trying 
to find the actual sets of phase space from which a trajectory survives. Hence, a survivability analysis, just as SB, 
is applicable to very high-dimensional systems. In fact, the situation is more favourable than in the case of SB, as 
the entire curve S(t) can be evaluated at a computational cost not exceeding that of SB, while potentially revealing 
much more information.

This sets survivability apart from formally similar approaches, e.g. in control theory13,14. Their precise relation-
ship to survivability is discussed in detail in the Methods section.

For linear systems with a polyhedral desirable region, we derive a closed form lower bound on the infinite-time 
survivability S∞ : =​ S(t →​ ∞​) as well as a semi-analytic, stronger bound that becomes exact in the case of vanish-
ing dissipation. These bounds reveal that the survivability of linear systems depends strongly on the eigenvectors 
of the linear dynamics, rather than just the eigenvalues. The semi-analytic bound eliminates the need to simulate 
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the system trajectory opening survivability up to a wide range of applications for which numerically estimating 
the full dynamics is not feasible.

Results
To demonstrate the diverse applicability of our survivability concept we apply it to three paradigmatic model 
systems. A two-dimensional model of carbon stock dynamics, a system of integrate-and-fire neurons and a 
high-dimensional network model of the power grid.

These systems were chosen to cover a wide range of types of systems. The carbon cycle model has one or two 
attractors, depending on the parameter regime, and some transients are deadly. The neurons are mono-stable 
but exhibit transient chaos15–19. Finally the power grid model is high-dimensional, non-linear and multistable. 
However, the acceptable operating regime is close to a certain class of fixed points, thus the linearised behaviour 
near these fixed points is of great practical importance.

In all three systems there are externalities which are not or cannot be modelled explicitly. Namely, the influ-
ence of dramatic climate changes on society, external stimuli for a network of neurons and frequency control 
mechanisms in the power grid. We will see that survivability accurately captures the interplay of externalities with 
the intrinsic dynamics.

Carbon cycle model by Anderies et al.  We begin by applying survivability to a two-dimensional carbon 
cycle model from climate science which has been recently introduced20. This is a conceptual model with the aim 
to reproduce the non-linear dynamics of the carbon cycle in the Earth system. The boundaries of the survival 
region are closely related to the concept of planetary boundaries21. This system exhibits both the property that 
the undesirable states are deadly and that in some parameter regimes there is only a single stable attractor of the 
asymptotic dynamics.

The model equations for the atmospheric (ca), marine (cm) and terrestrial (ct) carbon stocks are given by

α β
α

= −
= −
= − −





c c c
c NEP c c c
c c c

( )
( , )

1 (5)

m m a m

t a t t

a m t

where αm denotes the atmosphere-ocean diffusion coefficient, β the carbon-solubility in sea water factor, α the 
human terrestrial carbon off-take rate and NEP(ca, ct) the net ecosystem production, a complex non-linear rela-
tionship between the atmospheric and terrestrial carbon stocks (see Anderies et al.20 for further details). Note 
that the total amount of carbon is kept constant, leaving us with the marine (cm) and terrestrial (ct) carbon stocks 
as independent variables.

Part of the phase space X of the model are states with virtually no terrestrial carbon, referred to as desert states. 
While the model can recover from such states and eventually reach high terrestrial carbon states again, entering 
a desert state would lead to the collapse of human civilisation and thus, tragically, our model would no longer be 

Figure 1.  Survivability cartoon. A penguin can ski down the mountain starting anywhere on the slope. 
Starting at A the penguin will tumble over the cliffs, passing an undesirable state although ultimately reaching 
the goal. Starting at B the penguin will reach the goal standing on its feet. Starting even further to the right, it 
might end up in the valley, which might or might not be desirable.
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valid after entering this regime. Hence, we define the set of desirable states X+ as the complement of the desert 
states plus a safety margin m:

= ∈ > .+X c c c X c m{( , , ) : } (6)a m t t

The safety margin should at no time, during the transient or asymptotic behaviour, be crossed. The finite-time 
basin of survival, here introduced as Xt

S, is then given by

=





∈ ∀ ′ > .
≤ ′≤ }X c c c X c t m( , , ) : ( )

(7)
t
S

a m t
t t

t
0

A phase plane analysis for this model is illustrated in Fig. 2(a). Of special importance here are those trajecto-
ries (exemplified by the blue trajectory in Fig. 2(a)) that first cross the safety margin, i.e. are not desirable due to 
the very low terrestrial carbon stocks ct, but eventually will return to the desirable region X+. These trajectories 
are counted for the SB estimation, since they eventually approach the attractor, but are disregarded for the surviv-
ability, since they cross the safety margin during the transient period.

By varying the human carbon off-take α in Eq. 5, the system undergoes a bifurcation changing the number of 
attractors (around α =​ 0.35) as illustrated in Fig. 2(b). The main picture shows the asymptotic survivability, the 
inset contains the survivability curves for different values of α. We see that the survivability drops to the asymp-
totic plateau at around the same time. Thus, if a trajectory eventually leaves the desirable regime, the time it takes 
until it does so is not strongly affected by α.

The bifurcation, which is known to be a saddle-node bifurcation20, has a drastic impact on the SB estimation, the 
survivability only changes marginally in this interval. On the other hand, the behaviour in the interval α ∈​ [0; 0.35]  
shows how the SB estimation becomes insensitive to system changes if the multistability is lost, i.e. if there is 
only a single attractor (in this case with non-zero ct). The crucial question whether trajectories stay in a desired 
regime is thus not captured by the SB measure, but can be answered with the survivability concept. Note that in 
this case and in what follows we estimate a finite-time survivability for the entire simulated time evolution of the 
system. Given that the asymptotic behaviour sets in earlier than the simulation ends, this is a good estimate for 
the infinite-time survivability.

It was argued12 that SB can also serve as a better early warning indicator of approaching tipping points than 
other measures. Here we see that a survivability estimation mirrors the trend in the system’s behaviour, i.e. how 
the set of surviving states depends on system parameters, while SB remains fixed at its plateau value. Hence, sur-
vivability can serve as a complementary, and in some scenarios better early warning sign than SB.

Network of integrate-and-fire oscillators.  In the case of transient chaos15–18 there are long, inter-
esting transients but potentially just a single global attractor. As an example, we consider a network of N 
integrate-and-fire neurons22–25. They exhibit long-term chaotic transients, but asymptotically have a global peri-
odic attractor where the neurons are in a state of phase-synchronisation. Considering the synchronised state as 
undesirable, the integrate-and-fire neurons are an example of a system in which neither asymptotic nor basin 
stability are informative.

Figure 2.  (a) Phase portrait of Anderies’ model (Eq. 5, α =​ 0.1). We choose initial terrestrial (ct) and 
marine (cm) carbon stocks, the colour scale then indicates the minimum of ct over the whole time evolution 
commencing from a point. An example trajectory with a long excursion to the desert state (ct <​ m) is plotted in 
blue and ends at the attractor which is circled in yellow, the stream plot indicates the vector field of the right-
hand-side (cf. Eq. 5). The dashed black line indicates the value of the safety margin m =​ 0.1. (b) Bifurcations in 
the carbon cycle model. Basin stability (SB, blue) and finite-time survivability (S(t =​ 500), green) estimates for 
different values of the terrestrial human carbon off-take α. For the survivability estimation we assumed a safety 
margin m =​ 0.1. The shading around the curves indicates one standard error, the background colour indicates 
the different dynamical regimes. In the inset, we give survivability curves for five selected values of α, i.e. 
α ∈​ {0.1, 0.2, 0.3, 0.4, 0.5} from top to bottom as indicated.
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Modelling external stimuli as essentially randomly resetting the phases of stimulated neurons, the surviva-
bility S(t) here carries the interpretation of the probability that the system will not fall into a synchronised state 
in between stimuli, spaced apart at interval t. Such synchronised states model epileptic seizures and are thus 
undesired.

Concretely we study the convergence from arbitrary initial conditions to periodic orbit attractors, in which 
several synchronised groups of oscillators (clusters) coexist26. In the network every oscillator j =​ 1…​N is con-
nected to another oscillator i ≠​ j by a directed link with probability p. A phase variable φj(t) ∈​ [0, 1] specifies the 
state of each oscillator j at time t. The free dynamics of an oscillator j is given by

φ = . t( ) 1 (8)j

The oscillators interact on a directed graph by sending pulses when they reach the threshold φj =​ 1. After a 
delay time τ this pulse induces a phase jump (indicated by differentiating the left and right limit of t as t+ and t−) 
in the receiving oscillator i:

φ φ ε= −+ − −t U U t( ) : ( ( ( ) )) (9)i i ij
1

for a potential U and coupling strength εij (For more details cf. the SI).
The survivability S(t|p) for a directed network of N =​ 16 pulse-coupled oscillators in dependence on the aver-

age connectivity p is illustrated in Fig. 3. For each value of p we create an ensemble of 100 network realisations. 
The randomly chosen initial phase vectors for each realisation are distributed uniformly in [0, 1]N.

All different network realisations with their associated initial conditions eventually lead to a fully synchronous 
state. However, our concept of survivability reveals the highly non-linear, non-monotonic dependence on the 
network connectivity p. While the survivability of transient dynamic states is small for networks with low and 
high connectivity values p, it becomes very large for intermediate connectivities, even for only weakly diluted 
networks (Fig. 3). The finite-time survivability reveals a new, collective time scale that is much larger than the 
natural period, 1, of an individual oscillator and the delay time, τ, of the interactions.

These long, irregular transients are the main property of interest for the system, motivating their study in  
ref. 26. The dependence of the average lifetime of the transient chaotic trajectories on p was already studied  
ibidem. In this example, survivability reveals the same dynamical information as previous studies. Note that this 
is due to the specific choice of desirable region as the non-periodic parts of state space. Generally, there is no 
direct relationship between survivability and transient lengths, the fact that the desirable region can be chosen 
such that survivability reveals the quantity of interest for this system in a natural way speaks for its universality.

Survivability again is a natural and informative stability measure of this system, however, this time not against 
perturbations, but against getting trapped in an undesired corner of phase space.

Power grids.  Power grids are subject to a variety of failures and perturbations and there are numerous stud-
ies concerning asymptotic stability analysis, e.g. refs 27 and 28, and recent approaches to an SB assessment29,30. 
However, contrary to common model assumptions, the dynamical system does usually not evolve freely after a 
perturbation. If the system does not return to a stable operating state after a typical time span of a few seconds 
or if predefined thresholds are exceeded, control mechanisms that would require independent modelling are 
triggered.

The long-term behaviour and stability of the system is thus a question for control theory rather than just 
dynamics. Conversely, the transient dynamics, and the question whether there is a temporary amplification of 
perturbations, is critical to whether the control has to be activated at all, or the system is explicitly resilient to 
such perturbations. Hence, the power grid is an example where the undesirable region is deadly and management 
options operate at the system dynamics time scale.

The effective network model of the power grid31,32 is the current standard baseline model for the frequency 
dynamics of power grids. It is known as the swing equation or the second-order Kuramoto model, and is used for 
short-term frequency stability studies in power grids. The various ways in which a power grid can be modelled 

Figure 3.  Survivability curves for networks of integrate-and-fire oscillators. Finite-time survivability S(t|p) 
for given survival times t vs. the network parameter p. For each value of p we average over an ensemble of 100 
network realisations, each with initial conditions drawn at random from the full state space.
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using the swing equation are discussed in ref. 32 and limits to its applicability are discussed, for example, in refs 
33 and 34.

The dynamical system modelling N generators’ instantaneous phases φi and frequency deviations ωi from the 
grid’s rated frequency is given as

∑

φ ω

ω α ω φ φ

=

= − − −
=




P K sin( )

(10)

i i

i i i i
j

N

ij i j
1

with Pi being the net input power/consumption, αi the electro-mechanical damping at node i and Kij as the capac-
ity of the link i – j. Here we choose Pi =​ 1 for net generators, Pi =​ −​1 for net consumers, and a uniform distribu-
tion of αi =​ α =​ 0.1. We choose the nonzero Kij uniformly equal to 6, corresponding to an average transmission 
line length of about 200 km.

A stable operating state of the power grid is a fixed point of the dynamics with no frequency deviation, 
φ φ= …  …⁎ ⁎( , 0) : ( , , 0, )1 . Conversely, limit cycle solutions (frequency oscillations) need to be prevented in order 

to avoid the tripping of generators. Frequency deviations are usually kept very small in large real power grids, 
with typical thresholds of ±​0.2 Hz35 which corresponds to a phase velocity deviation of |ω| ≈​ 0.25 in our units. 
Smaller island grids have considerably larger fluctuations. As an illustrative extreme case we will consider up to 
20 times larger fluctuations. For SB assessments, the reaction of the system to much larger deviations was also 
taken into account.

We will study the single-node basin of survival, i.e., the conditional basin of survival in the sense of Eq. 4, con-
ditioned on initial perturbations that occur locally at a single node n, starting from a stable operating state. The 
space we wish to condition on is then the direct product of the stable operating state at all nodes except node n 
and the full state space of the node dynamics at n:

φ φ φ ω φ π ω= … …  … …  ∈ ∈ .⁎ ⁎C {( , , , , 0, , , , 0) [0, 2 ), }n n N n n n1

The desirable region being defined as ∀​i : |ωi| <​ 5, which, as explained above, is chosen to mirror realistic con-
straints. Concretely, this means that we construct initial conditions by setting φi and ωi to the value of the fixed 
point φ ⁎

i  and 0, for all nodes other than the node n we are studying, and to a random phase in [−​π; π] as well as a 
random frequency deviation in [−​5; 5] for the node n. Then we simulate the system up to t =​ 100 and observe 
whether (and if, when) any of the frequency deviations ωi leave the desirable region. In this way we sample 300 
trajectories to estimate =S t S t( ): ( )n Cn . This leads to a standard error of less than 0.03 for Sn(t) =​ 0.5 in the worst 
case (see Methods section). We evaluate the survivability up to 100 in simulation time (18 s in real time), at which 
point a steady state has typically been established, and the asymptotic value of the survivability is reached.

While SB captures the overall ability of the system to avoid permanent frequency oscillations, it does not 
directly capture the stability of the system against large perturbations. Instead, as discussed above, it is the ability 
of the system to keep perturbations under fixed frequency thresholds which is crucial. We will study this form 
of stability using both numerical simulations and the analytic approximations we have derived. The former will 
allow us to compare the survivability of the system to its SB, the latter to assess the accuracy of our bounds.

We now turn to the question whether the semi-analytic bounds on the dynamics linearised around the fixed 
point can accurately mirror the single-node survivability Sn(t =​ 100).

Defining φ : =​ (φ1, …​, φN)T, ω =​ (ω1, …​, ωN)T and α : =​ diag(αi), the linearised dynamics is given by

φ
ω α

φ
ω







 =



 −









( )L
0

(11)
N

where the lower left block ( ω φ= ∂ ∂


L /i j) can be identified with the network’s Laplacian matrix (at the fixed point 
(φ*, 0)) given by

∑δ φ φ φ φ= − − + −
=

⁎ ⁎ ⁎ ⁎L K Kcos( ) cos( )
(12)ij ij

m

N

im i m ij i j
1

The Jacobian has two real eigenvalues, λ1 =​ 0 and λ2 =​ −​α, corresponding to the eigenvectors (φ, ω)1 =​ (1, …​, 0, …​) 
and (φ, ω)2 =​ (−​1/α, …​, 1, …​). The first eigenvalue, λ1 and the corresponding eigenvector show the linearised 
version of the rotational symmetry of the system under shifting all elements of φ by the same amount  
φs: φ φ φ+i i s. The second corresponds to a homogeneous shift of all oscillator’s frequencies, which does not 
affect the phase differences, and decays exponentially due to the damping term. The remaining part of the spec-
trum consists of N −​ 1 pairs of complex conjugated eigenvalues.

The basin of attraction in the conditional subspace Cn of this system is illustrated in Fig. 4(a). Concerning 
survivability, there is a subdivision in three different sets. The desirable region contains infinite- (central green 
region) and finite-time surviving states (yellow and red regions in the band). Trajectories commencing from the 
remaining states within the basin of attraction (blue region) eventually reach the attractor asymptotically. Note 
that there are also finite-time surviving states outside the basin of attraction (red region). A large part of the 
single-node basin of attraction is centred around the fixed point (φ*, 0). Within this region we expect the linear 
approximation to provide a lot of information on the system.
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Regarding survivability, Fig. 4(b) shows that the frequency deviations inside the basin of attraction do indeed 
become large. The shape of the level lines of the frequency deviations corresponds to the basins of survival for 
different frequency constraints.

Figure 4(c) shows the bound for the frequency deviation of the linearised dynamics calculated according to 
Eq. 16. This shows a good qualitative agreement with the actually simulated frequency deviations as long as the 
deviations remain close to the fixed point, e.g. in the range of realistically allowed perturbations (see above). Still, 
the impact of the non-linearity (e.g. multistability is not captured) on the system becomes apparent, especially 
further away from the fixed point.

Indeed Fig. 5(a) shows that there is a high correlation between the lower bound of the survivability of the 
linear system S t( )lin

n  calculated according to Eq. 16 (see Methods section) and the actual survivability Sn(t) at the 
majority of nodes for realistic values of frequency deviations. What exactly gives rise to the outliers far below the 
diagonal will require further study. It is important to emphasise that the computational cost of calculating the 
bounds on the maximum frequency deviation for a sample of initial conditions is many orders of magnitude 
lower than the numerical estimate of the survivability via simulations of the actual time evolution. For a realistic 
network size of several hundred nodes, the approximate calculations can be performed on a laptop computer in 

Figure 4.  Single-node phase space of a consumer in the Scandinavian grid. (a) We plot the initial frequency 
deviation ωn vs. the phase difference to the fixed point at node n, visualising the definition of the following areas 
using the simulation results from (b). The central green area resembles the infinite-time basin of survival, while 
the yellow and red areas contain finite-time surviving states. The union of the blue, yellow and green regions 
resembles the synchronous state’s basin of attraction, while trajectories starting in the white or red regions 
approach different attractors. The frequency threshold is chosen as ωcrit. =​ ±​5 and initial conditions correspond 
to perturbations at a single consumer node of the network. (b) Simulated maximum frequency deviations ωmax 
along all dimensions, measured over the time evolution of the system for initial conditions that correspond to 
perturbations at node n of the network. For comparison with (a), we give the numerically estimated basin of 
attraction’s boundaries in red. (c) Corresponding analytic upper bound for the maximum frequency deviation 
(cf. Eq. 16) for the linear approximation.

Figure 5.  Simulated vs. approximated single-node survivability for the Scandinavian grid. (a) Scatter plot of 
the simulated Sn(t) vs. approximated single-node survivability S t( )lin

n  (cf. Eq. 16) estimated for all nodes in the 
Scandinavian power grid (ωcrit. is indicated in the legend). The corresponding distributions are given on the 
sides. (b) Single-node basin stability vs. single-node survivability for the Scandinavian grid. Scatter plot of the 
single-node basin stability SB

n vs. single-node survivability Sn(t =​ 100) (ωcrit. is indicated in the legend) estimated 
for all nodes in the Scandinavian power grid. The corresponding distributions are given on the sides. Note that 
we have chosen the initial region X0 for single-node basin stability with |ω| <​ 100, the same region as in ref. 29.
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less than a minute, whereas the numerical survivability estimation took several hours on 200 nodes of a comput-
ing cluster.

Figure 5(b) shows SB
n as well as the single-node survivability of nodes in the Scandinavian power grid. We see 

that there is no significant correlation between the two quantities. This proves the point that the asymptotic 
behaviour of the system is not a strong indicator of the transient behaviour, at least in the case of power grids. The 
information we obtain from the survivability analysis is genuinely new information.

The Scandinavian power grid29 consists of N =​ 236 nodes and 320 links, corresponding to a mean degree of 
= .k 2 7. Hence, it has a sparse network topology with only a few neighbours per node on average, which is typical 

for power grids in general, independent from the number of nodes36. The same holds for our second data set, the 
UK high-voltage transmission grid, which consists of N =​ 120 nodes and 165 links, corresponding to a mean 
degree of = .k 2 8.

In Fig. 6(a,b) we show the geographically embedded Scandinavian and UK power grid. The colour of each 
node corresponds to the single-node conditional survivability Sn(t =​ 1s). Different nodes exhibit starkly different 
survivability to perturbations. We find that at a threshold of |ωcrit| =​ 10, for both of these realistic power grid 
topologies, there are a few nodes that are particularly vulnerable to perturbations. This means a perturbation 
at these nodes is very likely to be amplified temporarily by the overall grid dynamics. What exactly leads to this 
vulnerability, and how to characterise it in terms of grid parameters and topology is a question for future work.

Finally, we also found that the survivability in this system asymptotes very quickly. Simulating just the first 
second of the power grid is typically sufficient, the so-called “first swing” following a disturbance mainly deter-
mines the overall frequency deviation.

Let us summarise the key points from applying survivability to power grids:

•	 For realistic small deviations, the upper bound applied to the linear approximation provides an excellent 
picture of the infinite-time basin of survival. The fact that the bulk of nodes shows a high correlation at large 
perturbations indicates that Sn can still be determined from the approximation in this case.

•	 For the given dynamics, the survivability very quickly reaches its asymptotic value. We expect this to be a 
fairly generic phenomenon if we are dealing with damped systems near a stable fixed point.

•	 Conditioning the survivability on regions of phase space with special meaning, like perturbations at a single 
node, allows us to reveal a large amount of non-obvious structural information on a networked system. Fur-
ther work is needed to understand what gives rise to the revealed structure in realistic power grids.

Figure 6.  Scandinavian power grid. (a) The nodes’ colouring indicates the respective single-node survivability 
estimate Sn(t =​ 1s) in the Scandinavian power grid. The frequency threshold is chosen as ωcrit. =​ ±​10. We 
randomly selected a dispatch scenario, circular nodes are net generators, squares are net consumers. The map 
of Scandinavia has been modified from https://commons.wikimedia.org/wiki/File:Scandinavia.svg, which 
is licensed under the Attribution-Share-Alike 3.0 Unported license. The license terms can be found on the 
following link: https://creativecommons.org/licenses/by-sa/3.0/. (b) UK power grid. Single-node survivability 
estimate Sn(t =​ 1s) of the UK power grid. Details analogous to (a). The map of Great Britain has been modified 
from https://commons.wikimedia.org/wiki/File:England,_Scotland_and_Wales_within_the_UK_and_Europe.
svg, which is licensed under the Attribution-Share-Alike 3.0 Unported license. The license terms can be found 
on the following link: https://creativecommons.org/licenses/by-sa/3.0/.

https://commons.wikimedia.org/wiki/File:Scandinavia.svg
https://creativecommons.org/licenses/by-sa/3.0/
https://commons.wikimedia.org/wiki/File:England,_Scotland_and_Wales_within_the_UK_and_Europe.svg
https://commons.wikimedia.org/wiki/File:England,_Scotland_and_Wales_within_the_UK_and_Europe.svg
https://creativecommons.org/licenses/by-sa/3.0/
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Discussion
Survivability is a novel stability concept complementary to basin stability SB and linear methods of asymptotic sta-
bility analysis. It applies to linear and non-linear systems, in the absence and presence of multi-stability. It focuses 
on transient rather than asymptotic behaviour, and incorporates exogenous information via assuming a desirable 
region for the system dynamics. Further, survivability can be estimated numerically at low computational costs, 
comparable to or even lower than for estimating SB.

For linear systems we provide easy to evaluate analytic and semi-analytic expressions for lower bounds of the 
survivability, with a trade-off between the quality of the bound and numerical cost for evaluating the analytic 
expression. These reduce the need to simulate the system, yielding further dramatic improvements in computa-
tional cost.

The bounds we find demonstrate that the survivability depends crucially on the eigenvectors of the linear 
dynamics, rather than the eigenvalues (see discussion in the Methods section). It is an effective measure of the 
interaction between external constraints and the geometry of the dynamics in its phase space. The fact that the 
bound is tight exactly when the analysis of asymptotic stability using the eigenvalues of the linearised system fails 
shows that the survivability is genuinely complementary to eigenvalue-based stability concepts.

To explore this measure in practice, we analyse three conceptual examples.

Carbon Cycle.  We observe that survivability accurately exhibits the presence of dangerous transient behav-
iour in the model, something that SB can not detect. The almost monotonous decrease towards the first tipping 
point, opposed to the discontinuous SB curve, shows the potential to derive an early warning scheme from an 
observation of these measures for certain kinds of bifurcations. Just as for SB, the problem of evaluating the sur-
vivability from data remains a challenge for future work.

Neuronal Networks.  Here, the transients do not arise from perturbations constructed as deviations around 
a desirable attractor, but they are randomly chosen from the whole compact phase space. Rather, the main interest 
lies on the transients themselves. Survivability reveals the same qualitative dependence of the dynamical behav-
iour on the underlying network topology as the average length of the transient26. Beyond that, considering S(t) at 
fixed t as a function of the underlying topological parameters enables us to look in more detail into the relation-
ship between function and structure of pulse-coupled oscillator networks. In contrast to the average length of the 
transients, the survivability also has a direct conceptual interpretation as the probability of the system remaining 
in the interesting transient regime. Thus it captures the appropriate notion of stability of transient chaos against 
the global attractor.

Power Grid.  In this example we can see in detail the interplay between the semi-analytic bounds that we 
developed and the fully non-linear system. We demonstrate that survivability under realistic constraints captures 
information about the system not contained in the SB estimate. We also demonstrate that the semi-analytic lower 
bounds, are strongly correlated with the simulations of the non-linear dynamics. Thus they contain much of the 
relevant information about the system. In strategic power grid development studies, this fact becomes particularly 
important as computational power is often at a considerable constraint, due to the need to simulate a wide range 
of divergent future scenarios of the energy transition. Dynamical properties outside of quasi-stationary calcula-
tions can only be taken into account if efficient estimators exist, since it is not feasible to run simulations. Thus 
our lower bounds, which eliminate the need for such simulations, potentially enable a more systematic way to 
investigate the impacts of the energy transition. In particular, the influence of changing topologies and different 
distributions of dynamical parameters on the dynamics of the power grid become computationally accessible. For 
the application to power grids, there are many more operational conditions on the system’s behaviour that we do 
not consider here. While not all of them are as amenable to analytic considerations as the frequency deviation, we 
anticipate that it will still be possible to find cheap analytic boundaries for them. The reason that we could calcu-
late the lower bounds so easily is that the phase space geometry is encoded in an efficient way in the eigenvectors. 
This aspect will carry over to many other, more complicated exogenous boundaries.

We thus have seen that the notion of survivability is general and powerful enough to capture the interplay 
between externalities and the intrinsic dynamics in three vastly different examples. In particular the last example 
demonstrated both the utility of single node survivability, revealing structural weaknesses and strengths of real-
istic power grid topologies, as well as of our semi-analytic bounds, reducing computational efforts dramatically.

The work presented here thus opens up a plethora of new avenues of research. On the theoretical side, the 
existence of a closed form lower bound on the survivability of a linear system opens the door to study the sur-
vivability as a function of the network topology and system parameters analytically, especially for the optimisa-
tion of these parameters to increase the system’s survivability. The lower bounds presented here can certainly be 
improved by taking the more detailed geometry of the trajectories of the linear system into account. It will also be 
important to extend them to the types of bounds we have in more realistic power grid models.

Methods
Numerically estimating survivability.  One advantage shared by survivability and12 is that they can be 
efficiently estimated by randomly sampling starting conditions. A trajectory either survives or not, therefore we 
can regard the sampling as a Bernoulli experiment with probability given by S(t), hence the standard error (SE) of 
the probability estimator of a trial with N draws is simply

=
−

.SE S t S t
N

( )(1 ( ))
(13)
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As a crucial consequence, the standard error of a survivability estimation does not depend on the dimension-
ality of the system. Further, the condition that a trajectory has left X+ tends to be easier to evaluate in practice 
than whether the trajectory is asymptotically approaching a fixed point. Furthermore, in numerical simulations, 
an integration might be stopped once X+ has been left.

Analytic results for linear systems.  An important analytically tractable case is the total survivability S∞ 
for a linear dynamic in =X N , the Lebesgue measure ∫=X xVol( ) dX

N , and a polyhedral desirable region 
given by m linear conditions yk ⋅​ x(t) <​ 1 for a set of vectors yk, k =​ 1…​m in N . In this case we can give a lower 
bound on ∞XVol( )S  that is easy to evaluate.

In this section we briefly give the results necessary for the applications in the results section on power grids. 
There we demonstrate that the semi-analytic bound captures the survivability of the system quite accurately in 
practical examples. In the SI we show detailed derivations, as well as further analytic results.

Consider a system of linear ordinary differential equations

=x t Lx t( ) ( ) (14)

with ∈ =x X N  and ∈ ×L N N  with all eigenvalues having non-positive real parts. In general, L has a complex 
spectrum. The eigenvectors vj of the complex eigenvalues are real or come in complex conjugate pairs, from which 
we pick one eigenvector each. We then define the N ×​ N matrix  by stacking the eigenvectors, or their real and 
imaginary parts respectively, against each other as column vectors:

 = 
 … … − …

.v v v, , Re( ), , Im( ), (15)j j1

This allows us to translate initial conditions into the eigenvector basis by setting ′ = −c x(0)1 , and combining 
′ck into complex numbers as appropriate = ′ + ′+c c icj k k nc

, where nc is the number of complex eigenvalues. Then 
the trajectory describes an exponential decay along the real eigenvectors and an inward spiral in the Re(vj), Im(vj) 
plane that is parametrised by cj, and given by Re(exp(λjt)cjvj). We then obtain an upper bound for the deviation of 
the trajectory starting at x(0) in a direction yk by maximising the contribution of each eigenvector separately.

Now, setting ykj : =​ yk ⋅​ vj for vj real, and ykj : =​ |yk ⋅​ vj| for vj complex, this leads to the estimate:

∑ ∑ ∑⋅ ≤ + +
∈ ∞ = = + = +

y x t y c y c y cmax ( ) max(0, )
(16)t k

j

n

kj j
j n

n

kj j
j n

n

kj j
[0; [ 1 1 1

r

r

0

0

where the first sum is over real eigenvectors corresponding to null eigenvalues, the second is over nonzero real 
eigenvectors and the last is over the complex eigenvectors.

Setting the right hand side of Eq. 16 smaller than 1 defines a region Vc in N  spanned by the real and imagi-
nary parts of the coefficients cj. This region is mapped to the state space by  and thus its volume is related to the 
corresponding region in phase space by a determinant factor. As it is defined by a weaker inequality than ∞X S  it 
follows that

≥ .∞X det VVol( ) Vol( ) (17)S T
c

The inequalities Eq. 16 together with the matrix  can be used to efficiently estimate the total survivability as 
well as the conditional survivability. Remarkably, for systems with a purely imaginary spectrum, the bounds of 
Eqs 16 and 17 hold with equality.

In the SI we also derive a lower bound for Vol(Vc).
This lower bound demonstrates that for the survivability of a linear system, the eigenvectors play a crucial role. 

In fact, the eigenvalues do not enter the bound at all, except in terms of classifying the corresponding eigenvectors 
in separate classes. This demonstrates that the survivability captures substantially different information about 
the linear system than eigenvalue-based stability measures like relaxation time, or the master stability function.

Relationship to Similar Concepts.  Survivability is related to a number of concepts in other fields, notably 
control theory. From this perspective it can be seen as a so far unstudied, simplifying case where a number of 
distinct concepts from various fields intersect. In this section we discuss a number of such concepts and their 
precise relationship to survivability.

Survivability is conceptually similar to the notion of finite time stability as studied for linear control sys-
tems13,14. There the focus is on finding a particular control scheme that will ensure that the resulting closed loop 
system stays within a particular region for some time, possibly in the presence of perturbations of the dynamical 
equations. From our perspective this can be seen as attempting to find systems with S(t) =​ 1. As the focus there 
is on perturbed dynamics in linear control systems, the actual overlap of methods is very small, in particular it is 
not possible to extend the methods to high-dimensional non-linear systems.

Another concept from control theory which is similar to the basin of survival is the viability kernel defined 
by Aubin et al. in the context of viability theory37,38. They introduce the notion of an environment K that contains 
all desirable states. Within the environment, there is the so-called viability kernel V39,40 as the set of all initial 
conditions from which the system can stay within the environment. This basically is a more general version of 
our infinite-time basin of survival for non-deterministic systems or systems with multiple evolution paths and a 
management process. Consequently, K\V corresponds to the set of finite-time surviving states in deterministic 
systems. The viability kernel’s volume is proposed as a measure of the degree of viability38, in the limit of no con-
trol it thus reduces to our total survivability. However, we are not aware of this special case ever being considered 
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in the context of viability theory. Whereas survivability measures the ability of the intrinsic dynamics to withstand 
perturbation, viability theory is concerned with the question of the power of control. Beyond this conceptual dif-
ference, evaluating survivability also requires very different technical methods, analytically as well as numerically. 
As far as we are aware, sampling based methods, which are efficient and natural for survivability, are impossible 
for viability. This is due to the fact that whether a particular point belongs to the viable set depends on the optimal 
control, which might not be known.

There are two concepts that share some formal similarity to survivability in the context of deterministic sys-
tems, transient times and open systems.

The study of transient life times15,19,41,42 is only related to the survivability in the non-typical special case 
that the attractor (or a small epsilon environment around it) is the only undesirable region. In our example 
of integrate-and-fire neurons this is the case, but in the power grid there is no clear relationship between the 
strength of the transient (which might kill the system) and the return time to the attractor. In fact, there, the 
attractor we start from is in the desirable region. Transients life times are a special case, and not a typical one, of 
survivability. The latter is far more general, going beyond the focus on the length of transients and their distribu-
tion, and typically captures genuinely different information of the system (e.g. the linear analysis mainly depends 
on eigenvectors, not eigenvalues).

The theory of open systems, on the other hand, is generally concerned with ergodic systems. For leaky chaotic 
systems43 the asymptotic behaviour of the survival probability is the key observable. At the formal level there 
is an analogy to our definitions, however, the total survivability, the size of the total phase space that leaks, is 
never considered as an observable in the literature. Indeed it is often the case that it is the whole phase space. 
Nor is the cumulative leakage ever interpreted as a stability measure or are efficient methods to estimate it for 
high-dimensional systems being discussed. In fact, as in the case of transient times, leaky systems can be seen as 
a special case of our discussion. Specifically it is the conditional survivability with the conditional space chosen 
as the space of surviving states XS.

The closest analogy to our deterministic survivability is simply the survival analysis in the the context of sto-
chastic systems. The concept of the so-called first hitting time and survival probability44–46, which can be studied 
for the case of stochastic perturbations to deterministic systems by quasi-potentials47–49, map directly to our work. 
The first hitting time t measures when a system is expected to first hit the forbidden region X−. The cumulative 
of the probability of first hitting the undesirable region before t is then 1 −​ S(t). Our definitions given above can 
be seen as a deterministic version of these concepts. The role of stochasticity in the evolution is replaced by a 
probabilistic initial perturbation. Here similar sampling based methods are possible and necessary. The type of 
semi-analytic analysis we performed for the linear case would however be hard to duplicate. From this perspective 
what we have demonstrated is how to successfully apply methods and concepts from stochastic systems in the 
study of their deterministic counterparts.

The key insight in our work, as it is for SB, is that restricting ourselves to probabilistic notions enables a consid-
erably wider applicability of our analysis, as well as new numerical and analytic methods. Put differently, by ask-
ing not about the geometry of sets in phase space but merely about their volume, we can access high-dimensional 
non-linear systems that are out of reach for detailed geometric analysis. The challenge then lies in defining inter-
esting sets that capture concepts of interest. As such we take it as a confirmation for the wide interest of the 
specific sets that survivability is based on, that it occurs a the intersection of a number of well studied concepts.
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