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In this study, we analyzed the time-depended scenario of stress response

cascade preceding and accompanying brain hemorrhages in newborn rats using

an interdisciplinary approach based on: a morphological analysis of brain tissues,

coherent-domain optical technologies for visualization of the cerebral blood flow,

monitoring of the cerebral oxygenation and the deformability of red blood cells (RBCs).

Using a model of stress-induced brain hemorrhages (sound stress, 120 dB, 370Hz),

we studied changes in neonatal brain 2, 4, 6, 8 h after stress (the pre-hemorrhage,

latent period) and 24 h after stress (the post-hemorrhage period). We found that latent

period of brain hemorrhages is accompanied by gradual pathological changes in

systemic, metabolic, and cellular levels of stress. The incidence of brain hemorrhages

is characterized by a progression of these changes and the irreversible cell death

in the brain areas involved in higher mental functions. These processes are realized

via a time-depended reduction of cerebral venous blood flow and oxygenation that

was accompanied by an increase in RBCs deformability. The significant depletion

of the molecular layer of the prefrontal cortex and the pyramidal neurons, which

are crucial for associative learning and attention, is developed as a consequence of

homeostasis imbalance. Thus, stress-induced processes preceding and accompanying

brain hemorrhages in neonatal period contribute to serious injuries of the brain blood
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circulation, cerebral metabolic activity and structural elements of cognitive functio

These results are an informative platform for further studies of mechanisms underlyin

stress-induced brain hemorrhages during the first days of life that will improve the futur

generation’s health.
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INTRODUCTION

Cerebrovascular catastrophes, such as spontaneous brain
hemorrhages in apparently normal full term newborns, are a
real phenomenon. The problem is that in many cases different
types and severity of brain hemorrhages in full term newborns
are presented usually without any outward clinical symptoms
or with any subtle non-specific neurological signs (Whitby
et al., 2004; Looney et al., 2007; Rooks et al., 2008; Gupta
et al., 2009). Therefore, the precise incidence and distribution
in asymptomatic full term newborns is not known. However,
during the last decade, improvement of neuroimaging technique
made obvious that asymptomatic brain hemorrhages in full
term newborns are frequent (from 26% till 46%) (Looney et al.,
2007; Rooks et al., 2008). Notice, the majority of survived
full term newborns after brain hemorrhages have a complete
recovery (Jhawar et al., 2005; Siu et al., 2006; Rooks et al.,
2008; Brouwer et al., 2010). But, neonatal death from brain
hemorrhages can reach 25% due to asphyxia (Brouwer et al.,
2010). The information about the neurological outcome after
brain hemorrhages in full term newborns is extremely limited
and typically is focused on the study of relatively short term
follow-up with most babies not reaching school-age when higher
order deficits are manifest (Jhawar et al., 2005; Siu et al., 2006;
Rooks et al., 2008; Brouwer et al., 2010; Takenouchi et al., 2012;
Kirton and deVeber, 2013). The results of few studies in this area
showed that in future life such babies in 32% of cases develop
cognitive deficit (Jhawar et al., 2005) and encephalopathy
(Takenouchi et al., 2012), 21%—epilepsy (Siu et al., 2006),
14%—speech delay (Rooks et al., 2008), 8%—cerebral palsy
(Brouwer et al., 2010). It is important to note that a child’s
brain develops over many years. As a result, difficulties can only
be detected at an age when it is expected the development of
relevant skills. For example, associative learning and thinking
might not be recognized for many years. Therefore, the true
incidence of cognitive impairment in asymptomatic neonates
with brain hemorrhages may be slightly higher than they
reported (Semyachkina-Glushkovskaya et al., 2016).

Thus, spontaneous brain bleeding in neonates is a major
problem of future generation’s health due to the high rate of
death and cognitive disability of such newborns. Therefore, the
study of mechanisms underlying silent pathological processes
preceding and accompanying brain hemorrhages in neonatal
period is absolutely essential.

In the majority, the reasons for brain hemorrhages in
newborns cannot be found (Gupta et al., 2009). One possible
factor is assisted delivery (Benedetti, 1999; Towner et al., 1999)
(forceps or vacuum extraction), but those suggestions are not
consistent (Whitby et al., 2004; Looney et al., 2007; Rooks et al.,
2008). Blood clotting disorders may play an important role in

brain bleeding causes in neonatal period (Gupta et al., 2009).
However, there are no strong evidences in this detection (Gover
et al., 2011). The major risk factor for newborns is stress, which
babies have during embryonic development due to different
stresses of mother, critical physiological changes during delivery
and intensive adaptation to the new conditions of life. The
first 3 days of life are the most critical. Mortality is highest
in the initial 24 h after birth, up to 50% die within the first
3 days of life, and about 75% of all neonatal deaths occur in
the first week of life (early neonatal death; Paul, 2006; Lawn
et al., 2010). It is well-known that the neonatal environment
is an important determinant of stress-related diseases (Maccari
et al., 2003; Mirescu et al., 2004). However, stress itself and
mechanisms underlying stress-related brain injury in neonates
are not well-studied due to methodological difficulties.

Aiming to achieve a better understanding of mechanisms
underlying stress-induced brain hemorrhages in neonatal period,
in this experimental study on newborn rats, we intend
to uncover a time-depended scenario of stress response
cascade preceding and accompanying brain hemorrhages using
interdisciplinary approach based on a morphological analysis
of brain tissues, coherent-domain optical technologies for
visualization of the cerebral blood flow (CBF), monitoring of the
cerebral oxygenation and deformability of red blood cells (RBCs).

METHODS

Subjects
Experiments were carried out in newborn mongrel rats, 12 days
old using three groups: (1) intact, unstressed newborn rats in the
control group (n = 25); (2) stressed rats in the pre-hemorrhage
groups (2, 4, 6, 8 h after stress, n= 25 in each group); (3) stressed
rats in the post-hemorrhage group (24 h after stress, n = 27).
All procedures were performed in accordance with the “Guide
for the Care and Use of Laboratory Animals.” The experimental
protocol was approved by the Committee for the Care and Use of
Laboratory Animals at Saratov State University (Protocol H-147,
17.04.2001).

Note, that the rat is a good animal subject for the study of
the development of cerebrovascular catastrophes during the first
days of life due to similar dynamics of the brain maturation in
humans (Coyle, 1977). Our choice of the age of newborn rats is
caused by the fact that at postnatal 12 days the brain of rats is close
to the development of the brain in full-term human neonates
(Rice et al., 1981).

Modeling of Brain Hemorrhages
To induce brain hemorrhages, the following protocol of sound
stress’s impact was used (120 dB, 370Hz): 10 s of sound followed
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by a 60-s pause; this cycle was repeated throughout a 2 h period
(Semyachkina-Glushkovskaya et al., 2013, 2015a,b).

To analyze the brain-injures induced by stress and to confirm
the development of brain hemorrhages, all newborn rats were
decapitated for a histological study of brain tissue. The samples
were fixed in 10% buffered neutral formalin. The formalin fixed
specimens were embedded in paraffin, sectioned (4 µm), and
stained with haematoxylin and eosin.

State-of-the-Art Interdisciplinary
Approaches
To study the time-depended scenario of stress response cascade
preceding and accompanying brain hemorrhages in newborn rats
we used an interdisciplinary approach based on a morphological
analysis of brain tissues, coherent-domain optical technologies
for visualization of the cerebral blood flow, monitoring of the
cerebral oxygenation, and the deformability of red blood cells
(RBCs; Figure 1).

Measurement of Cerebral Blood Flow
To assess stress-related changes in cerebral circulation, we used a
commercial swept source Doppler optical coherence tomography
(DOCT) system OCS1300SS (Thorlabs Inc. USA) operating at
1325 nm central wavelength and 100 nm bandwidth. Transverse
and axial resolutions of the DOCT system are 25 and 12 µm (on
the air) respectively. A-scan rate is equal to 16 kHz, which allows
us to measure absolute velocities up to ∼5.5 mm/s (You et al.,
2014).

Analysis of Cerebral Oxygen Saturation
The level of blood oxygen saturation (SpO2) in the brain as an
important criterion of cerebral metabolic activity of the different
functional states of an organism (Liu et al., 2015) was monitored
by using the pulse oximeter model CMS60D (Contec Medical
Systems Co., Ltd., Qinhuangdao, China). The optical sensor
was based on dual wavelengths pulse oximetry approach, using
660 and 880 nm for the SpO2 detection. The oxy-hemoglobin
saturation (SpO2) is given as a percentage of HbO2 vs. the total
Hb in the blood. For confirmation of oximetry results, we used
magnetic resonance imaging (MRI, Clin Scan 7T, Bruker Biospin)
in susceptibility weighted regime (SWI) for determination of
oxygenation of the brain tissues in the pre-hemorrhage (4 h
after stress, n = 10) and the post-hemorrhage (24 h after stress,
n= 10) groups in comparison with the control group (n = 10).
SWI is a novel technique that is highly sensitive to local field in
homogeneities and venous deoxygenated blood (Tsui et al., 2009).

Evaluation of Red Blood Cell Deformability
Micropipette aspiration method was used to measure the
resistance to deformation or stiffness of the membranes of red
blood cells. It is based on measurement of RBC aspiration depth
at given negative pressure applied to a micropipette with internal
diameter of 2–2.5 µm (Mitchison and Swann, 1954; Rand and
Burton, 1964; Artmann et al., 1997; Sinha et al., 2015; Zheng
et al, 2015). Homemade glass micropipettes with 2 µm internal
diameter were used for measurements. Pipettes were pulled using
0.93 mm borosilicate glass capillaries washed with isopropanol

FIGURE 1 | The methods used for analysis of the time-depended scenario of stress response cascade preceding and accompanying brain

hemorrhages in newborn rats 12 days old.
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and distilled water. Aspiration procedure was imaged with
inverted microscope using oil immersion lens (100 × NA=1.25)
and color CMOS camera (DCC1615C, Throlabs, Germany) to
acquire RBC image. Pressure was applied using U manometer
filled buffer solution and connected to the pipette. Blood samples
for micropipette aspiration were diluted in 400 times with buffer
solution. Aspiration depth 1X was measured in equilibrium
conditions. The goal of our study was to assess resistance
to deformation for maximal possible number of cells in each
sample. To reduce time required for individual measurement
we determined only the deformation (delta x) of cell when
constant low pressure is applied. After the negative pressure was
applied to cell the aspirated part of membrane quickly reaches the
equilibrium state when it no longer shifts along the pipette. Delta
X was measured after membrane displacement rate decreases
below one pixel (50 nm) for 30 s. It enables fast (2–3 min per
cell) measurements of 30 cell within 1.5 h after blood sample
preparation. That is sufficiently faster than measurements of
critical pressure needed for estimation of membrane tension
(Sinha et al., 2015).

Statistical Analysis
The results were presented as mean ± standard error of the
mean (SEM). Differences from the initial level in the same group
were evaluated by the Wilcoxon test. Intergroup differences were
evaluated using the Mann-Whitney test and ANOVA-2 (post-hoc
analysis with the Duncan’s rank test). The significance levels were
set at p < 0.05 for all analyses.

RESULTS

Changes in the Cerebral Venous
Hemodynamics Preceding and
Accompanying Stress-Induced Brain
Hemorrhages in Newborn Rats
The vascular system is one of the first, which responds
to stress to provide an adequate metabolism during the
mobilization of the organism. However, in the neonatal period
the vascular sensitivity to stress is different between perfusion
(microcirculatory) and capacitive (venous) sectors of the cerebral
circulation. In our previous study on newborn rats, we showed
that the stress-reactivity of cerebral veins is higher than that of
microvessels due to the specific function of veins to immediately
change blood volume during stress and to maintain filling
pressure to the heart (Semyachkina-Glushkovskaya et al., 2015a).
Here we focused on the study of dynamic changes in the
venous component of the cerebral circulation preceding and
accompanying stress-induced hemorrhages in newborn rats. For
this purpose, we selected the sagittal sinus that is one of major
sinuses collecting blood from the small veins of the brain and
directs it into the peripheral circulation. We choose this vessel to
performmeasurements of hemodynamic parameters through the
anterior fontanel as a window to the brain in newborn animals.

Figure 2 shows the DOCT results, which demonstrate time-
depended changes in diameter of the sagittal sinus and blood flow
velocity before and after stress-induced brain hemorrhages in
newborn rats. During the pre-hemorrhage period (2, 4, 6, and 8 h

after stress), we observed a increase in the size of the sagittal sinus
and a gradual decrease in the blood flow velocity. The maximal
changes of these hemodynamic parameters were observed during
the incidence of brain hemorrhages (24 h after stress).

Changes in the Blood Oxygen Saturation of
the Brain Tissues and Erythrocyte
Deformability Preceding and
Accompanying Stress-Induced Brain
Hemorrhages in Newborn Rats
Although investigators have implicated hypoxia as a potential
risk factor for the brain hemorrhages in neonates (Michoulas
et al., 2011; Luo et al., 2014; van der Aa et al., 2014), the role
of hypoxia in the intracranial hemorrhages remains controversial
because brain bleeding itself may cause respiratory distress.
Therefore, it is difficult to ascertain, if cerebral hypoxia is a key
factor in brain hemorrhages, or if it is a consequence of this
condition (Jhawar et al., 2003). For a better understanding of the
role of hypoxia in the development of brain hemorrhages in the
neonatal period, at the second step of our work, we studied the
level of SpO2 in the brain of newborn rats. With this aim, we used
the pulse oximetry that confirmed by MRI-SWI imaging.

Figure 3 shows that the pre-hemorrhage group (n = 15)
demonstrated a gradual reduction of the SpO2 level. Indeed, the
decrease in SpO2 was observed during the whole time before
the incidence of brain hemorrhages with maximal reduction of
oxygen delivery 4–8 h after stress (by 27, 28, 30, respectively; p <

0.05). The post-hemorrhage group showed the decrease in SpO2

level by 27% (p < 0.05), i.e., it remained low.
Figure 4 demonstrates the example of MRI-results in SWI

regime obtained from 10 newborn rats in each group (the control,
pre- and post-hemorrhage). The pre- and post-hemorrhage
periods were characterized by hypointense contrasting of cerebral

FIGURE 2 | Time-dependent changes in the sagittal sinus of newborn

rats (diameter, mm and blood flow velocity, mm/s) in the

pre-hemorrhage (2, 4, 6, 8 h after stress, n = 25 in each group) and

post- hemorrhage (24 h after stress, n = 27) groups in comparison with

control group (n = 25). *P < 0.05; **P < 0.01; ***P < 0.001 compared with

the control values (0 h).
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FIGURE 3 | Time-dependent changes in blood oxygen saturation of the

brain of newborn rats in the pre-hemorrhage (2, 4, 6, 8 h after stress, n

= 25 in each group) and post- hemorrhage (24 h after stress, n = 27)

groups in comparison with control group (n = 25). ***P < 0.001

compared with the control values.

FIGURE 4 | The example of MRI-SWI image of neonatal rat brain in

normal state (the control group, n = 10), in the pre-hemorrhage period

(4 h after stress, n = 10) and post-hemorrhage period (24 h after stress,

n = 10).

vessels. These changes can be caused by the accumulation of
deoxyhemoglobin due to prolonged hypoxia leading to reduced
oxygen levels.

The diminished oxygen delivery to the brain tissues in
response to a hypoxia may be related to changes of RBC
mechanical properties (Ellsworth et al., 1995; Sprague et al.,
1996, 2001, 2003; Parthasarathi and Lipowsky, 1999; Kirby et al.,
2012). However, the information about the role of erythrocyte
deformability in hypoxia after brain hemorrhages is significantly
limited (Pollock and Harrison, 1982; Grotta et al., 1986). The
question about the pre- and post-hemorrhage changes in the
RBCs elasticity during hypoxia remains open. We assumed that
the changes of RBC deformability might be one of mechanisms
responsible for hypoxia in stressed newborn rats. To check
our hypothesis we analyzed RBC deformability in newborn rats
before and after stress-induced hemorrhages using the method
of micropipette aspiration. We chose two important points for
experiment: 2 h after stress when the first decrease in SpO2
occurred in the pre-hemorrhage group (n = 15) and 24 h after
stress in the post-hemorrhage group (n= 15).

Figure 5 demonstrates that the RBCs deformability increased
by 10% (p < 0.05) in the pre-hemorrhage group and by 40% (p <

0.001) in the post-hemorrhage group.

FIGURE 5 | Time-dependent changes in the aspiration depth of red

blood cells in the pre-hemorrhage (2 h after stress, n = 25) and post-

hemorrhage (24 h after stress, n = 27) groups in comparison with

control group (n = 25). Figure shows aspiration depth at 30 N/m2 pressure

measured in blood samples taken in different time interval after stress. Each

point corresponds to a value averaged over measurements performed with 30

different RBCs. *P < 0.05; ***P < 0.001 compared with the control values.

Changes in the Brain Areas Involved in
Higher Cognitive Functions before and
after the Stress-Induced Brain
Hemorrhages in Newborn Rats
The prefrontal cerebral cortex is a special zone of the brain,
which includes the higher-order association areas and plays a
key role in memory, attention, perception, awareness, thought,
language, and consciousness. The cognitive deficit in babies is
highly associated with brain hemorrhages, which they had in
neonatal period in the frontal lobe (Jhawar et al., 2005; Rooks
et al., 2008; Semyachkina-Glushkovskaya et al., 2016). However,
the mechanisms underlying these pathological processes remain
poorly understood and request detailed studies in this field.
With this aim, at the final step of our work, we studied the
morphological changes in the molecular layer of the prefrontal
cortex and in the pyramidal neurons, which are crucial for
the “feedback” interactions in the cerebral cortex involved in
associative learning and attention (Gilbert and Sigman, 2007).

Our results clearly show that the pre-hemorrhage group
(n= 15) demonstrated a gradual decrease in the thickness of the
molecular layer of the cortex and in the number of pyramidal
neurons with reducing of their diameter (Figures 6–9). So,
during the pre-hemorrhage period (2, 4, 6, and 8 h after stress)
the thickness of the molecular layer of the cortex was decreased
by 31, 40, 62, and 68%, respectively, p < 0.05; the number of
pyramidal cells—by 17, 21, 21, and 33%, respectively, p < 0.05;
the diameter of pyramidal neurons—by 19, 20, 29, and 39%, p
< 0.05, respectively (Figures 8, 9). The incidence of the brain
bleeding was accompanied by a more pronounced decrease in
the thickness of the molecular layer of the cortex, which was
reduced by 73% (p < 0.05) compared with the normal state. The
number of pyramidal cells and their diameter were decreased
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FIGURE 6 | The time-depended changes in the diameter of pyramidal neurons of newborn rats in the pre-hemorrhage (2, 4, 6, 8 h after stress, n = 25

in each group) and post- hemorrhage (24 h after stress, n = 27) groups in comparison with control group (n = 25). Hematoxylin and Eosin staining. Bars

represent 10 µm (774X). (A)—the normal state (the control); the pre-hemorrhage period (B–E—2, 4, 6, 8 h after stress); the post-hemorrhage period (F—24 h after

stress).

by 34% (p < 0.05) and 38% (p < 0.05), respectively, i.e., it
remained reduced. These pathological changes in the cortex were
accompanied by the apoptosis of pyramidal cells (Figure 10).
Furthermore, we observed the development of the perivascular
edema during all pre- and post-hemorrhages time in all newborn
rats (Figure 11). But, there were no any stressful changes in
severity of the fluid pathway from the cerebral vessels in the pre-
and post-hemorrhage groups.

The results of three series of experiments suggest that the
reduction of blood circulation in the cerebral venous system
and hypoxia are the important factors for disorders of the
functional platform for the integration of brain centers, such as
the molecular layer of the cortex and the pyramidal neurons.

DISCUSSION

In this interdisciplinary study we analyzed the time-dependent
scenario of stress-induced brain hemorrhages in newborn rats on
the different levels of cascade of stress reaction on morphological
(histological analysis of cerebral cortex), systemic (monitoring
of cerebral venous blood flow), metabolic (assessment of oxygen
saturation of the brain tissues), and cellular (changes in RBCs
deformability and pyramidal neuron number and diameter)
levels.

In our previous studies, we clearly showed the location, types,
depth, andmorphological changes related to stress-induced brain
hemorrhages in newborn rats (Semyachkina-Glushkovskaya
et al., 2015a,b). Based on our earlier studies, we suggest that
the venous component of the cerebral circulation is highly
sensitive to the stress in the neonatal period (Semyachkina-
Glushkovskaya et al., 2013, 2015a; Pavlov et al., 2014). Here
we focused on the study of time dynamics of changes in the

cerebral venous system preceding and accompanying stress-
induced brain hemorrhages in newborn rats. The object of
our study was the sagittal sinus, which collects blood from all
veins of the brain and directs it into the peripheral circulation.
DOCT imaging uncovers time-dependent progressive changes
in this vessel during the pre-hemorrhage time (2, 4, 6, and 8 h
after stress) and after incidence of brain bleeding (24 h after
stress). The latent period of brain hemorrhages is characterized
by a relaxation of the sagittal sinus with a fall of blood flow
velocity in it that was more pronounced after incidence of
brain bleedings in newborn rats. Notice, the changes in these
two hemodynamic parameters are closely not correlated. We
observed the gradual reduction of venous blood flow during
all pre- and post-hemorrhage time, while the increase in the
diameter of sagittal sinus was from 6 her till 8 her after stress
stable. But, 24 h after stress the sagittal sinus dilated significantly
compared with other periods of observations. These changes can
be explained by mechanisms underlying distributions of cerebral
blood flow under stress. In our previous work we showed that the
progressive relaxation of cerebral veins in newborn rats with the
stroke causes accumulation of blood not only in venous network
but also in microvessels due to the redistribution of blood flow in
the cerebral vessels to decrease the pressure of accumulated blood
on the thick walls of cerebral veins (Semyachkina-Glushkovskaya
et al., 2015a).

We also observed that the pathological relaxation of the main
cerebral vein was accompanied by the formation of perivascular
edema i.e., fluid pathway from the vessels. In our previous
work, the histological data show that the increase in size of the
sagittal sinus is associated with the dilation of all cerebral veins,
especially in the pail matter of the cerebral cortex (Semyachkina-
Glushkovskaya et al., 2015a). The relaxation of cerebral veins with
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FIGURE 7 | The time-depended changes in the thickness of the molecular layer of the prefrontal cortex of newborn rats in the pre-hemorrhage (2, 4, 6,

8 h after stress, n = 25 in each group) and post-hemorrhage (24 h after stress, n = 27) groups in comparison with control group (n = 25). Hematoxylin

and Eosin staining. Bars represent 10 µm (246X). (A)—the normal state (the control); the pre-hemorrhage period (B–E—2, 4, 6, 8 h after stress); the post-hemorrhage

period (F—24 h after stress).

perivascular edema is a marker of accumulation of an extensive
blood in the venous system and suppression of blood outflow
from the brain leading to venous insufficiency (Valdueza et al.,
2013).

Thus, the sagittal sinus shows sensitive changes to the

deleterious effect of stress from the pre-hemorrhage time until the

incidence of brain bleeding. Clinical studies also have shown that
neonatal intracranial hemorrhages are primary venous infarction
due to a weakness of the wall of cerebral veins in neonates
(Hambleton and Wigglesworth, 1976; Ghazi-Birry et al., 1997;
Bruno et al., 2014).

A gradual reducing of the blood flow velocity in the
dilated sagittal sinus in stressed newborn rats is associated

with a time-dependent reduction of oxygen supply to the
brain. The results of our experiments clearly show that cerebral
hypoxia precedes stress-induced brain hemorrhages. This fact is
consistent with other experimental and clinical data. Thoresen
et al. in experiments on newborn pigs demonstrated that severe
hypoxia itself can induce spontaneous brain hemorrhage in
newborn pigs (Thoresen et al., 2001). Aderliesten et al. in
clinical observations showed a lower cerebral fraction tissue
oxygen extraction in newborns before severe stroke (Alderliesten
et al., 2013). Taking into account these facts we suppose that
hypoxia in the pre-hemorrhage period might be a causative
factor provoking critical changes in the brain, associated with
intracerebral hemorrhage in newborn rats.
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FIGURE 8 | The time-depended changes in the number of pyramidal

neurons in newborn rats in the pre-hemorrhage (2, 4, 6, 8 h after

stress, n = 25 in each group) and post- hemorrhage (24 h after stress,

n = 27) groups in comparison with control group (n = 25). *P < 0.05;

**P < 0.01; ***P < 0.001 compared with the control values.

FIGURE 9 | The time-depended changes in the thickness of the

molecular layer of the prefrontal cortex and in the diameter of

pyramidal neurons in newborn rats in the pre-hemorrhage (2, 4, 6, 8 h

after stress, n = 25 in each group) and post-hemorrhage (24 h after

stress, n = 27) groups in comparison with control group (n = 25).

*P < 0.05; **P < 0.01; ***P < 0.001 compared with the control values.

Our results clearly exhibit that the cerebral hypoxia and
disturbances in the cerebral venous system in newborn rats
are accompanied by an increase in deformability of RBCs.
The deformation of RBCc is a key factor for a release of
powerful vasorelaxant such as adenosine 5′ triphosphate (ATP)
(Sprague et al., 1996). This mechanism is related to the
activation by β-adrenergic receptors presented at the RBCs’
surface (Olearczyk et al., 2001). In our previous study, we
showed the high sensitivity of cerebral vessels of newborn
rats to a pharmacological modulation of vascular β-adrenergic
receptors (Pavlov et al., 2014). These facts allow us to believe
that the increased deformability of RBCs in stressed newborn

FIGURE 10 | The example of apoptotic bodies (arrowed) in the

prefrontal cortex obtained from 27 newborn rat 24 h after stress (the

signs of apoptosis are condensation and fragmentation of nuclei in an

intensely eosinophilic cytoplasm). Hematoxylin and Eosin staining. Bars

represent 10 µm (774X).

FIGURE 11 | The example of perivascular edema i.e., fluid pathway

from the cerebral vessels (arrowed) in the brain obtained from the

pre-hemorrhage group (2, 4, 6, 8 h after stress, n = 25 in each group)

and in the post-hemorrhage group (24 h after stress, n = 27).

rats might be one of possible mechanisms contributing to
the pathological relaxation of the cerebral veins due to ATP
release.

A stress-induced gradual reduction of oxygen supply to
the brain and blood flow velocity in the cerebral venous
system were accompanied by gradual pathological changes
in the brain areas involved in higher cognitive functions
such as the molecular layer of the prefrontal cortex and the
pyramidal neurons, which are crucial for associative learning
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and attention (Gilbert and Sigman, 2007). The severity of stress-
related disorders on the level of cerebral venous circulation
and oxygenation of the brain tissues was associated with the
time-dependent decrease in the thickness of the molecular
layer of the prefrontal cortex as well as with the reduction
of the number of pyramidal neurons and their diameter. The
formation of perivascular edema, which we observed in the
pre- and post-hemorrhage periods, can be one of the reasons
responsible for a decrease in the diameter of the pyramidal
neurons due to the fluid pathway from the cerebral vessels
and mechanical compression. Notice that the incidence of the
brain hemorrhages was accompanied by the progression of
pathomorphological changes in the cerebral cortex up to the
apoptosis of pyramidal neurons, i.e., irreversible changes leading
to the death of cerebral cells. In our previous morphological
studies of the brain tissues and cerebral vessels in newborn
rats we clearly show the progressive accumulation of blood in
the superficial cerebral veins (the pre- hemorrhage time) and
in deep cerebral veins and microvessels (the post-hemorrhage
time) (Semyachkina-Glushkovskaya et al., 2015a). We assume
that vascular component of stress-related brain injures play an
important role in drastic shrinkage of the prefrontal cortex via
mechanisms of compressive pressure on the molecular layer of
the prefrontal cortex.

What does the brain hemorrhages mean for intellectual
functions of the brain? The results of our study give clear
evidence that even an early latent stage of brain bleeding
is associated with significant morphological lesions of the
“intellectual zone” of the prefrontal cortex that is accompanied
by the irreversible apoptosis process after the incidence of brain
hemorrhages. Thus, stress-induced processes preceding and
accompanying brain hemorrhages in neonatal period contribute
the serious injures of the brain association areas responsible for
cognitive functions. Future studies need to focus on long-term
outcomes after brain hemorrhages induced by stress in neonatal
period to develop effective prognostic criteria and to optimize
neuroprotective strategies.

CONCLUSION

In general, our results suggest significant time-dependent stress-
induced changes in the brain preceding and accompanying
intracranial hemorrhages in newborn rats. The pre-hemorrhage
processes are realized at different levels of stress response
cascade such as systemic (the progressive reduction of blood
flow circulation in the cerebral venous system), metabolic (the
cerebral oxygenation declines), and cellular one’s (the increase
in RBCs deformability; the decrease in the thickness of the
molecular layer in the prefrontal cortex and in the number of
pyramidal neurons with reducing their diameter). The post-
hemorrhage time is characterized by progression of stress-
induced systemic, metabolic, and cellular changes in the brain,
which are accompanied by irreversible cell death apoptosis
process in the brain areas involved in higher cognitive functions.

Thus, the stress-induced processes preceding and accompanying
brain hemorrhages in the neonatal period contribute to serious

injures of the brain blood circulation, cerebral metabolic activity
and the structural elements of cognitive function. These results
are an informative platform for further studies of mechanisms
underlying stress-induced brain hemorrhages during the first
days of life that will improve the health of the future generation.
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