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Abstract: The data set contains a portion of the International Heat Stress Genotype Experiment 
(IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models 
and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat 
cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in 
Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), 
and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late 
(January-March) sowing dates. Data include local daily weather data, soil characteristics and initial 
soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above 
ground biomass, final grain yields and yields components), and cultivar information. Simulations 
include both daily in-season and end-of-season results from 30 wheat models. 
 
Keywords: wheat, field experimental data, heat stress, simulations. 
 
1 ORIGINAL PURPOSE: The original purpose of this data set was to support model intercomparisons 
and improvements (Asseng et al., 2015; Maiorano et al., 2017) as part of the Agricultural Model 
Intercomparison and Improvement Project (AGMIP, http://www.agmip.org/; Rosenzweig et al., 2013). 
The field experimental data were selected from the four-year International Heat Stress Genotype 
Experiment (IHSGE) to cover the full range of temperature of the global network of field experiments. 
The IHSGE was carried out as part of a collaboration between CIMMYT and key national agricultural 
research system partners in warm wheat growing environments to identify important physiological 
traits that have value as predictors of wheat yield at high temperatures (Reynolds et al. 1994b).   
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2 FIELD EXPERIMENTS: Experimental locations were selected based on a classification of air 
temperature and relative humidity during the wheat growing cycle. “Hot” and “very hot” locations were 
defined as having mean temperatures above 17.5 and 22.5°C, respectively, during the coolest month. 
“Dry” and “humid” locations were defined as having mean vapor pressure deficits above and below 
1.0 kPa, respectively. The present data set includes data from six of the original 12 locations that 
were selected to represent a large range of temperatures (Table 1). At Obregon (first year only) and 
Tlaltizapán (both years), Mexico normal and late sowing dates were used to provide contrasting 
temperature regimes at the same location. Of the 16 cultivars originally included in the first two-years 
of the IHSGE, two (Bacanora 88 and Nesser) were selected for the AgMIP-Wheat model 
intercomparison. Bacanora 88 is a high-yielding Mexican cultivar (Sayre et al., 1997) and Nesser is 
considered heat and drought tolerant (Okuyama et al., 2005). Both cultivars have low photoperiod 
sensitivity and low vernalization requirements. Crop growth cycle durations ranged from 80 to 127 
days. Mean temperature for the crop growth cycle ranged between 20.1°C and 30.1°C, and grain 
yield from 1.9 ± 0.28 to 6.3 ± 0.38 t DM ha-1 (Fig. 1). 
All data were collected on experimental plots consisting of eight rows, 15 cm apart and 6-m long, 
arranged in α-lattice designs with three replicates. All experiments were well-watered and -fertilized 
with temperature being the most important variable. Seeding rate was approximately 120 kg ha-1 at all 
sites, while the specific amount of N and P fertilizer applied and the irrigation varied from site to site. 
No irrigation or fertilizer data are available. Details of these factors, as well as information on soil type 
and weather necessary to run a wheat crop model are reported herewith. 
 
Figure 1. Final grain yield versus mean growing season temperature for six locations, two growth 
cycles, and two cultivars of the IHSGE experiment reported here. Data are for individual plots with 2 
to 3 replicated plots for each cultivar / site / year / sowing date combination. 
 

 
 
Mean of crop measurements have been reported in tabular format in CIMMYT internal reports 
(Reynolds et al., 1992, 1994a), with the exception of the experiment in Egypt, which has not been 
previously reported and it is here reported for the first year of the IHSGE. Measured crop variables 
include crop emergence date, anthesis date, maturity date, anthesis and final total above ground 
biomass, grain yield, plant number per square meter, spikes per square meter, grains per square 
meter, final average single grain dry mass, and plant height. In the first year, maturity dates for the 
late sown treatments for both cultivars at Obregon, Mexico were not available and were estimated as 
the average growing degree-days from anthesis to maturity of all other treatments. Similarly, anthesis 
date for Bacanora 88 in Egypt was not available and was estimated as the average growing degree-
days from crop emergence to anthesis of all other treatments. Biomass harvests at anthesis were 
made on a single date for the whole experiment. Missing data are indicated by “NA”. 
Correlations between replicates overall and the distribution within each cultivar across replicates were 
calculated. In cases where the cultivar x replicate effect was high and two replicates were much 
closer to each other than the third, the outlying replicate was excluded. Data are reported as mean 
and standard deviation. Figure 1 illustrates the range of yield and mean growing season temperature. 
Seasonal (defined based on observed phenological stages) mean air temperature was calculated 
from daily air temperature, which was derived from the sum of eight contributions of a cosine variation 
between maximum and minimum daily air temperatures as described in Weir et al. (1984). 
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3 SIMULATION OF FIELD EXPERIMENTS: Simulations for the 28 locations/years/sowing 
dates/cultivars combinations were carried out by 30 wheat model (see Supplementary of Asseng et 
al., 2015). Fifteen of these 30 wheat models also participated in a crop model improvement study 
(Maiorano et al., 2017) where the IHSGE data set was used as a validation data set (blind). For these 
15 models, simulation results are given for both the original and the improved versions. 
Model outputs include crop emergence date, anthesis date, maturity date, and grain number per 
square meter. They also include outputs of in-season time series and end-of-the-season for total 
above ground and grain biomass, leaf area index, cumulative evapotranspiration, and cumulative 
transpiration. Not all models simulated all variables. Variables not simulated are indicated by “NA”. 
Simulation results are reported for each individual model and for the multi-model ensemble median 
(e.median). 
Simulations were carried out using a standardized protocol and one step of calibration. All sowing 
dates, anthesis and maturity dates, soil type characteristics and weather data were supplied to the 
modelers to simulate the experiments. Other crop measurements were provided to the modelers for 
Obregon, Mexico only. Detailed soil information were not available for each individual experiment. 
Therefore, as water and nitrogen were managed to limit any stress effect, a unique set of soil 
parameters and initial conditions was used to simulate all 11 year/location/sowing date combinations. 
Some models used an unlimited water and nitrogen mode for simulating these experiments. Weather 
data were obtained from the AgMIP climate forcing data set based on the NASA Modern-Era 
Retrospective Analysis for Research and Applications (AgMERRA; Ruane et al., 2015): 
http://data.giss.nasa.gov/impacts/agmipcf/agmerra/ 
 
4 DATA FORMAT, STRUCTURE, AND AVAILABILITY: An overview of the main tables from the 
data set is given in Table 2. Experimental (mean and standard deviation of crop measurements) and 
simulation (model output) data are provided in tab delimited text files. The names of the variables 
(key) are explained in companion text files with their correspondence and conversion factors in the 
International Consortium for Agricultural Systems Applications (ICASA) standard (White et al., 2013): 
http://research.agmip.org/display/dev/ICASA+Master+Variable+List 
Model input (cultivar information and crop management), soil description and initial conditions for 
simulation set up are provided in a Microsoft Excel book in XML format following the AgMIP format for 
model input and in tabulation delimited text files. Daily weather data (global solar radiation, daily 
maximum and minimum air temperature, rainfall, wind run, dew point temperature, vapor pressure, 
and relative humidity) are provided in the ICASA format in space delimited text files. All text files are 
UTF-8 encoded. 
All data are available in Harvard Dataverse data repository (https://dataverse.harvard.edu/) with the 
identifiers “doi:10.7910/DVN/ECSFZG”. 
 
Table 2. Overview of the main data set tables. All files are provided in space (weather data) or 
tabulation (all others) delimited text format. The crop management husbandry parameters, the soil 
description and initial conditions are also provided in the Microsoft Excel xml format used in AgMIP. 
Table name Content 
XXXX0001.WTH Space delimited file of weather data. XXXX is the 

site name. 
ISGHE_AgMIP_measurement_key.txt Name, definition, and units of the measured 

variables with ICASA standard and conversion 
factor 

ISGHE_AgMIP_measurments_ave_sd.txt Tab delimited file of all available crop 
measurements (means and standard deviations) 

ISGHE_AgMIP_site_soil_crop_management.xml XML (Microsoft Excel 2003) file with crop 
management, cultivar description, site description 
and initial conditions 

ISGHE_AgMIP_model names.txt Tab delimited file with the full name, version, and 
two-letter code of the 30 wheat models 

ISGHE_AgMIP_ simulation_key.txt Name, definition, and units of the simulated 
variables with ICASA standard and conversion 
factor 

ISGHE_AgMIP_summary_simulations.txt Tab delimited file of the summary model outputs 
ISGHE_AgMIP_daily_simulations.txt Tab delimited file of the summary model outputs 
 

http://data.giss.nasa.gov/impacts/agmipcf/agmerra/
http://data.giss.nasa.gov/impacts/agmipcf/agmerra/
http://research.agmip.org/display/dev/ICASA+Master+Variable+List
https://dataverse.harvard.edu/
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