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The question whether a seasonal climate trend (e.g., the increase
of summer temperatures in Antarctica in the last decades) is of
anthropogenic or natural origin is of great importance for mitiga-
tion and adaption measures alike. The conventional significance
analysis assumes that (i) the seasonal climate trends can be quan-
tified by linear regression, (ii) the different seasonal records can
be treated as independent records, and (iii) the persistence in
each of these seasonal records can be characterized by short-term
memory described by an autoregressive process of first order.
Here we show that assumption ii is not valid, due to strong
intraannual correlations by which different seasons are corre-
lated. We also show that, even in the absence of correlations,
for Gaussian white noise, the conventional analysis leads to a
strong overestimation of the significance of the seasonal trends,
because multiple testing has not been taken into account. In addi-
tion, when the data exhibit long-term memory (which is the case
in most climate records), assumption iii leads to a further overes-
timation of the trend significance. Combining Monte Carlo simu-
lations with the Holm–Bonferroni method, we demonstrate how
to obtain reliable estimates of the significance of the seasonal cli-
mate trends in long-term correlated records. For an illustration,
we apply our method to representative temperature records from
West Antarctica, which is one of the fastest-warming places on
Earth and belongs to the crucial tipping elements in the Earth
system.

climate | long-term persistence | seasonal trends | statistical significance |
multiple testing

In the last decades, estimations of the magnitude of determin-
istic trends in natural records have become an important issue,

due to anthropogenic global warming (1). Although the estima-
tion of a trend by linear regression is an easy task, the estima-
tion of its statistical significance and its error bar is complicated,
because the natural persistence of the records also becomes
an issue.

In the absence of persistence (white noise) as well as in short-
term persistent records, the distribution of the trend follows a
Student’s t distribution from which the significance S , its p value
p = 1−S , and the error bars of the trend can be determined
(see, e.g., refs. 2–4 and Methods). In many natural records like
temperature data, river flows, sea level heights, wind fields, mid-
latitude cyclones, or Antarctic sea ice extent, the assumption of
white noise or short-term memory is not valid, due to strong long-
term memory in the data (5–27) (Methods).

Here we consider seasonal temperature records. A “season”
can be a calendar day (without leap day), a week, a month, or
combinations of months like meteorological winter, spring, sum-
mer, and autumn. Let us consider a daily mean temperature
record with a length of L years. When a season is defined as a
certain calendar day, the corresponding seasonal record consists
of the L temperature data at that calendar day (e.g., January 10),
in chronological order. By definition, there are 365 of these sea-
sonal records. When a season is a certain month (e.g., March),
the corresponding seasonal record consists of the L March mean
temperatures. Finally, when a season consists of three consec-

utive months (e.g., spring), the corresponding seasonal record
comprises the L spring mean temperatures. We are interested in
the estimation of the statistical significance of seasonal climatic
trends, e.g., of increasing spring temperatures at a certain loca-
tion in Antarctica.

Seasonal climate trends are of great importance, because they
may considerably affect ecological systems, agricultural yields,
and human societies, thus creating major challenges for crop
rotation management (28), river-borne transportation (29), and
power generation (30), as well as for the control of pests and
vector-borne diseases (31).

Results and Discussion
Fig. 1 shows, for illustration, the four seasonal temperature
trends at Byrd station between 1957 and 2013 (32), in austral
autumn, winter, spring, and summer. The data were obtained
from the Byrd Polar and Climate Research Center at The Ohio
State University (33). The Byrd station is located inside West
Antarctica, which is one of the fastest-warming regions on Earth
and belongs to the crucial tipping elements in the Earth system
(34, 35). The red line in each panel of Fig. 1 shows the warming
trend obtained from linear regression. For the significance analy-
sis, the relative trend x (ratio between trend magnitude and stan-
dard deviation (SD) around the trend line) is relevant. The Byrd
record is known to be long-term persistent with the Hurst expo-
nent h = 0.65 (23, 26) (Methods).

The conventional procedure for evaluating the statistical sig-
nificance of seasonal climate trends is based on three assump-
tions (see, e.g., refs. 32 and 36–40): (i) The magnitudes of the
seasonal trends can be obtained by linear regression as in Fig. 1,
(ii) the seasonal records are independent of each other, and
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Fig. 1. Temperature data at Byrd station. (A) The monthly record between
1957 and 2013. (B–E) show the mean seasonal temperatures, for austral
(B) autumn (March–April–May, MAM), (C) winter (June–July–August,
JJA), (D) spring (September–October–November, SON), and (E) summer
(December–January–February, DJF). The straight red lines are the regres-
sion lines. The magnitudes ∆ of the trends and the standard deviations
σ around the trend line for MAM, JJA, SON, and DJF are (in degrees Cel-
sius) (1.35, 2.08), (2.34, 2.63), (3.27, 1.89), and (1.10, 1.24), respectively. The
corresponding relative trends x = ∆/σ are 0.650, 0.889, 1.729, and 0.891,
respectively.

(iii) the persistence in each seasonal record can be characterized
by an autoregressive process of first order (AR1) between the
same seasons over a year’s distance. Under these assumptions,
the significance of seasonal climate trends has been obtained by
applying Eqs. 4 and 5 to the underlying seasonal record.

It is obvious that assumption ii is not valid in monthly records
where subsequent months are coupled such that the lag-1 auto-
correlation function is different from zero; this happens, for
example, when the record of interest can be described by an AR1
process or is long-term persistent. Assumption iii is not valid
in long-term persistent records where events separated by large
time spans are also correlated. However, as we show next, the
conventional treatment cannot be applied even to white noise
records where assumptions ii and iii are trivially satisfied.

To see this point, let us assume that the Byrd record can be
modeled by white noise. Under this assumption, following the
conventional treatment, the dependence of the significance S on
the relative trend x can be obtained from Eq. 4, for the same
length L= 57 as our standard example. The result for p = 1−S
is shown in Fig. 2A. From the figure, one can read off the p values
of the four relative trends at Byrd station shown as full circles. If
a p value is below its significance level α= 0.05 (shown as dashed
horizontal line in the figure), we consider a trend as significant.
The intersection of p(x ) with the dashed horizontal line yields
the error bar x95 (Methods). One can see that, under the white
noise assumption, spring has a highly significant trend, with a p
value well below 10−3, whereas fall has a p value of 0.16 and is
clearly not significant.

To test if the p value for the largest seasonal trend has been
obtained correctly, we performed Monte Carlo simulations. We
generated a large number of Gaussian white noise records {yi},
i = 1, . . . , 4L, again for L= 57. The four seasonal subrecords
are {y1, y5, ...y4L−3}, {y2, y6, ...y4L−2}, {y3, y7, ...y4L−1}, and
{y4, y8, ...y4L}. In each record, we calculate the maximum of the
absolute values of the four relative trends in the four subrecords.

Then we determine the probability density function of the max-
imum relative trend x , from which we derive the p value of the
maximum trend by simple integration. By construction, p(x ) is
exact for the maximum trend and provides upper bounds for the
lower-ranked trends. The result is shown in Fig. 2B. One can see
that the proper p value of the maximum trend is exactly a factor
of 4 larger than the value obtained by the conventional treat-
ment. Again, the intersection of p with α= 0.05 yields the error
bar x95.

The reason for the considerable underestimation of the p
value of the maximum trend by the conventional treatment is
that several significance tests (here four for the four seasons)
are performed on the same record (Multiple Testing Problem). To
demonstrate this, we test, in a gedankenexperiment, the statisti-
cal significance of the relative trends of the 365 calendar day sub-
records, in a purely white noise surrogate temperature record,
with a significance level α= 0.05. By definition, 5% of the 365
records, i.e., 18 records, will have a p value below 0.05, suggesting
that there is a significant trend in these subrecords. Accordingly,
the null hypothesis that there is no external trend involved in any
of the 365 subrecords will be rejected for 18 calendar days.

The necessity of taking into account multiple testing in sequen-
tial datasets is well known in genetics, particularly in genome-
wide association studies, where associations between genetic
variants like single-nucleotide polymorphisms and traits like dis-
eases are investigated (for details, see ref. 41). Before multi-
ple testing correction became the standard practice, most of the
early results of these association studies could not be replicated.

A B

C D

Fig. 2. The significance (p value) of the relative seasonal warming trends
x at Byrd station. The black, red, blue, and green circles refer to austral
fall (MAM), summer (DJF), winter (JJA), and spring (SON), respectively. It
is assumed that the natural variability of the record can be described, to
a first-order approximation, by white noise. (A) The result of the conven-
tional approach is compared with (B) the result of Monte Carlo simulations
where, for white noise records with the same length as the Byrd record, the
significance of the largest seasonal relative trend (absolute value) has been
determined. Also shown are the p values for (C) the Bonferroni approach
and (D) the Holm–Bonferroni approach. The dash-dotted horizontal line in
D is the p value of the warming trends in JJA, MAM, and DJF. The Bonferroni
approach yields, for p values below 0.3, the same result as obtained in B for
the largest seasonal relative trend, shown in C as the dashed red curve. In
all panels, x95 refers to the relative trend at S = 0.95 (p = 0.05) and can be
regarded as an error bar for the relative trend.
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Multiplicity is also an issue in climate science when estimating
the significance of trends in a large number of stations or grid
points (see, e.g., refs. 42 and 43); a challenge is the proper han-
dling of the spatial correlations between the records (44).

There are several procedures that take multiple testings into
account (Methods). Within the Bonferroni approach (45), one of
m seasons has a significant trend if its p value is below α/m , for
any chosen threshold value α. This rule is the equivalent of mul-
tiplying each individual p value by m and comparing the result
with α. This way, the p values from Fig. 2A are multiplied by a
factor of 4. The result is shown in Fig. 2C. The figure shows that
the Bonferroni curve is nearly identical with p(x ) from Fig. 2B,
showing that the Bonferroni method yields an accurate descrip-
tion of the significance of the maximum seasonal trend in the
white noise case where the data exhibit no memory.

A less conservative method is the Holm–Bonferroni method
(46), which yields better upper bounds for the p values of the
lower trends than the Bonferroni method. Within this method,
first, the relative seasonal trends are ranked. By definition, rank-
1 season has the largest and rank-m season has the lowest relative
trend, in absolute values. Next, one compares the p value p[k ] of
the rank-k season with α/(m + 1− k), which is the equivalent of
multiplying p[k ] by m + 1− k and comparing the result with α. If
the trend in the rank-k∗ season is not significant, then the trends
in all higher-ranked seasons must be considered as not significant.
The error bar is the same as for the Bonferroni method.

The result of this analysis is shown in Fig. 2D. By definition,
the p value of the strongest warming trend remains the same as
in Fig. 2C, whereas the p values of the other three warming trends
are now comparable and slightly above 10−1. According to Holm
(46),p[3] andp[4] cannot fall belowp[2], so they are set equal top[2].

Because our Monte Carlo method also yields upper bounds
for the lower-ranked trends, the minimum value of both methods
gives the better estimate. One can see that, for the second-largest
trend, Holm–Bonferroni yields a smaller p value (p[2] = 0.17)
than our Monte Carlo simulations (p[2] = 0.21). Accordingly, the
Holm–Bonferroni method yields the better estimate for p[2].

Next we study how the situation changes when the data exhibit
long-term memory characterized by a Hurst exponent h above
1/2 (Methods). As for the white noise case, we basically assume
that a monthly temperature record characterized by a certain
Hurst exponent can be modeled by long-term correlated sur-
rogate data with the same Hurst exponent. In long-term cor-
related surrogate data, by construction, the Hurst exponents of
the 12 monthly subrecords only vary statistically around their
mean. To test, if this assumption holds also for temperature
records, we have considered the historical millennium run of
the Hamburg Atmosphere–Ocean Coupled Circulation Model
ECHO-G (see, e.g., ref. 19). We found that, for all grid points
considered, the Hurst exponents of the 12 monthly subrecords
varied in the same statistical way as for the surrogate data, thus
supporting our hypothesis.

For determining the statistical significance of the seasonal cli-
mate trends, we follow closely the prescription detailed above
for the white noise case. First, we generate a large number of
long-term correlated records with the same length L and the
same detrended fluctuation analysis 2 (DFA2) exponent h as the
record of interest, for Byrd L= 57 and h = 0.65 (23, 26, 47). For
details, see refs. 48 and 49. Then we consider, in each record,
the four seasons and determine (i) the absolute values of their
relative trends x1, . . . x4 as well as (ii) their maximum relative
trend. From i, we obtain the probability density function of all
seasonal relative trends, and, from ii, we obtain the probability
density function of the maximum seasonal relative trend, as dis-
cussed above. From both functions, we derive the corresponding
trend significances.

Fig. 3A shows the resulting p value for case a, when multiple
testing has not been taken into account. Fig. 3A is the analog

A B

C D

Fig. 3. Same as Fig. 2, but for long-term correlated records with the same
length and Hurst exponent h = 0.65 as the Byrd record (23, 26, 47). Due to
the long-term correlations, the curve in B does not agree with the Bonfer-
roni result obtained in C.

of Fig. 2A for long-term persistent records. The figure shows the
expected result that, due to the long-term persistence, the p value
is strongly enhanced compared with the white noise case, i.e., the
significance of all trends is reduced. Fig. 3 B–D is fully equivalent
to Fig. 2 B–D. Fig. 3B shows that thep value of the maximum trend
is further increased by a factor of 3.4. Fig. 3 C and D describes the
application of the Bonferroni method and the Holm–Bonferroni
method to the long-term persistent data. Fig. 3C shows that, due
to the long-term memory, the Bonferroni method slightly exag-
gerates the p value of the relative trends. Except for the lowest-
ranked seasonal trend, the p values in Fig. 3B are lower than those
in Fig. 3D and thus give the better estimate.

We also performed a similar analysis for the monthly warm-
ing trends at Byrd station. Fig. 4 summarizes our results for the
warming trends of (i) the four seasons at Byrd station and (ii) the
three months (March, September, and October) with the largest
relative trend. Our final result (Fig. 4, Bottom) shows that only
spring (SON) has a significant warming trend (∆ = 3.3 ◦C) at the
98% significance level (p = 0.02). The other seasons have p values
above 0.35. Accordingly, their warming trends are far from being
significant. None of the months has a significant warming trend.

In contrast, when applying the conventional procedure (where
the persistence in each seasonal record has been assumed to
follow an AR1 process) to the seasonal records, one finds (32)
that spring warming is highly significant at the 99.9% significance
level (p = 0.001, i.e., 50 times lower than our value), and winter
warming is significant at the 95% significance level (p = 0.05, i.e.,
7 times lower than our value). The other seasons were not sig-
nificant. In addition, both September and October warming are
highly significant, at the 99% and 95.2% significance level.

In addition to the Byrd reconstruction, we have studied the
four longest observational temperature records in West Antarc-
tica (McMurdo, Rothera, Faraday-Vernadsky, and Belling-
shausen). Fig. 5 summarizes our results for the warming trends
of the four seasons and the 3 mo with the largest relative
trends at the four West Antarctic stations. The figure shows that,
for Rothera (1978–2013) and Bellingshausen (1968–2013), the
monthly and seasonal warming trends are not significant. For
Faraday-Vernadsky (1951–2013), May warming (∆ = 5.1 ◦C)
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Fig. 4. Seasonal warming trends with error bars and p values (on top of the
error bars) for the Byrd record, for the four seasons and the 3 mo with the
largest relative trends. (Top) The result of the conventional analysis under
the assumption that the natural variability of the record can be considered
as Gaussian white noise (Fig. 2A). (Middle) The result of our combined Monte
Carlo–Holm method, again under the assumption of white noise (Fig. 2 B
and D). (Bottom) The result of our combined Monte Carlo–Holm method for
long-term correlated records with Hurst exponent h = 0.65 (Fig. 3 B and D).
The differences between the three treatments are most pronounced for the
monthly data. In the conventional treatment under the white noise assump-
tion, all three months have a highly significant trend, whereas, in the Monte
Carlo–Holm treatment, all monthly trends are far from being significant.

and winter warming (∆ = 6.31 ◦C) are significant, with p = 0.04.
At McMurdo (1957–2013), where the warming trend of the
whole record is not significant, with p = 0.09 (24), October warm-
ing (∆ = 4.4 ◦C) and spring warming (∆ = 3.2 ◦C) are significant,
with p = 0.02 and 0.03, respectively.

Finally, we also inspected the nine longest observational tem-
perature records in East Antarctica (Halley, Syowa, Mawson,
Davis, Mirny, Casey, Dumont d′Urville, Vostok, and Amundsen-
Scott). It is remarkable that all monthly and seasonal warming
trends were nonsignificant, with p values well above 0.1. The only
significant seasonal trend in East Antarctica is the cooling trend
of austral fall (∆ = − 1.61 ◦C at Dumont d′Urville (1957–2013),
where p = 0.04.

In conclusion, we have shown that previous estimations of
seasonal temperature trends strongly overestimated the statis-
tical significance of the trend, because two effects, (i) multiple
testing and (ii) long-term persistence, have been neglected. By
using Monte Carlo simulations, we have shown explicitly how
both effects must be taken into account. When one aims to study
the significance of a seasonal trend in a multirecord case, e.g.,
temperature data on many grid points, one has to consider two
kinds of multiplicity, (i) the known spatial multiplicity (42–44)
and (ii) the seasonal multiplicity considered here.

Our method is valid for all climate records that are char-
acterized by linear long-term memory. As examples, we con-
sidered Antarctic temperature records. Our approach can be
easily generalized to records characterized by autoregressive pro-
cesses. For climate records with nonlinear correlations like pre-
cipitation and river flows, our approach can be considered as only
a first-order approximation. For achieving more reliable results
for these cases, one needs an accurate statistical model encom-
passing the proper linear and nonlinear correlations. At present,
such a model is not available.

Methods
Significance of Trends: Conventional Method. We consider the annual
record {yi} with length L. From the regression line ri = ai + b, we obtain
the magnitude of the trend ∆ = a(L − 1) and the fluctuations around the

trend, characterized by the SD σ= [(1/L)
∑L

i=1 (yi − ri)
2]

1/2. The relevant
quantity we are interested in is the relative trend,

x = ∆/σ. [1]

For assessing if an observed trend in a data set may be due to its nat-
ural variability or not, one needs to know the probability S(x, L) that, in
statistical model records with the same persistence properties as the con-
sidered data set, a relative trend between −x and +x occurs. S(x) is called
the “statistical significance of the trend x,” and its deviation from 1 is called
p value.

If p(x) is below a certain significance level α (usually α is 0.05 or 0.01),
one usually assumes that the considered trend cannot be fully explained by
the natural variability of the record. The relation p(xα; L) = 1− S(xα; L) =α

defines the upper and lower limits ± xα of the considered significance
interval (also called confidence interval). By the above assumption, rela-
tive trends x between −xα(L) and xα(L) can be regarded as natural. If x
is above xα, the part x− xα cannot be explained by the natural variabil-
ity of the record and thus can be regarded as minimum external relative
trend,

xmin
ext = x − xα. [2]

Similarly, the external relative trend cannot exceed

xmax
ext = x + xα, [3]

which thus represents the maximum external relative trend. According to 2
and 3, ± xα(L) can be regarded as error bars for an external relative trend
in a record of length L.

For uncorrelated Gaussian data (white noise), the distribution Q(x; L) of
the relative trends x follows the Student’s t distribution,

Q(x; L) =
Γ( l(L)+1

2 )

Γ( l(L)
2 )
√
πl(L)a

(
1 +

(x/a)2

l(L)

)− l(L)+1
2

,

with l(L) = L− 2 and a = (
√

12(L− 1)/
√

L2 + 2)/
√

l(L)∼=
√

12/l(L) (see, e.g.,
ref. 2). Γ denotes the Γ-function. Integration of Q between −x and +x
yields the significance S,
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Fig. 5. Seasonal warming trends with error bars and p values (on top
of the error bars) for the West Antarctic stations Rothera (36 y), Fara-
day/Vernadsky (62 y), Bellingshausen (44 y) (all on the Peninsula), and
McMurdo (56 y). The temperature records of Faraday/Vernadsky, Belling-
shausen, Rothera, and McMurdo are long-term persistent with Hurst expo-
nents h = 0.83, 0.77, 0.82, and 0.70, respectively (24). The figure shows the
result of our Monte Carlo–Holm treatment.
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S(x; L) = 2
x

a

Γ
( 1

2 [l(L) + 1]
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√
πlΓ( l(L)

2 )
×

2F1

(
1

2
,

1

2
[l(L) + 1];

3

2
; −

(x/a)2

l(L)

)
. [4]

Here 2F1 is the hypergeometric function.
For short-term persistent records described by AR1, Eq. 4 remains the

same, only l(L) has to be substituted by

I(L) = L[1− C(1)]/[1 + C(1)], [5]

where C(1) is the lag-1 autocorrelation function (see, e.g., ref. 4). In practice,
one determines C(1) from the detrended anomalies, after the regression
line has been substracted from the annual data. We note, however, that
Eq. 5 is only valid for large records where the fluctuations of C(1) can be
neglected. For short records, these fluctuations must be taken into account
for obtaining a correct estimate of the significance (see also ref. 3). In the
conventional estimations of the statistical significance of seasonal trends
(see, e.g., refs. 32, 36–40), it has been tacitly assumed that Eqs. 4 and 5 can
be applied to the seasonal records.

Apart from the purely statistical approach described above, physics-
based (”deterministic”) models of the coupled atmosphere–ocean dynamics
(AOGCMs) have been used for the detection and quantification of ”total”
natural climate variability. The simulations have been used in the sense
of sanity checks for data analysis, because the amplitude of variability
needs to be consistent in observations and (ensemble) model runs (50, 51).
Note, however, that AOGCM calculations are cumbersome and costly, so the
accomplishment of (computed) statistical significance is quite a challenge.

The Multiple Testing Problem. Often, when analyzing a data set, several
null hypotheses H1, H2, . . . , Hm with the corresponding p values p1, . . . , pm

are tested. In this multiple testing problem, the likelihood that at least one
of these tests will incorrectly reject it’s null hypothesis and therefore falsely
conclude the presence of a statistically significant effect is higher than the
chosen significance level α. For instance, when the significance of temper-
ature trends in m grid points (see, e.g., refs. 42 and 43) is tested, Hn is
the hypothesis that the trend at grid point n is within natural variability,
n = 1, 2 . . . , m. When considering climatic trends in m seasons as in this arti-
cle, Hn is the hypothesis that the trend in season n is within natural variabil-
ity, n = 1, 2 . . . , m.

There are several procedures to take multiple testings into account. In the
Bonferroni approach (45), the significance level α is divided by the number
m of null hypotheses that are tested. If a p value is below α/m, then the
null hypothesis is rejected at level α.

A less conservative method is the Holm–Bonferroni method (46): First, the
p values are ranked from lowest to highest, p[1], . . . , p[m]. The associated
null hypotheses are H[1], . . . , H[m]. If a p[k] value is below α/(m + 1−k), the
associated null hypothesis H[k] is rejected at level α. If H[k∗]) is not rejected,
then all H[k] with rank k > k∗ are also not rejected.

Long-Term Memory. In records with long-term memory, the autocorrela-
tion function C(s)∼= (1− γ)s−γ of the (detrended) anomalies decays by a
power law. Because C(s) shows strong finite size effects (52) (the results are
only valid for s<N/50 where N is the record length), one usually consid-
ers the DFA2 fluctuation function F(s) (53) to detect the long-term mem-
ory. To obtain F(s), one divides the seasonally detrended monthly record
{y∗

i }, i = 1, . . . , N into nonoverlapping windows µ of lengths s. Then one
focuses, in each segment µ, on the cumulated sum Yi of the {y∗

i }, and deter-
mines the variance F2

µ(s) of the Yi around the best polynomial fit of order 2.

After averaging F2
µ(s) over all segments µ and taking the square root, one

arrives at the desired fluctuation function F(s). One can show that, in long-
term persistent records,

F(s) ≈ sh, [6]

where the exponent h can be associated with the Hurst exponent and
is related to the correlation exponent γ by h = 1− γ/2. By definition,
in DFA2, the influence of external linear trends on F(s) is eliminated. It
has also been shown that weak nonlinearities of the external trend do
not influence the Hurst exponent (53). It is important to note that the
finite-size effects in the DFA2 fluctuation function (the results are valid
for s<N/4) are considerably smaller than in C(s). Accordingly, DFA2 also
is suited to detect long-term memory in short records (as long as N is
above 400).

In refs. 23, 24, 26, 47, and 54, DFA2 has been applied to the monthly
Antarctic records considered here. It has been shown explicitly (23, 24) that,
for each record, the fluctuation function F(s) agreed with the fluctuation
function of long-term correlated surrogate data with the same length and
Hurst exponent h.

When a record is fully characterized by a certain Hurst exponent h, the
significance S of a relative trend x depends only on h and the record length
N. It has been shown recently by Tamazian et al. (54) that S(x, N) also follows
Eq. 4, but with different parameters a and l. These parameters depend on
h and N and have been tabulated (for 0.5≤ h≤ 1.5 and N≥ 400) in ref. 54.
Accordingly, for given h and N, the trend significance can be obtained
straightforwardly from ref. 54, making the trend estimation as easy as for
short-term persistent processes.
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